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Recap: Symbolic Execution

I Symbolic initial values.
E.g. set variable x := x0 for new symbol x0.

I Arbitrary but fixed values.

I Represents a set of possible concrete values.

I Execution Tree with branches annotated by Path Conditions

I Symbolic run says something about a set of concrete runs.
E.g. all runs where array a is non-null and has length >0.
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Recap: State, State Update

I The symbolic execution state, denoted U , records values of variables.

I Updated as execution progresses.

Let U and V be updates, with U= (x:= x0), V= (x:=1).

I Sequential update: U , V
I First apply U to state s, obtaining state U s .
I Then apply V to U s .
I What is the final value of x?

I Parallel update: U ‖ V = (x:= x0 ‖ x:=1)
I If same location updated, rightmost update wins.
I Apply U ‖ V to an intial state s.
I What is the value of x afterwards?

We can turn sequential updates into parallel ones.
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Recap: Hoare Triples (with updates)

Definition (Hoare Triple with Update)

A Hoare Triple with Update is an expression of the form

{P} [U ]π {Q}

where P and Q are first-order formulas over locations appearing in the
While program π and U is an update.

Definition (Truth of a Hoare Triple with Update in a State)

A Hoare triple {P} [U ]π {Q} is true in state s when:

I If P is true in s, and

I π terminates when started in U s , then

I Q is true in the final state reached by π.
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Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

Example

{P} [x := x0, x := x + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}
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Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

Example

{P} [x := x0 || x := x0 + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}
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Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update, then simplify

Example

{P} [x := x0 + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}
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Rules of Calculus for Hoare Logic, Cont’d

Exit

exit
` P −> U(Q)

{P} [U ] {Q}

I Applied when original program is fully symbolically executed

I “Precondition implies postcondition in final state of the original
program, which is now summarized by U”

I The meaning of U(Q) is to apply U to Q:
I If x := t is atomic update in U then

replace each occurrence of x in Q with t
I Assume that U is a parallel update

I Premiss is FOL formula, handed over to automated theorem prover `
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Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[]

d = x; x = y; y = d;

{x = y0 & y = x0}

Start with empty update []

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[d := x]

x = y; y = d;

{x = y0 & y = x0}

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[d := x || x := y]

y = d;

{x = y0 & y = x0}

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}

TDV: Verification II /GU 2011-12-03 7 / 1



Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[(d := x || x := y), y := d]

{x = y0 & y = x0}

Empty program

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[d := x || x := y || y := x]

{x = y0 & y = x0}

Parallel update: use previous value of d!

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

` (x = x0 & y = y0) ->

[d := x || x := y || y := x](x = y0 & y = x0)

Exit

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

` (x = x0 & y = y0) -> (y = y0 & x = x0)

Apply update to postcondition — valid FOL formula!

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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KeY-Hoare

What is KeY-Hoare?

I Interactive software verification system for While programs

I Uses Hoare Calculus with Updates

I Derived from KeY system for (almost) full Java and JML

I Symbolic execution rules must be applied “by hand”

I Display, navigate, and pretty-print formulas, proof trees

I Validity of FOL formulas, update simplification/application:
automatic!

I System takes care of correctness: can’t prove invalid Hoare triple!
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KeY-Hoare: Input File Syntax

\functions {

FirstOrderFunctionDeclaration*

// initial values, user-defined functions

}

\programVariables {

ProgramLocationDeclaration*

// all locations appearing in Update, Program below

}

\hoare {

{ Precondition }

[ Update ]

\[{ // funny brackets needed for KeY-compatibility

Program

}\]

{ Postcondition }

}
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KeY-Hoare: Demo

\functions {

int x0; // one per line

int y0;

}

\programVariables {

int x, y, d;

}

\hoare {

{ x = x0 & y = y0 } // can skip empty initial update

\[{

d = x; x = y; y = d;

}\]

{ x = y0 & y = x0 }

}
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Rules of Calculus for Hoare Logic, Cont’d

Conditional

{P & U(b=TRUE)} [U ]π1 ρ {Q} {P & U(b=FALSE)} [U ]π2 ρ {Q}
{P} [U ] if(b){π1}else{π2} ρ {Q}

I Case distinction necessary, because value of b symbolic
I In general, Hoare calculus proofs are trees

I Important that b has no side effects
I Can treat b as FOL Boolean term

I In premisses b must be evaluated in state U
I U(b=TRUE) and U(b=FALSE) extend existing path condition P

I Can simplify b=TRUE to b and b=FALSE to !b
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Example Proof with Conditional

Example (max)

{true}

[]

if (x > y) { res = x; } else { res = y; }

{???}

Postcondition?
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Example Proof with Conditional

Example (max)

{true}

[]

if (x > y) { res = x; } else { res = y; }

{(res = x | res = y) & res >= x & res >= y}

Next Rule Used

{P & U(b=TRUE)} [U ]π1 ρ {Q} {P & U(b=FALSE)} [U ]π2 ρ {Q}
{P} [U ] if(b){π1}else{π2}ρ {Q}
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Example Proof with Conditional

Example (max)

{x > y}

[]

res = x;

{(res = x | res = y) & res >= x & res >= y}

Left premiss

Next Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof with Conditional

Example (max)

{x > y}

[res := x]

{(res = x | res = y) & res >= x & res >= y}

Next Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U ] x = e;π {Q}

exit
` P −> U(Q)

{P} [U ] {Q}
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Example Proof with Conditional

Example (max)

x > y ->

[res := x]((res = x | res = y) & res >= x & res >= y)
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Example Proof with Conditional

Example (max)

x > y ->

((x = x | x = y) & x >= x & x >= y)
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Example Proof with Conditional

Example (max)

x > y ->

(true & true & x >= y)

Valid FOL formula!
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Example Proof with Conditional

Example (max)

{!(x > y)}

[]

res = y;

{(res = x | res = y) & res >= x & res >= y}

Right premiss, similar as before

TDV: Verification II /GU 2011-12-03 12 / 1



Example Proof with Conditional

Demo: max.key
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Verifying Programs with Loops

Difficulties of While Loops

I Need to “unwind” loop body one by one

I In general, no fixed loop bound known (depends on input)

I New mathematical principle needed! Can you guess which?
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A Program With Loops

Example (Loop with fixed bound)

{true}

[]

i = 0;

n = 2;

while (i < n) {

i = i + 1;

}

{i = n}
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 0 || n := 2]

while (i < n) {

i = i + 1;

}

{i = n}
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 0 || n := 2]

while (i < n) {

i = i + 1;

}

{i = n}

Possible Rule: Unwind

{P} [U ] if (b) {πwhile (b) {π}} ρ {Q}
{P} [U ]while (b) {π} ρ {Q}
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 0 || n := 2]

if (i < n) {

i = i + 1;

while (i < n) {

i = i + 1;

}}

{i = n}

Possible Rule: Unwind

{P} [U ] if (b) {πwhile (b) {π}} ρ {Q}
{P} [U ]while (b) {π} ρ {Q}
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 0 || n := 2]

if (i < n) {

i = i + 1;

while (i < n) {

i = i + 1;

}}

{i = n}

Symbolic execution of conditional and loop body
(slightly simplified, use that values of i and n are known)
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 0 || n := 2]

i = i + 1;

while (i < n) {

i = i + 1;

}

{i = n}

Symbolic execution of conditional and loop body
(slightly simplified, use that values of i and n are known)
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 1 || n := 2]

while (i < n) {

i = i + 1;

}

{i = n}

Symbolic execution of conditional and loop body
(slightly simplified, use that values of i and n are known)
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 1 || n := 2]

if (i < n) {

i = i + 1;

while (i < n) {

i = i + 1;

}}

{i = n}

Unwind second time

{P} [U ] if (b) {πwhile (b) {π}} ρ {Q}
{P} [U ]while (b) {π} ρ {Q}
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 1 || n := 2]

if (i < n) {

i = i + 1;

while (i < n) {

i = i + 1;

}}

{i = n}

Symbolic execution of conditional and loop body
(slightly simplified, use that values of i and n are known)
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 1 || n := 2]

i = i + 1;

while (i < n) {

i = i + 1;

}

{i = n}

Symbolic execution of conditional and loop body
(slightly simplified, use that values of i and n are known)

TDV: Verification II /GU 2011-12-03 14 / 1



A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 2 || n := 2]

while (i < n) {

i = i + 1;

}

{i = n}

Symbolic execution of conditional and loop body
(slightly simplified, use that values of i and n are known)
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 2 || n := 2]

if (i < n) {

i = i + 1;

while (i < n) {

i = i + 1;

}}

{i = n}

Unwind third time

{P} [U ] if (b) {πwhile (b) {π}} ρ {Q}
{P} [U ]while (b) {π} ρ {Q}
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A Program With Loops

Example (Loop with fixed bound)

{true}

[i := 2 || n := 2]

{i = n}

Guard of conditional is false, else branch is empty
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The Problem with Loops

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×

(and don’t make any plans for the rest of the day)

I an unknown number of iterations?

We need an invariant rule (or some other form of induction)
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Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop guard and body

I Consequence: if Inv was true at start state of the loop,
then it still holds after arbitrarily many loop iterations

I If the loop terminates at all, then Inv holds afterwards

I Make sure to include the desired postcondition after loop into Inv

Invariant Rule

loopInvariant

` P −> U(Inv) (initially valid)
{Inv & b} []π {Inv} (preserved)
{Inv & !b} [] ρ {Q} (use case)

{P} [U ]while (b) {π} ρ {Q}
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Loop Invariant: Example

Example (Unbounded Loop)

{n >= 0}

[]

i = 0;

while (i < n) {

i = i + 1;

}

{i = n}
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Loop Invariant: Example

Example (Unbounded Loop)

{n >= 0}

[i := 0]

while (i < n) {

i = i + 1;

}

{i = n}

Invariant Rule

loopInvariant

` P −> U(Inv) (initially valid)
{Inv & b} []π {Inv} (preserved)
{Inv & !b} [] ρ {Q} (use case)

{P} [U ]while (b) {π} ρ {Q}
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Loop Invariant: Example

Example (Unbounded Loop)

{n >= 0}

[i := 0]

while (i < n) {

i = i + 1;

}

{i = n}

What is a suitable invariant?

Invariant Rule

loopInvariant

` P −> U(Inv) (initially valid)
{Inv & b} []π {Inv} (preserved)
{Inv & !b} [] ρ {Q} (use case)

{P} [U ]while (b) {π} ρ {Q}
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Loop Invariant: Example

Example (Unbounded Loop)

|- n >= 0 ->

[i := 0](i <= n)

{i <= n & i < n}

[]

i = i + 1;

{i <= n}

{i <= n & i >= n}

[]

{i = n}

Try i <= n

Invariant Rule

loopInvariant

` P −> U(Inv) (initially valid)
{Inv & b} []π {Inv} (preserved)
{Inv & !b} [] ρ {Q} (use case)

{P} [U ]while (b) {π} ρ {Q}
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Loop Invariant: Example

Example (Unbounded Loop)

|- n >= 0 ->

[i := 0](i <= n)

{i <= n & i < n}

[]

i = i + 1;

{i <= n}

{i <= n & i >= n}

[]

{i = n}

Try i <= n

Note that precondition P and U are missing in preserves/use case! Why?

Invariant Rule

loopInvariant

` P −> U(Inv) (initially valid)
{Inv & b} []π {Inv} (preserved)
{Inv & !b} [] ρ {Q} (use case)

{P} [U ]while (b) {π} ρ {Q}
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How to Derive Loop Invariants without Magic?

Example (when Symbolic Execution at start of loop)

{n >= 0}

[i := 0]

while (i < n) { i = i + 1; }

{i = n}

Look at desired postcondition (i = n)

What, in addition to negated guard (i >= n), is needed? (i <= n)

Is (i <= n) established at beginning and preserved?

Yes! We have found a suitable loop invariant!
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Obtaining Invariants by Strengthening

Example (Slightly changed spec—Demo count.key)

{n >= 0 & n = m}

[i := 0]

while (i < n) { i = i + 1; }

{i = m}

Look at desired postcondition (i = m)

What, in addition to negated guard (i >= n), is needed? (i = m)

Is (i = m) established at beginning and preserved? No!

(i = m) is neither preserved nor true at the start!
Can we use something from the precondition or U?

I If we know that (n = m) then (i <= n) suffices

I Strengthen the invariant candidate to: (i <= n & n = m)
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Why Does the Invariant Rule Work?

Induction Argument

We prove by induction over the number n of loop iterations that Inv
holds in all loop iterations (used in third premiss)

Hypothesis Inv holds in the first n loop iterations

Base Case Inv holds in the first 0 loop iterations
iff Inv holds in the state at the start of the loop
iff the first premiss of the invariant rule holds

Step Case If Inv holds in the first n loop iterations, then Inv holds
even in the first n + 1 loop iterations

follows from: in anya state where Inv holds and the guard
is true Inv holds after one more iteration

iff the second premiss of the invariant rule holds

aFor this reason we cannot use P or U in (preserved) and (use case)
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Generalization

Example (Addition)

{ x = x0 & y = y0 & y0 >= 0 }

[]

while (y > 0) {

x = x + 1;

y = y - 1;

}

{ x = x0 + y0 }

Finding the invariant

First attempt: use postcondition x = x0 + y0

I Not true at start whenever y0 <> 0

I Not preserved by loop, because x is increased
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Generalization

Example (Addition)

{ x = x0 & y = y0 & y0 >= 0 }

[]

while (y > 0) {

x = x + 1;

y = y - 1;

}

{ x = x0 + y0 }

Finding the invariant

What stays invariant?

I The sum of x and y: x + y = x0 + y0 “Generalization”

I Can help to think of partial result: “δ” between x and x0 + y0
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Generalization

Example (Addition)

{ x = x0 & y = y0 & y0 >= 0 }

[]

while (y > 0) {

x = x + 1;

y = y - 1;

}

{ x = x0 + y0 }

Checking the invariant

Is x + y = x0 + y0 a good invariant?

I Holds in the beginning and is preserved by loop

I But postcondition not achieved by x + y = x0 + y0 & y <= 0
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Generalization

Example (Addition)

{ x = x0 & y = y0 & y0 >= 0 }

[]

while (y > 0) {

x = x + 1;

y = y - 1;

}

{ x = x0 + y0 }

Strenghtening the invariant

Postcondition holds if y = 0

I Sufficient to add y >= 0 to x + y = x0 + y0 & y <= 0
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Generalization

Example (Addition)

{ x = x0 & y = y0 & y0 >= 0 }

[]

while (y > 0) {

x = x + 1;

y = y - 1;

}

{ x = x0 + y0 }

Demo addition3.key
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Example: Fibonacci

Example (Fibonacci)

{n = n0 & n > 0}

[]

x1 = 1;

x2 = 1;

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = ?? }

How do we specify the result?
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Example: Fibonacci

Example (Fibonacci)

{n = n0 & n > 0 & fib(1) = 1 & fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m-1) + fib(m-2))}

[]

x1 = 1;

x2 = 1;

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = fib(n0) }

Introduce \function int fib(int);
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Example: Fibonacci

Example (Fibonacci)

{n = n0 & n > 0 & fib(1) = 1 & fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m-1) + fib(m-2))}

[]

x1 = 1;

x2 = 1;

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = fib(n0) }

Loop invariant must express complex relation between loop and fib()!
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Inductive Reasoning (Patterns)

Example (Fibonacci)

x1 = fib(1);

x2 = fib(2);

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

Simulate loop to discover pattern

# x1 x2 n

0 fib(1) fib(2) n0

1 fib(2) fib(3) n0 - 1

2 fib(3) fib(4) n0 - 2

Partial result:
express argument of fib() as
relation between n and n0

Conjecture: x1 = fib(n0-n+1)

x2 = fib(n0-n+2)
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Invariants and Definitions

Example (Fibonacci)

{n = n0 & n > 0 & fib(1) = 1 & fib(2) = 1 &

\forall int m; (m > 2 -> fib(m) = fib(m-1) + fib(m-2))}

[x1 := 1 || x2 := 1]

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = fib(n0) }

Definition of fib() not available in preserves case!

` P −> U(Inv) {Inv & b} []π {Inv} {Inv & !b} [] ρ {Q}
{P} [U ]while (b) {π} ρ {Q}
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Invariants and Definitions

Example (Fibonacci)

{n = n0 & n > 0 & F}

[x1 := 1 || x2 := 1]

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = fib(n0) }

Add definition F of fib() to invariant

Inv = (x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F)
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Invariants and Definitions

Example (Fibonacci)

{n = n0 & n > 0 & F}

[x1 := 1 || x2 := 1]

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = fib(n0) }

Does postcondition follow from Inv & n <= 2 ?

Inv = (x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F)
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Invariants and Definitions

Example (Fibonacci)

{n = n0 & n > 0 & F}

[x1 := 1 || x2 := 1]

while (n > 2) {

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

}

{ x2 = fib(n0) }

Does postcondition follow from Inv & n <= 2 ?

Inv = (x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F)

Yes, provided that n >= 2! Add this to Inv — now use case ok!
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Strengthening, Again

Example (Fibonacci, the “preserves” case)

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n >= 2 & n > 2}

[]

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n >= 2}

Perform symbolic execution, exit, and update simplification . . .
Five times andRight, all but 2nd case close
After several andLeft, equations become applicable

Demo: fib.key
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Strengthening, Again

Example (Fibonacci, the “preserves” case)

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n >= 2 & n > 2}

[]

x2 = x1 + x2;

x1 = x2 - x1;

n = n - 1;

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n >= 2}

Perform symbolic execution, exit, and update simplification . . .
Five times andRight, all but 2nd case close
After several andLeft, equations become applicable

Demo: fib.key
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Strengthening, Again

Example (Fibonacci, the “preserves” case, open subgoal)

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 2 ->

fib(n0-n+3) = fib(n0-n+1) + fib(n0-n+2) }

Look into definition of F

\forall int m; (m > 2 -> fib(m) = fib(m-1) + fib(m-2))
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Strengthening, Again

Example (Fibonacci, the “preserves” case, open subgoal)

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 2 ->

fib(n0-n+3) = fib(n0-n+1) + fib(n0-n+2) }

Look into definition of F — this looks ok, after all!

\forall int m; (m > 2 -> fib(m) = fib(m-1) + fib(m-2))

Instantiate m with n0-n+3
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Strengthening, Again

Example (Fibonacci, the “preserves” case, open subgoal)

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 2 ->

fib(n0-n+3) = fib(n0-n+1) + fib(n0-n+2) }

But need to prove that n0-n+3 > 2, so we add n0 >= n

\forall int m; (m > 2 -> fib(m) = fib(m-1) + fib(m-2))

Instantiate m with n0-n+3
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Strengthening, Again

Example (Fibonacci, the “preserves” case, open subgoal)

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 2 ->

fib(n0-n+3) = fib(n0-n+1) + fib(n0-n+2) }

(Almost) final loop invariant

x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n >= 2 & n0 >= n

Is preserved, but also initially valid?
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A Final Problem: Weakening

Example (Fibonacci, the “initially valid” case)

n = n0 & n > 0 & F ->

[x1 := 1 || x2 := 1]

{x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F &

n >= 2 & n0 >= n}
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A Final Problem: Weakening

Example (Fibonacci, the “initially valid” case)

n = n0 & n > 0 & F ->

(1 = fib(1) & 1 = fib(2) & F & n >= 2 & n0 >= n}

After update and other simplification . . .
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A Final Problem: Weakening

Example (Fibonacci, the “initially valid” case, open subgoal)

|- n = n0

& n > 0

& ...

-> n >= 2

Cannot be shown! n >= 2 is too strong

We get n > 0 from precondition and n <= 2 from negated guard.

The critical case seems to be n = 1
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A Final Problem: Weakening

Example (Fibonacci, the “use” case, again)

|- x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n >=2 &

n0 >= n & n <= 2

-> x2 = fib(n0)

Original invariant with n >= 2
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A Final Problem: Weakening

Example (Fibonacci, the “use” case, again)

|- x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 0 &

n0 >= n & n <= 2

-> x2 = fib(n0)

Weaken to n > 0. Too weak!

TDV: Verification II /GU 2011-12-03 26 / 1



A Final Problem: Weakening

Example (Fibonacci, the “use” case, again)

|- x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 0 &

(n = 1 -> n0 = 1) & n0 >= n & n <= 2

-> x2 = fib(n0)

Works if we know that n = 1 can only occur if n0 = 1
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A Final Problem: Weakening

Example (Fibonacci, the “use” case, again)

|- x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 0 &

(n = 1 -> n0 = 1) & n0 >= n & n <= 2

-> x2 = fib(n0)

Final Invariant

x1 = fib(n0-n+1) & x2 = fib(n0-n+2) & F & n > 0

(n = 1 -> n0 = 1) & n0 >= n
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Some Tips On Finding Invariants

General Advice

I Invariants must be developed, they don’t come out of thin air!

I Be as systematic in deriving invariants as when debugging a program
I Don’t forget: the program or contract (more likely) can be buggy

I In this case, you won’t find an invariant!
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Some Tips On Finding Invariants, Cont’d

Technical Tips

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY-Hoare tool

I Symbolic execution (of body), exit, update simplification, andRight
I Look at open first-order goals: what is needed to make them closed?
I After each change of the invariant make sure all cases are ok
I Use the “pruning” mechanism to supply a new invariant
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Summary

I Symbolic execution of loops by unwinding
can only deal with fixed loop bounds

I In general some variant of induction is required
to prove properties of programs with loops

I Invariant rule encodes induction over # of executed loop bodies
I Invariant rule has three parts:

I The invariant must hold at the beginning of the loop
I The invariant must be preserved by an arbitrary execution of the

loop body provided that the guard is true
I The negated guard plus the invariant imply the desired postcondition

I Loop invariants can be developed systematically
I Start with the desired postcondition
I Discover patterns through execution of a few loop bodies
I Use strengthening, generalization, weakening
I Use guidance by open first-order goals

I If you can’t find a proof your program or contract might be wrong!
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What is Left to Do?

1. Proving termination of programs

2. Proving correctness of programs with arrays
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