
Testing, Debugging, Program Verification
Formal Verification, Part III

Wolfgang Ahrendt & Vladimir Klebanov & Moa Johansson

5 December 2012

TDV: Verification III /GU 2011-12-05 1 / 16

Arrays in the While Language

Locations with Array Type

ArrayLocation ::= Identifier
[
IntExp

]
Result type is int or boolean depending on array declaration

Declaration of Arrays in .key file

\arrays {

int[] a;

boolean[] b;

}

Main Properties of Arrays in While

I Value types
I a[i], b[j] different memory locations for all i, j
I Array identifier such as a alone is not a location (“a=b;” illegal)

I Unbounded: a[i] valid location for all i∈ Z

TDV: Verification III /GU 2011-12-05 2 / 16

Arrays in the While Language

Locations with Array Type

ArrayLocation ::= Identifier
[
IntExp

]
Result type is int or boolean depending on array declaration

Declaration of Arrays in .key file

\arrays {

int[] a;

boolean[] b;

}

Main Properties of Arrays in While

I Value types
I a[i], b[j] different memory locations for all i, j
I Array identifier such as a alone is not a location (“a=b;” illegal)

I Unbounded: a[i] valid location for all i∈ Z
TDV: Verification III /GU 2011-12-05 2 / 16

Representing Arrays in Logic

How to Represent Arrays in the Logic?

An array is a mapping from integers to the result type ⇒ non-rigid
function with one integer argument.
Recall: Value of non-rigid function may change. I.e. a[i] may return
different values in different states.

Remembering “Old” Values for Arrays

Introduce a user-defined (rigid) function with one integer argument:

\functions{

int a0(int);

}

Example of this later.

In Java the Situation is More Complicated

I Different variables can reference the same array (aliasing)

I Exceptions are thrown when array index out of bound

TDV: Verification III /GU 2011-12-05 3 / 16

Representing Arrays in Logic

How to Represent Arrays in the Logic?

An array is a mapping from integers to the result type ⇒ non-rigid
function with one integer argument.
Recall: Value of non-rigid function may change. I.e. a[i] may return
different values in different states.

Remembering “Old” Values for Arrays

Introduce a user-defined (rigid) function with one integer argument:

\functions{

int a0(int);

}

Example of this later.

In Java the Situation is More Complicated

I Different variables can reference the same array (aliasing)

I Exceptions are thrown when array index out of bound

TDV: Verification III /GU 2011-12-05 3 / 16

Representing Arrays in Logic

How to Represent Arrays in the Logic?

An array is a mapping from integers to the result type ⇒ non-rigid
function with one integer argument.
Recall: Value of non-rigid function may change. I.e. a[i] may return
different values in different states.

Remembering “Old” Values for Arrays

Introduce a user-defined (rigid) function with one integer argument:

\functions{

int a0(int);

}

Example of this later.

In Java the Situation is More Complicated

I Different variables can reference the same array (aliasing)

I Exceptions are thrown when array index out of bound
TDV: Verification III /GU 2011-12-05 3 / 16

Assignments to Array Locations

Assignment Rule is Unchanged!

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

Works just as well when x is array location

Update Simplification for Array Locations

What is the result of [a[i] := 1, a[j] := 2] ?

It depends on whether i = j holds!

i = j Result is [a[i] := 2]

!(i = j) Result is [a[i] := 1 || a[j] := 2]

KeY-Hoare introduces conditional expressions to unalias array indices:

[a[i] := e](a[j]) =⇒ \if (i=j) \then (e) \else (a[j])

TDV: Verification III /GU 2011-12-05 4 / 16

Assignments to Array Locations

Assignment Rule is Unchanged!

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

Works just as well when x is array location

Update Simplification for Array Locations

What is the result of [a[i] := 1, a[j] := 2] ?

It depends on whether i = j holds!

i = j Result is [a[i] := 2]

!(i = j) Result is [a[i] := 1 || a[j] := 2]

KeY-Hoare introduces conditional expressions to unalias array indices:

[a[i] := e](a[j]) =⇒ \if (i=j) \then (e) \else (a[j])

TDV: Verification III /GU 2011-12-05 4 / 16

Example: Unaliasing of Array Indices

Example (arrayAssign)

{ true }

[]

a[i] = x;

a[j] = y;

{ a[i] = x & a[j] = y}

Is this contract valid?

Demo arrayAssign.key

I Need to exclude array index aliasing in precondition (!i=j)

I Open FOL proof goals can give valuable hint

TDV: Verification III /GU 2011-12-05 5 / 16

Example: Unaliasing of Array Indices

Example (arrayAssign)

{ true }

[]

a[i] = x;

a[j] = y;

{ a[i] = x & a[j] = y}

Is this contract valid?

Demo arrayAssign.key

I Need to exclude array index aliasing in precondition (!i=j)

I Open FOL proof goals can give valuable hint

TDV: Verification III /GU 2011-12-05 5 / 16

Specifying Contracts with Arrays

Example (binSearch Demo)

{ a[l] < x & x < a[r] & “a is sorted” }

[]

while (l <= r - 2) {

m = (r + l) / 2;

if (a[m] < x) {

l = m;

} else {

if (a[m] > x) {

r = m;

} else {

l = m; r = m;

} } }

{l = r & a[l] = x | l + 1 = r &

\forall int i; (i <= l -> a[i] != x) &

\forall int i; (i >= r -> a[i] != x) }
TDV: Verification III /GU 2011-12-05 6 / 16

Intuition: Partial and Total Correctness

Partial Correctness:

I Program is correct if it terminates.
I.e. satisfies contract.

I But, no requirements on termination.

Total Correctness:

I Program is correct and required to terminate.

TDV: Verification III /GU 2011-12-05 7 / 16

Partial and Total Correctness

Another way of thinking about it...

Definition (Partial Correctness)

Program π is partially correct wrt P, U , and Q when {P} [U]π {Q} is
valid Hoare triple with updates.
{P} [U]π {Q} is valid whenever:

I P is true in some state s, and

I π terminates if started in U s then

I Q is true in the final state πU
s
.

Definition (Total Correctness)

Program π is totally correct wrt P, U , and Q if whenever:

I P is true in some state s, then

I π terminates if started in U s and

I Q is true in the final stateπU
s
.

TDV: Verification III /GU 2011-12-05 8 / 16

Partial and Total Correctness

Another way of thinking about it...

Definition (Partial Correctness)

Program π is partially correct wrt P, U , and Q when {P} [U]π {Q} is
valid Hoare triple with updates.
{P} [U]π {Q} is valid whenever:

I P is true in some state s, and

I π terminates if started in U s then

I Q is true in the final state πU
s
.

Definition (Total Correctness)

Program π is totally correct wrt P, U , and Q if whenever:

I P is true in some state s, then

I π terminates if started in U s and

I Q is true in the final stateπU
s
.

TDV: Verification III /GU 2011-12-05 8 / 16

Partial and Total Correctness

Semantics of Programs: State Transformers

For a program π define partial function πs : State→ State as follows:

πs is the final state of π when started in s, if π terminates, and is
undefined otherwise

Partial and Total Correctness (Informally)

Validity of {P} [U]π {Q} is correctness wrt partial function πs :
⇒ Partial Correctness

If we demand in addition that πs is total: ⇒ Total Correctness

TDV: Verification III /GU 2011-12-05 9 / 16

Loop Invariant Rule Is Not Sufficient!

Example (Invariant w/o termination validates any postcondition)

{i = 0}

[]

while (i >= 0) {}

{i = 42}

Try i = 0 as invariant

Invariant Rule

` P −> U(Inv) (initially valid)
{Inv & b = true} []π {Inv} (preserved)
{Inv & b = false} [] ρ {Q} (use case)
{P} [U]while (b) {π} ρ {Q}

TDV: Verification III /GU 2011-12-05 10 / 16

Loop Invariant Rule Is Not Sufficient!

Example (Invariant w/o termination validates any postcondition)

{i = 0}

[]

while (i >= 0) {}

{i = 42}

Try i = 0 as invariant

Invariant Rule, Instantiated

` i = 0 −> i = 0 (initially valid) 4

{i = 0 & i >= 0} [] {i = 0} (preserved) 4

{i = 0 & i < 0} [] {i = 42} (use case) 4 Why?
{i = 0} []while (i = 0) {} {i = 42}

TDV: Verification III /GU 2011-12-05 10 / 16

Loop Invariant Rule Is Not Sufficient!

Example (Invariant w/o termination validates any postcondition)

{i = 0}

[]

while (i >= 0) {}

{i = 42}

Try i = 0 as invariant

(i = 0 & i < 0) <-> FALSE, therefore, any Q provable

` i = 0 −> i = 0 (initially valid) 4

{i = 0 & i >= 0} [] {i = 0} (preserved) 4

{i = 0 & i < 0} [] {Q} (use case) 4

{i = 0} []while (i = 0) {} {i = 42}

TDV: Verification III /GU 2011-12-05 10 / 16

Loop Invariant Rule Is Not Sufficient!

Example (Invariant w/o termination validates any postcondition)

{i = 0}

[]

while (i >= 0) {}

{Q}

Program does not terminate: this Hoare triple proves nothing
“Ex falso quodlibet”: FALSE -> Q is valid formula

TDV: Verification III /GU 2011-12-05 10 / 16

Mapping Loop Execution into Well-Founded Order

while (b) {

body

}

if (b) { body }1

...

if (b) { body }17

if (b) { body }42

...

N

...

2

1

0

Need to find an expression of type N getting smaller with each
iteration

Such an expression is called a variant

TDV: Verification III /GU 2011-12-05 11 / 16

The Variant Rule

The Variant

Let Dec be a first-order logic integer term, called variant

Invariant Rule

` P −> U(Inv

& Dec ≥ 0

) (init.

, positive

)
{Inv & b

& Dec=Dec ′

} []π {Inv

& Dec ≥ 0 & Dec<Dec ′

} (pres.

, decrease

)
{Inv & !b} [] ρ {Q} (use case)

{P} [U]while (b) {π} ρ {Q}

Dec ′ is new function symbol of type integer

TDV: Verification III /GU 2011-12-05 12 / 16

The Variant Rule

The Variant

Let Dec be a first-order logic integer term, called variant

Invariant Rule

` P −> U(Inv

& Dec ≥ 0

) (init.

, positive

)
{Inv & b

& Dec=Dec ′

} []π {Inv

& Dec ≥ 0 & Dec<Dec ′

} (pres.

, decrease

)
{Inv & !b} [] ρ {Q} (use case)

{P} [U]while (b) {π} ρ {Q}

Dec ′ is new function symbol of type integer

TDV: Verification III /GU 2011-12-05 12 / 16

The Variant Rule

The Variant

Let Dec be a first-order logic integer term, called variant

Invariant and Variant Rule

` P −> U(Inv & Dec ≥ 0) (init., positive)
{Inv & b

& Dec=Dec ′

} []π {Inv

& Dec ≥ 0 & Dec<Dec ′

} (pres.

, decrease

)
{Inv & !b} [] ρ {Q} (use case)

{P} [U]while (b) {π} ρ {Q}

Dec ′ is new function symbol of type integer

TDV: Verification III /GU 2011-12-05 12 / 16

The Variant Rule

The Variant

Let Dec be a first-order logic integer term, called variant

Invariant and Variant Rule

` P −> U(Inv & Dec ≥ 0) (init., positive)
{Inv & b & Dec=Dec ′} []π {Inv & Dec ≥ 0 & Dec<Dec ′} (pres., decrease)

{Inv & !b} [] ρ {Q} (use case)
{P} [U]while (b) {π} ρ {Q}

Dec ′ is new function symbol of type integer

TDV: Verification III /GU 2011-12-05 12 / 16

Loop Variant: Example

Example (Countdown)

{ n >= 0 }

[]

while (n > 0) {

n = n - 1;

}

{ n = 0 }

TDV: Verification III /GU 2011-12-05 13 / 16

Loop Variant: Example

Example (Countdown)

{ n >= 0 }

[]

while (n > 0) {

n = n - 1;

}

{ n = 0 }

Invariant can be n >= 0. What is a suitable variant?

Variant Rule

` P −> U(Inv & Dec ≥ 0) (init., positive)
{Inv & b & Dec=Dec ′} []π {Inv & Dec ≥ 0 & Dec<Dec ′} (pres., decrease)

{Inv & !b} [] ρ {Q} (use case)
{P} [U]while (b) {π} ρ {Q}

TDV: Verification III /GU 2011-12-05 13 / 16

Loop Variant: Example

Example (Unbounded Loop)

|- n >= 0 ->

n >= 0 & n >= 0

{n > 0 & n = n′}
[]

n = n - 1;

{n >= 0 & n < n′}

{n >= 0 & n <= 0}

[]

{n = 0}

Try n

Variant Rule

` P −> U(Inv & Dec ≥ 0) (init., positive)
{Inv & b & Dec=Dec ′} []π {Inv & Dec ≥ 0 & Dec<Dec ′} (pres., decrease)

{Inv & !b} [] ρ {Q} (use case)
{P} [U]while (b) {π} ρ {Q}

TDV: Verification III /GU 2011-12-05 13 / 16

Proving Termination in KeY-Hoare

KeY-Hoare Input File Syntax

\programVariables {

int n;

}

\hoareTotal{

{ n >= 0 }

\[{

while (n > 0) {

n = n - 1;

}

}\]

{ n = 0 }

}

You will be asked for a variant as well as for an invariant
TDV: Verification III /GU 2011-12-05 14 / 16

Proving Termination Only

If we are interested only in termination of a program

Prove total correctness with trivial postcondition true

Example (Array Addition, Full Functional Specification)

{ len >= 0 &

\forall int j;

(j >= 0 & j < len -> a[j] = a0(j) & b[j] = b0(j)) }

i = 0;

while (i < len) {

a[i] = a[i] + b[i];

i = i + 1;

}

{ \forall int j;

(j >= 0 & j < len -> a[j] = a0(j) + b0(j)) }

TDV: Verification III /GU 2011-12-05 15 / 16

Proving Termination Only

If we are interested only in termination of a program

Prove total correctness with trivial postcondition true

Example (Array Addition, Termination Only)

{ len >= 0 &

\forall int j;

(j >= 0 & j < len -> a[j] = a0(j) & b[j] = b0(j)) }

i = 0;

while (i < len) {

a[i] = a[i] + b[i];

i = i + 1;

}

{ true }

TDV: Verification III /GU 2011-12-05 15 / 16

Proving Termination Only

If we are interested only in termination of a program

Prove total correctness with trivial postcondition true

Example (Array Addition, Termination Only)

{ len >= 0 } Simplified Precondition

i = 0;

while (i < len) {

a[i] = a[i] + b[i];

i = i + 1;

}

{ true }

TDV: Verification III /GU 2011-12-05 15 / 16

Proving Termination Only

If we are interested only in termination of a program

Prove total correctness with trivial postcondition true

Example (Array Addition, Termination Only)

{ len >= 0 } Simplified Precondition

i = 0;

while (i < len) {

a[i] = a[i] + b[i];

i = i + 1;

}

{ true }

Can be proven with nearly trivial invariant i >= 0 and variant len-i

TDV: Verification III /GU 2011-12-05 15 / 16

Proving Termination Only

If we are interested only in termination of a program

Prove total correctness with trivial postcondition true

Example (Array Addition, Termination Only)

{ len >= 0 } Simplified Precondition

i = 0;

while (i < len) {

a[i] = a[i] + b[i];

i = i + 1;

}

{ true }

Can be proven with nearly trivial invariant i >= 0 and variant len-i

Demo arrayAdd.key

TDV: Verification III /GU 2011-12-05 15 / 16

Summary

I The While-language has unbounded value-type arrays

I In FOL arrays are represented as unary functions

I During update application, aliasing analysis on indices is performed

I Partial Correctness Termination not guaranteed
Total Correctness Termination whenever precondition holds

I Proving total correctness: invariant maintained and variant decreases

I Proving termination only can be significantly easier

TDV: Verification III /GU 2011-12-05 16 / 16

	Title
	Arrays
	Total Correctness
	Summary

