
Testing, Debugging, and Verification
Testing, Part II

Wolfgang Ahrendt, Vladimir Klebanov, Moa Johansson

30 November 2012

TDV: Testing /GU 121130 1 / 28

Testing Levels Based on Software Activity

Acceptance Testing
assess software with respect to user requirements

System Testing
assess software with respect to system-level specification

Integration Testing
assess software with respect to high-level design

Unit Testing
assess software with respect to low-level unit design

remarks:
– terminology, and depth of this hierarchy, varies in literature

TDV: Testing /GU 121130 2 / 28

V-Model

Integration Testing

Unit TestingImplementation

Subsystem Design

Architectural Design

Acceptance Testing

System Testing

Requirements Analysis

Customer needs

Choose components,
connections

Structure, behaviour
of subsystem

Code!

User's/client's needs met?

Assembled system
 meets spec?

Does components
work together?

Test individual methods,
 classes

(many variants!)

TDV: Testing /GU 121130 3 / 28

Testing Levels Based on Software Activity (cont’d)

System Testing – testing system against specification of externally
observable behaviour

Integration Testing – testing interaction between modules

Unit Testing – testing individual units of a system
traditionally: unit = procedure
in object-orientation (Java): unit = method

Failures on higher levels less useful for debugging, as propagation from
defect to failure is difficult to trace.

This course focuses on lower level: unit testing

TDV: Testing /GU 121130 4 / 28

Discussion: Testing Levels of a System for Printing
Paychecks

Name:

Hours:

Print Paycheck

Payroll System

calculates:
salaries, taxes, bonus

Print Paycheck

Formats and prints
paycheck

Staff Database

Given name, looks up
address, position.

Think of examples of:

I System Tests

I Integration Tests

I Unit Tests

TDV: Testing /GU 121130 5 / 28

Some examples of Tests

I System Test
I Enter data in GUI, does it print the correct paycheck, formatted as

expected?

I Integration Tests, e.g.
I Payroll asks database for staff data, are values what’s expected?

Maybe there are special characters (unexpected!).
I Are paychecks formatted correctly for different kinds of printers?

I Unit Tests, e.g.
I Does payroll system compute correct tax-rate, bonus etc?
I Does the Print Paycheck button react when clicked?
I ...

TDV: Testing /GU 121130 6 / 28

Regression Testing

Orthogonal to the above testing levels:

Regression Testing

I Testing that is done after changes in the software.

I Purpose:
gain confidence that the change(s) did not cause (new) failures.

I Standard part of the maintenance phase of software development.

E.g. Suppose Payroll subsystem is updated. Need to re-run tests (which
ones?).

TDV: Testing /GU 121130 7 / 28

Unit Testing

Rest of testing part of the course: focusing largely on unit testing

recall: unit testing = procedure testing = (in oo) method testing

major issues in unit testing:

1. unit test cases (‘test cases’ in short)

2. order in which to test and integrate units

start with 1.

TDV: Testing /GU 121130 8 / 28

Test Cases

The science of testing is largely the science of test cases.

TDV: Testing /GU 121130 9 / 28

What does a test case consists of?

(to be refined later)

Test case

I Initialisation (of class instance and input arguments)

I Call to the method under test.

I Decision (oracle) whether the test succeeds or fails

I two first parts seem enough for a test case,

I but test oracle is vital for automated evaluation of test

TDV: Testing /GU 121130 10 / 28

‘Success’ vs. ‘Failure’ of Tests

What does it mean for a test to succed?

... or fail?

TDV: Testing /GU 121130 11 / 28

Test Cases, more precise

Params,
Input State

Result,
Final State

Method
m

I: (P, S
in
) (R, S

out
)

Yes!

No!

Oracle O

More formally...
A test case is a tuple 〈m, I, O〉 of method m, input I, and oracle O,
where

I m is the method under test

I I is a tuple 〈P, Sin〉
of call parameters P and initial state Sin

I O(R, Sout) 7→ {pass, fail}
is a function on return value R and final state Sout, telling whether
they comply with correct behaviour

TDV: Testing /GU 121130 12 / 28

Test Set

A test set TSm for a (Java) method m consists of n test cases:

TSm = {〈m, I1, O1〉, . . . , 〈m, In, On〉}

In general, Oi is specific for each test case!

TDV: Testing /GU 121130 13 / 28

Test Suite

A test suite for methods m1, . . . , mk is a union of corresponding test sets:

TSm1 ∪ . . . ∪ TSmk

TDV: Testing /GU 121130 14 / 28

Test Oracle, Remarks

While O is in general specific for each and every test case, it is desirable
to go beyond.

I Desirable to have, for each method m, one uniform oracle Om.

I Then, a test suit is:
TSm = {〈m, I1, Om〉, . . . , 〈m, In, Om〉}

I Moreover, desirable to have such uniform oracles generated
automatically.

These issues not addressed in the following,
but in ‘Test Case Generation’ part of the course.

TDV: Testing /GU 121130 15 / 28

Automated and Repeatable Testing

Basic idea: write code that performs the tests.

I By using a tool you can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus stored
in an organised way

I side-effect: documentation

I After debugging, the tests are rerun to check if failure is gone

I Whenever code is extended, all old test cases can be rerun to check
that nothing is broken (regression testing)

TDV: Testing /GU 121130 16 / 28

Automated and Repeatable Testing (cont’d)

We will use JUnit for writing and running the test cases.

JUnit: small tool offering

I some functionality repeatedly needed when writing test cases

I a way to annotate methods as being test cases

I a way to run and evaluate test cases automatically in a batch

TDV: Testing /GU 121130 17 / 28

JUnit

I Java testing framework to write and run automated tests
I JUnit features include:

I Assertions for testing expected results
I Annotations to designate test cases
I Sharing of common test data
I Graphical and textual test runners

I JUnit is widely used in industry

I JUnit used from command line or within an IDE (e.g., Eclipse)

(Demo)

TDV: Testing /GU 121130 18 / 28

Basic JUnit usage

public c la s s Ex1 {

public s ta t i c int find_min(int [] a) {

int x, i;

x = a[0];

for (i = 1; i < a.length;i ++) {

i f (a[i] < x) x = a[i];

}

return x;

}

...

TDV: Testing /GU 121130 19 / 28

Basic JUnit usage

continued from prev page

...

public s ta t i c int [] insert(int [] x, int n) {

int [] y = new int [x.length + 1];

int i;

for (i = 0; i < x.length; i++) {

i f (n < x[i]) break;
y[i] = x[i];

}

y[i] = n;

for (; i < x.length; i++) {

y[i+1] = x[i];

}

return y;

}

}

TDV: Testing /GU 121130 20 / 28

Basic JUnit usage

JUnit can test for expected return values.

public c la s s Ex1Test {

@Test public void test_find_min_1 () {

int [] a = {5, 1, 7};

int res = Ex1.find_min(a);

assertTrue(res == 1);

}

@Test public void test_insert_1 () {

int [] x = {2, 7};

int n = 6;

int [] res = Ex1.insert(x, n);

int [] expected = {2, 6, 7};

assertTrue(Arrays.equals(expected , res));

}

}

TDV: Testing /GU 121130 21 / 28

Testing for Exceptions

JUnit can test for expected exceptions

@Test(expected=IndexOutOfBoundsException. c la s s)
public void outOfBounds () {

new ArrayList <Object >().get (1);

}

expected declares that outOfBounds() should throw an
IndexOutOfBoundsException.
If it does

I not throw any exception, or

I throw a different exception

the test fails.

TDV: Testing /GU 121130 22 / 28

Compile and Run JUnit test class

I JUnit plugin in Eclipse IDE:
Right click on your project (or choose when creating project):
Build Path → Add Libraries... → Choose JUnit 4.

I Run the tester class as usual in Eclipse.

Alt.

I Compile test class:
javac -cp .:pathToJunitJarFile Ex1Test.java

I To run all methods annotated with @Test in a class:
java -cp .:pathToJunitJarFile

org.junit.runner.JUnitCore Ex1Test

(under Windows: ‘;’ instead of ‘:’)

TDV: Testing /GU 121130 23 / 28

Reflection: Extreme Testing

I JUnit designed for Extreme Testing paradigm

I Extreme Testing part of Extreme Programming
(but not depending on that)

TDV: Testing /GU 121130 24 / 28

Reflection: Extreme Testing (cont’d)

A few words Extreme Programming
(no introduction here, but see [Myers], Chapter 8)

I Extreme Programming (XP) invented by Beck (co-author of JUnit)

I Most popular agile development process

I Must create tests first, then create code basis

I Must run unit tests for every incremental code change
I Motivation:

I oo programming allows rapid development
I still, quality is not guaranteed
I aim of XP: create quality programs in short time frames

I XP relies heavily on unit and acceptance testing

TDV: Testing /GU 121130 25 / 28

Extreme Unit Testing

modules (classes) must have unit tests before coding begins

benefits:

I You gain confidence that code will meet specification.

I You better understand specification and requirements.

I You express end result before you start coding.

I You may implement simple designs and optimise later
while reducing the risk of breaking the specification.

TDV: Testing /GU 121130 26 / 28

Extreme Testing Example: Class Money

c la s s Money {

private int amount;

private Currency currency;

public Money(int amount , Currency currency) {

th i s .amount = amount;

th i s .currency = currency;

}

public Money add(Money m) {

// NO IMPLEMENTATION YET, WRITE TEST FIRST

}

}

Demo in Eclipse.

TDV: Testing /GU 121130 27 / 28

Literature related to this Lecture

Myers see course literature.

AmmannOffutt see course literature.

Beizer Boris Beizer: Software Testing Techniques.
Van Nostrand Reinhold, 2nd edition, 1990.

TDV: Testing /GU 121130 28 / 28

	JUnit

