
Developing a Loop Invariant in KeY-Hoare: Fibonacci

Example

Moa Johansson

December 5, 2012

1 Introduction

Discovering a good loop invariant is an art. For all but the most trivial programs, we often have
to develop the invariant in stages, gradually refining it until we have a formula which holds before,
during and after the loop has been executed. Tools, such as Key-Hoare can however be used to
check candidate invariants and to give us a hint as to how to patch faulty candidate invariant in
cases when the proofs do not go through.

This note contains a worked example of how to use KeY-Hoare to help develop a loop in-
variant for a program which computes Fibonacci numbers, which makes up the familiar sequence
1, 1, 2, 3, 5, 8, 13, . . .. We write fib(n) for the nth Fibonacci number. The first two Fibonacci
numbers are both 1, so to start off the sequence, we define

fib(1) = fib(2) = 1

For all Fibonacci numbers greater than 2, the nth Fibonacci number is computed by taking the
sum of the two previous Fibonacci numbers:

fib(n) = fib(n− 1) + fib(n− 2)

2 Fibonacci in KeY-Hoare

We start by specifying the program using a Hoare triple with updates. Here, n is the Fibonacci
number we want to compute, and n0 denote its initial value as usual in symbolic evaluation. We
know that the pre-condition at least requires n to be greater than 0 (otherwise the nthFibonacci
number is not defined) and that n has initial value n0.

{ n = n0 & n > 0 }

x1 = 1;

x2 = 1;

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{???}

But how do we specify the postcondition? We would like to refer to the logical function fib, from
the Introduction! Luckily, we can simply add this function to our specification:

1



{ n = n0 & n > 0 &

fib(1) = 1 &

fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

}

x1 = 1;

x2 = 1;

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{x2 = fib(n0)}

OK, great, we have managed to specify pre- and postconditions for our program. Now, we
want to find a loop invariant. This invariant will need to express some complex relation between
the loop and the fib function. How do we find it?

2.1 Unwinding the Loop to find Patterns

Let’s unwind the loop a couple of iterations to see if we can find some pattern in how the variables
x1, x2, n are updated:

Iteration x1 x2 n

0 fib(1) fib(2) n0

1 fib(2) fib(3) n0 -1

2 fib(3) fib(4) n0 -2

If we look at this table, and think hard for a little while, we can conjecture that the values of x1,
x2 seem to follow the pattern:
x1 = fib(n0− n + 1)
x2 = fib(n0− n + 2)
We will use this in our invariant.

2.2 A first try at an Invariant

Recall the invariant rule (if not, look in the lecture notes), and notice that in the Preserves case,
where we prove that the invariant holds for each loop iteration, does not include the fib function,
which was defined in the precondition. Therefore, we need to include the definition of fib also in
the invariant. So our first attempt at an invariant is:

x1 = fib(n0 - n + 1) &

x2 = fib(n0 - n + 2) &

fib(1) = 1 &

fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

Let’s check if the post-condition follows from this invariant (The Use Invariant case in Key-
Hoare). To arrive at the post-condition, the loop guard, n>2 must be false, in other words we
know that n <=2 (as this is equivalent to !(n>2)). Hence we check if the invariant and the negated
loop condition implies the postcondition x2 = fib(n0):

2



|-

x1 = fib(n0 - n + 1) \\Inv

& x2 = fib(n0 - n + 2) \\Inv

& fib(1) = 1 \\Inv

& fib(2) = 1 \\Inv

& \forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2)) \\ Inv

& !n > 2 \\ Negated loop guard

->

x2 = fib(n0) \\Post-condition

If you try to an automated proof in Key-Hoare the Use Invariant case will fail. However, it is
true provided that n >=2, which it needs to be for the loop to be executed at all!. We refine the
invariant to:

n >= 2 &

x1 = fib(n0 - n + 1) &

x2 = fib(n0 - n + 2) &

fib(1) = 1 &

fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

2.3 Strengthening the Invariant Further

OK, so let’s try this new invariant in Key-Hoare. Remember, right click on the highlighted goal,
and choose Loop Invariant from the menu (see Figure 1).

Without spoiling the surprise, KeY-Hoare won’t be able to prove the three cases automatically
either. We will need further refinements. To get a hint as to why, let’s look at the Preserves
Invariant Case in Figure 2.

You should know the drill by now, we right-click and choose the Assignment rule to symbolically
execute the three statements from the body of the while loop. Then, we apply the exit rule.

To apply the updates to the goal, we next choose Update Simplification from the menu. Now
we would probably try to discharge the proof automatically. Try it! Unfortunately, the automated
prover fails to prove the goal, and just produce a long sequence of gibberish. Let’s backtrack, by
clicking on the last one of our goals (Update Simplification) and the clicking the Goal Back button
at the top. The current state is shown in Figure 3.

So let’s try to get some hints as to what part the prover failed on, so we can use this information
to refine the invariant. We will do this by stepping through the proof interactively to see exactly
how far we get, and exactly which subgoal that fails. As the goal in Figure 3 is a conjunction
we need to prove that each of the conjuncts is true. To do this in KeY-Hoare, we want to split
the goal into one subgoal for each conjunct, and prove each one separately. Key-Hoare has a rule
andRight1 which does just this. As usual, right click on the goal, (more specifically, on the last
&-sign in the goal) and choose the rule from the menu. This helps us in pinpointing more precisely
in which sub-goal (conjunct) things fail in the proof.

After having applies the andRight rule once for each one of the conjuncts, we arrive at the
state with six open subgoals in Figure 4.

All but the second of these subgoals can be solved automatically (recall, right-click on the
OPEN GOAL in the Proof panel, and choose Apply Strategy). Remember that you can back-
track by clicking the Goal Back button on goals that the prover don’t solve automatically (as it
is usually getting itself lost trying to apply all sorts of strange rules). Instead, we step through
this goal interactively. As shown in Figure 5, we have applied the rule andLeft, to the premises,
which takes apart the large conjunction (essentially removing brackets, which confusingly are not
displayed by KeY-Hoare anyway...). Having done this allows us to use these equations individually,

1It is called andRight as we are splitting a conjunction which occurs on the right hand side (conclusion) of the
implication arrow. The corresponding rule for the left hand side (premises) is called andLeft.

3



Figure 1: Inserting a Loop Invariant

and thus replace the variables x1 and x2 in the goal by their respective values fib(n0 - n + 1)

and fib(n0 - n + 2). To do this in KeY-Hoare, right click on the relevant variable and choose
Apply Equation. Having applied these equations we have:

fib(n0 - n + 1) + fib(n0 - n + 2)) = fib(n0 - (n - 1) + 2

Let’s stop Key-Hoare there and think a little bit about our invariant again. To make things a
little easier to read, the last open sub-goal is equivalent to:

fib(n0 - n + 3) = fib(n0 - n + 1) + fib(n0 - n + 2)

This looks alright, we can simply plug in n0 - n + 3 in place of the argument m in the definition
of fib and we should be done:

∀ int m; (m > 2→ fib(m) = fib(m− 1) + fib(m− 2))

Ah! This requires n0 - n + 3 > 2, which is equivalent to n0 > n -1. But, as the pre-condition
state that n = n0 in the beginning, let’s try adding n0 >= n to the invariant. The strengthened
invariant candidate is now:

4



Figure 2: The Preserves Invariant case.

n >= 2 &

n0 >= n &

x1 = fib(n0 - n + 1) &

x2 = fib(n0 - n + 2) &

fib(1) = 1 &

fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

2.4 The Final Invariant

Using the invariant candidate from the previous section we are almost there! Now, both the Pre-
serves Invariant and Use Invariant cases go through! However, we need to have a look at the
Initially Valid case. Splitting the conjunction using the andRight rule as before gives us a number
of subgoals. All but the first can be proved automatically. The remaining goal is shown in Figure
6. Clearly, we cannot show that

|-

n = n0

& n > 0

& fib(1) = 1

& fib(2) = 1

& \forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

->

n >= 2

The conjunct n>=2 from the invariant is too strong. Recall that we added this conjunct at an
early stage in order to get an invariant candidate which implied the post-condition after the loop
had been executed (see §2.2). But to prove the above, there seems to be something missing for

5



Figure 3: The Preserves Invariant case, after having symbolically executed the loop body. We
need to show that the Invariant and Loop Guard implies the Invariant after the updates occurring
in the loop body.

when n=1, which is a valid input, the precondition only requires that n > 0. Suppose we weaken
the invariant, by replacing the conjunct n >= 2 by n > 0 from the precondition.

The candidate invariant is then

n > 0 &

n0 >= n &

x1 = fib(n0 - n + 1) &

x2 = fib(n0 - n + 2) &

fib(1) = 1 &

fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

This candidate is indeed initially valid, and preserved by the loop body, but it does not imply the
post-condition after to execution of the loop! Let’s analyse this subgoal (shown in full in Figure
7).

|-

n > 0

& n0 >= n

& x1 = fib(n0 - n + 1)

& x2 = fib(n0 - n + 2)

... def of fib omitted ...

& !n > 2

->

x2 = fib(n0)

Observe that we can apply the equation specifying x2 = fib(n0 - n +2) to the conclusion to
obtain

6



Figure 4: Splitting the goal into six smaller sub-goals, by applying the andRight rule.

|-

...

->

fib(n0 - n + 2) = fib(n0)

Furthermore, in the premises we have two conjuncts n > 0 and !n > 2, which together imply that
n=2 or n=1 at the end of the loop. Let’s substituting these values for n in the above. When n=2

we get: fib(n0) = fib(n0), which is trivially true, so the problem does not arise from this case.
When n=1 we get: fib(n0 + 1) = fib(n0). From the definition of fib, we know that it is just
the first two Fibonacci numbers which are equal, thus n0 must be 1 whenever n =1! Adding the
conjunct n=1 -> n0 =1 to the invariant gives us the final version:

n > 0 &

(n = 1 -> n0 = 1) &

n <= n0 &

x1 = fib(n0 - n + 1) &

x2 = fib(n0 - n + 2) &

fib(1) = 1 &

fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m - 1) + fib(m - 2))

7



Figure 5: Stepping through the second sub-goal, by applying the andLeft rule, taking the big
conjunction in the premises apart, so we can use each one individually.

Figure 6: This time, there is a problematic subgoal in the Invariant Initially Valid case, as the
conjunct n >= 2 from the invariant is too strong.

8



Try this invariant in Key-Hoare and watch it prove all three cases automatically!

Figure 7: We have weakened the invariant. The Use Invariant case does still not go through.

9


