
Testing, Debugging, Program Verification
Formal Verification, Part I

Wolfgang Ahrendt & Vladimir Klebanov & Moa Johansson

27 November 2012

TDV: Verification I /GU 2012-11-27 1 / 37

Block 4: Formal Verification

I Three lectures (today + Mon, Wed next week)

I One exercise session (next Wed)

I One assignment to hand in.

Todays main topics:

I Symbolic Execution

I Hoare Logic

I A first look at the KeY-Hoare system (if we have time).

TDV: Verification I /GU 2012-11-27 2 / 37

Formal Software Verification: Motivation

Limitations of Testing

I Testing ALL inputs is usually impossible.

I Even strongest coverage criteria cannot guarantee
abcence of further defects.

Goal of Formal Verification

Given a formal specification S of the behaviour of a program P:
Give a mathematically rigorous proof that each run of P conforms to S

P is correct with respect to S

The Main Steps towards Formal Verification

1. Write a specification of a given program that can be proven

2. Devic a correctness proof method without exhaustive case analysis

3. Design mathematically rigorous proof rules: “calculus”

TDV: Verification I /GU 2012-11-27 3 / 37

Formal Software Verification: Motivation

Limitations of Testing

I Testing ALL inputs is usually impossible.

I Even strongest coverage criteria cannot guarantee
abcence of further defects.

Goal of Formal Verification

Given a formal specification S of the behaviour of a program P:
Give a mathematically rigorous proof that each run of P conforms to S

P is correct with respect to S

The Main Steps towards Formal Verification

1. Write a specification of a given program that can be proven

2. Devic a correctness proof method without exhaustive case analysis

3. Design mathematically rigorous proof rules: “calculus”

TDV: Verification I /GU 2012-11-27 3 / 37

Formal Software Verification: Motivation

Limitations of Testing

I Testing ALL inputs is usually impossible.

I Even strongest coverage criteria cannot guarantee
abcence of further defects.

Goal of Formal Verification

Given a formal specification S of the behaviour of a program P:
Give a mathematically rigorous proof that each run of P conforms to S

P is correct with respect to S

The Main Steps towards Formal Verification

1. Write a specification of a given program that can be proven

2. Devic a correctness proof method without exhaustive case analysis

3. Design mathematically rigorous proof rules: “calculus”

TDV: Verification I /GU 2012-11-27 3 / 37

Formal Software Verification: Limitations

I No absolute notion of program correctness!
I Correctness always relative to a given specification
I Example: forgot to specify permutation property for sort()

I Hard and expensive to develop provable formal specifications
I In practice, no attempt to specify full functionality.
I Safety properties e.g.

I Well-formed data
I Exception freeness, . . .

I Some properties may be difficult or impossible to specify. e.g.
I Time and memory (possible, but not done here)
I User behaviour, the environment in general

TDV: Verification I /GU 2012-11-27 4 / 37

Formal Software Verification: Limitations cont.

I Requires lots of expertise and expenses
I Even fully specified & verified programs can have runtime failures

I Defects in the compiler
I Defects in the runtime environment
I Defects in the hardware

Possible & desirable: Exclude defects in source code wrt a given spec

TDV: Verification I /GU 2012-11-27 5 / 37

What is Symbolic Execution?

Concrete Execution

I State: a concrete valuation of all variables (stack) and fields (heap)

I (Execution) Path: finite OR infinite sequence of states that a
program passes as it executes

I Program Counter: States along the path are annotated with next
(sub-)statement to be executed.

I Initial state given explicitly

TDV: Verification I /GU 2012-11-27 6 / 37

What is Symbolic Execution?

Symbolic Execution

I State: a “symbolic” valuation of all variables and fields.
I New symbols to denote initial value of variables etc.
I Each term represents a set of possible concrete values

I Execution Tree: finite OR infinite tree of states

I Program Counter: States in the tree are annotated with next
(sub-)statement to be executed

I Path Condition: Annotations on branching state transitions.

I Each concrete execution path is an instance of some symbolic path
through the tree

I Initial state given explicitly or by a symbolic precondition

TDV: Verification I /GU 2012-11-27 7 / 37

What is Symbolic Execution?

Execute a program with symbolic (abstract) initial values

Assume we could write a Java program such as this:

int target = t0;

int [] array = a0;

return search(array , target);

where t0 and a0 are arbitrary start values.

TDV: Verification I /GU 2012-11-27 8 / 37

Symbolic Execution Tree

int target = t0; ...

{target := t0 | ... }int high = a0.length-1; ...

{...}throw ...

a0==null

{...}while ...

{...}return -1;

a0.length==0

{...}int mid = ...

{mid := (a0.length-1)/2 | ...}return mid;

a0.length>0

a0!=null

normal termination

exceptional
termination
(a0 nullable)

TDV: Verification I /GU 2012-11-27 9 / 37

Symbolic Execution by Example

int target = t0; Execute this statement

int [] array = a0;

int low = 0;

int high = array.length -1;

while (low <= high) {

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

{target := t0} Symbolic Program State

int [] array = a0; First Active Statement (Program Counter)

int low = 0;

int high = array.length -1;

while (low <= high) {

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;
TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

{target := t0 | array := a0}

int low = 0;

int high = array.length -1;

while (low <= high) {

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

{target := t0 | array := a0 | low := 0}

int high = array.length -1; What next?

while (low <= high) {

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

{target := t0 | array := a0 | low := 0}

int high = a0.length -1; Execution depends on a0!=nul l

while (low <= high) {

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null Path Condition (fulfilled in JML by default)

{target := t0 | array := a0 | low := 0 | high := a0.length-1}

while (low <= high) {

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null

{target := t0 | array := a0 | low := 0 | high := a0.length-1}

while (low <= high) { depends on a0.length >0

int mid = (low + high) / 2 ;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0

{target := t0 | array := a0 | low := 0 | high := a0.length-1}

int mid = (low + high) / 2 ; unwind loop

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

} end of loop body

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

i f (t0 < a0[(a0.length-1)/2]) { Why no exception thrown?
high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

i f (t0 < a0[(a0.length-1)/2]) { let t0==a0[(a0.length-1)/2]

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[(a0.length-1)/2]

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[(a0.length-1)/2]

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

i f (t0 > a0[(a0.length-1)/2]) { false!

low = mid + 1;

} e l se {

return mid;

}

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[(a0.length-1)/2]

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

return mid;

while (low <= high) {

...

}

return -1;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[(a0.length-1)/2]

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

return (a0.length-1)/2;

TDV: Verification I /GU 2012-11-27 10 / 37

Symbolic Execution by Example

a0!=null && a0.length > 0 && t0==a0[(a0.length-1)/2]

{target := t0 | array := a0 | low := 0 | high := a0.length-1 |

mid := (a0.length-1)/2}

return (a0.length-1)/2;

One conclusion from this symbolic execution example:

All executions following path condition:

array!=null && array.length>0 && target==array[(array.length-1)/2]

return the result

(array.length-1)/2

TDV: Verification I /GU 2012-11-27 10 / 37

Properties of Symbolic Execution

Important Conclusions

I One symbolic execution path corresponds to ∞ many test runs

I Only one symbolic execution path shown in example —
need to explore all others as well!

I Programs with loops or recursion usually have ∞ many symbolic
execution paths

Main Properties of Symbolic Execution

1. Even symbolic execution cannot cover all execution paths

2. But symbolic execution covers all execution paths up to finite depth

TDV: Verification I /GU 2012-11-27 11 / 37

Quiz: Symbolic Execution

Symbolically execute the following program. Assume the initial values are
x0 and y0 for x andy.

I What is the possible final states (with path conditions)?

i f (x > y) {

y = y + 1;

}

e l se {

x = x + 1;

}

I Are the following test-cases covered by any of the symbolic
execution paths leading to the final states? Which one?

I {x = -1, y = 1} {x = 1, y = -1}
I {x = 0, y = 0 } {x = 43, y = 6}

TDV: Verification I /GU 2012-11-27 12 / 37

Quiz: Symbolic Execution

Symbolically execute the following program. Assume the initial values are
x0 and y0 for x andy.

I What is the possible final states (with path conditions)?

i f (x > y) {

y = y + 1;

}

e l se {

x = x + 1;

}

A: x > y ⇒ {x:= x0 | y:= y0 | y:= y + 1}
B: !(x > y) ⇒ {x:= x0 | y:= y0 | x:= x + 1}

I Are the following test-cases covered by any of the symbolic
execution paths leading to the final states? Which one?

I {x = -1, y = 1} {x = 1, y = -1}
I {x = 0, y = 0 } {x = 43, y = 6}

TDV: Verification I /GU 2012-11-27 12 / 37

Quiz: Symbolic Execution

Symbolically execute the following program. Assume the initial values are
x0 and y0 for x andy.

I What is the possible final states (with path conditions)?

i f (x > y) {

y = y + 1;

}

e l se {

x = x + 1;

}

A: x > y ⇒ {x:= x0 | y:= y0 | y:= y + 1}
B: !(x > y) ⇒ {x:= x0 | y:= y0 | x:= x + 1}

I Are the following test-cases covered by any of the symbolic
execution paths leading to the final states? Which one?

I {x = -1, y = 1} (B) {x = 1, y = -1} (A)
I {x = 0, y = 0 } (B) {x = 43, y = 6} (A)

TDV: Verification I /GU 2012-11-27 12 / 37

Formal Software Verification: Our Setup

Java JML
Specified by

First-order Logic

⊆

JML no calculus!

Compilation

First-order LogicWhile

⊆

Specified by

As introduced in lectures on Formal Specification

TDV: Verification I /GU 2012-11-27 13 / 37

Formal Software Verification: Our Setup

Java JML
Specified by

First-order Logic

⊆

JML no calculus!

Compilation

First-order LogicWhile

⊆

Specified by

JML too complex and too unstable to provide calculus directly

TDV: Verification I /GU 2012-11-27 13 / 37

Formal Software Verification: Our Setup

Java JML
Specified by

First-order Logic

⊆

JML no calculus!

Compilation

First-order Logic

While

⊆

Specified by

Automatic, but (as usual in compilation) result not very readable

TDV: Verification I /GU 2012-11-27 13 / 37

Formal Software Verification: Our Setup

Java JML
Specified by

First-order Logic

⊆

JML no calculus!

Compilation

First-order LogicWhile

⊆

Specified by

We specify a subset of Java in first-order logic

Java and JML in their full glory treated in SEuFM TDA292

TDV: Verification I /GU 2012-11-27 13 / 37

While Language is Simpler than Java

I Java-like syntax (see handout for full grammar)

I Program variables refered to as locations.
I Two types: int and boolean

I int type is the mathematical integers, not 32 bits

I Arrays a, b
I Different name, different array. E.g. a and b not considered equal.
I Array lookups a[i] as locations.

I While-loops, if-statements

I Boolean operators (&, |, ==, !)

I Integer operators (*, /, %, +, -)

I Comparison operators (<, >, <=, >=)

TDV: Verification I /GU 2012-11-27 15 / 37

While Language is Simpler than Java

I Java-like syntax (see handout for full grammar)

I Program variables refered to as locations.
I Two types: int and boolean

I int type is the mathematical integers, not 32 bits

I Arrays a, b
I Different name, different array. E.g. a and b not considered equal.
I Array lookups a[i] as locations.

I While-loops, if-statements

I Boolean operators (&, |, ==, !)

I Integer operators (*, /, %, +, -)

I Comparison operators (<, >, <=, >=)

TDV: Verification I /GU 2012-11-27 15 / 37

While Language is Simpler than Java

I Java-like syntax (see handout for full grammar)

I Program variables refered to as locations.
I Two types: int and boolean

I int type is the mathematical integers, not 32 bits

I Arrays a, b
I Different name, different array. E.g. a and b not considered equal.
I Array lookups a[i] as locations.

I While-loops, if-statements

I Boolean operators (&, |, ==, !)

I Integer operators (*, /, %, +, -)

I Comparison operators (<, >, <=, >=)

TDV: Verification I /GU 2012-11-27 15 / 37

While Language is Simpler than Java

I No objects, no reference types, no aliasing

I No method calls, no exceptions

I Expressions have no side effects

TDV: Verification I /GU 2012-11-27 16 / 37

While Language: Example

Integer Division

For two non-negative integers x and y compute the
quotient q = x / y and the remainder r = x % y

int x,y,q,r;

q = 0;

r = x;

while (r >= y) {

r = r - y;

q = q + 1;

}

How to specify the functionality of this program?

TDV: Verification I /GU 2012-11-27 17 / 37

While Language: Example

Integer Division

For two non-negative integers x and y compute the
quotient q = x / y and the remainder r = x % y

int x,y,q,r;

q = 0;

r = x;

while (r >= y) {

r = r - y;

q = q + 1;

}

How to specify the functionality of this program?

TDV: Verification I /GU 2012-11-27 17 / 37

Signature: Different Kinds of Symbols

Built-in functions and predicates

Examples TRUE, +, ==, 42, . . .

Appear in programs and specs

Meaning can change? No. Fixed once and everywhere (=rigid)

Program locations

Examples a[i], boolean b;, . . .

Appear in programs and specs

Meaning can change? Yes, from state to state (=non-rigid)

User-defined functions and predicates

Examples int mySpecialHelperFunction(int, int), . . .

Appear in specs only

Meaning can change? Yes, from one program to another but same in
all states of one. (=rigid)

TDV: Verification I /GU 2012-11-27 18 / 37

Signature: Different Kinds of Symbols

Built-in functions and predicates

Examples TRUE, +, ==, 42, . . .

Appear in programs and specs

Meaning can change? No. Fixed once and everywhere (=rigid)

Program locations

Examples a[i], boolean b;, . . .

Appear in programs and specs

Meaning can change? Yes, from state to state (=non-rigid)

User-defined functions and predicates

Examples int mySpecialHelperFunction(int, int), . . .

Appear in specs only

Meaning can change? Yes, from one program to another but same in
all states of one. (=rigid)

TDV: Verification I /GU 2012-11-27 18 / 37

Signature: Different Kinds of Symbols

Built-in functions and predicates

Examples TRUE, +, ==, 42, . . .

Appear in programs and specs

Meaning can change? No. Fixed once and everywhere (=rigid)

Program locations

Examples a[i], boolean b;, . . .

Appear in programs and specs

Meaning can change? Yes, from state to state (=non-rigid)

User-defined functions and predicates

Examples int mySpecialHelperFunction(int, int), . . .

Appear in specs only

Meaning can change? Yes, from one program to another but same in
all states of one. (=rigid)

TDV: Verification I /GU 2012-11-27 18 / 37

First-Order Logic Signature

First-Order Signature for a While program

Types the types of While: int, boolean

Functions I built-in int operators/constants of While:
IntOp | z ∈ Z

I program locations: int variables, array lookups
I user-defined functions with result type int

I Example: int c;
I Example: int f (int,boolean);

Predicates I built-in Boolean operators/constants of While:
BooleanOp | ComparisonOp | TRUE | FALSE

I program locations: boolean variables
I user-defined functions with result type boolean

I Example: boolean myFlag;
I Example: boolean notEq(int,int);

TDV: Verification I /GU 2012-11-27 19 / 37

First-Order Logic Signature

First-Order Signature for a While program

Types the types of While: int, boolean

Functions I built-in int operators/constants of While:
IntOp | z ∈ Z

I program locations: int variables, array lookups
I user-defined functions with result type int

I Example: int c;
I Example: int f (int,boolean);

Predicates I built-in Boolean operators/constants of While:
BooleanOp | ComparisonOp | TRUE | FALSE

I program locations: boolean variables
I user-defined functions with result type boolean

I Example: boolean myFlag;
I Example: boolean notEq(int,int);

TDV: Verification I /GU 2012-11-27 19 / 37

First-Order Logic Signature

First-Order Signature for a While program

Types the types of While: int, boolean

Functions I built-in int operators/constants of While:
IntOp | z ∈ Z

I program locations: int variables, array lookups
I user-defined functions with result type int

I Example: int c;
I Example: int f (int,boolean);

Predicates I built-in Boolean operators/constants of While:
BooleanOp | ComparisonOp | TRUE | FALSE

I program locations: boolean variables
I user-defined functions with result type boolean

I Example: boolean myFlag;
I Example: boolean notEq(int,int);

TDV: Verification I /GU 2012-11-27 19 / 37

Models and Program States

For a given program π

Definition (Program State)

A state s of program π is a first-order model giving meaning to symbols
of the signature for π.

Definition (Kripke Structure)

A Kripke Structure K of program π is the set of all states with a given
meaning of rigid symbols.

We write l s = v when location l has value v in s; l s ∈ B ∪ Z
We write cK = v when a rigid constant c has value v in K; cK ∈ B ∪ Z

TDV: Verification I /GU 2012-11-27 20 / 37

Models and Program States

For a given program π

Definition (Program State)

A state s of program π is a first-order model giving meaning to symbols
of the signature for π.

Definition (Kripke Structure)

A Kripke Structure K of program π is the set of all states with a given
meaning of rigid symbols.

We write l s = v when location l has value v in s; l s ∈ B ∪ Z
We write cK = v when a rigid constant c has value v in K; cK ∈ B ∪ Z

TDV: Verification I /GU 2012-11-27 20 / 37

Models and Program States

For a given program π

Definition (Program State)

A state s of program π is a first-order model giving meaning to symbols
of the signature for π.

Definition (Kripke Structure)

A Kripke Structure K of program π is the set of all states with a given
meaning of rigid symbols.

We write l s = v when location l has value v in s; l s ∈ B ∪ Z
We write cK = v when a rigid constant c has value v in K; cK ∈ B ∪ Z

TDV: Verification I /GU 2012-11-27 20 / 37

Specification: First-Order Logic Formula Syntax

First-Order Logic Formula Syntax

First-order terms and formulas over signature While

Use JML/While-like syntax

BooleanOp ::= & | | | ! | -> | <->
FOLFormula ::= Atom |

FOLFormula BooleanOp FOLFormula |
Quantifier Type LogicalVariable; FOLFormula

Quantifier ::= \forall | \exists

Example

\forall int i; i >= 0

TDV: Verification I /GU 2012-11-27 21 / 37

Specification: First-Order Logic Formula Syntax

First-Order Logic Formula Syntax

First-order terms and formulas over signature While

Use JML/While-like syntax

BooleanOp ::= & | | | ! | -> | <->
FOLFormula ::= Atom |

FOLFormula BooleanOp FOLFormula |
Quantifier Type LogicalVariable; FOLFormula

Quantifier ::= \forall | \exists

Example

\forall int i; i >= 0

TDV: Verification I /GU 2012-11-27 21 / 37

First-Order Formulas and Program States

First-order formulas define sets of program states

Given a Kripke structure K and a formula F with program locations.

Then F is true in some states and not true in others.

Example

I (i>j & j>=0) is true in exactly those states s
where is > js and js is non-negative

I \exists int i; l = i

is true in any state s, because the value of i can be chosen to be ls

TDV: Verification I /GU 2012-11-27 22 / 37

First-Order Formulas and Program States

First-order formulas define sets of program states

Given a Kripke structure K and a formula F with program locations.

Then F is true in some states and not true in others.

Example

I (i>j & j>=0) is true in exactly those states s
where is > js and js is non-negative

I \exists int i; l = i

is true in any state s, because the value of i can be chosen to be ls

TDV: Verification I /GU 2012-11-27 22 / 37

Hoare Logic

Hoare logic is a language for reasoning about imperative programs

I Programs are While programs
I Contracts are pre-/postcondition (simplified requires/ensures) pairs

I expressed in first-order logic
I used to define intended sets of program states (see previous slide)
I no \assignable, no \old, no exceptional cases

Hoare Logic: Historical Remarks

I First suggested in 1969 by C. A. R. Hoare

I Numerous extensions (arrays, procedures, concurrency, objects)

I Our formulation from paper by R. Bubel & R. Hähnle
A Hoare-Style Calculus with Explicit State Updates, Formed’08

TDV: Verification I /GU 2012-11-27 23 / 37

Hoare Logic, Cont’d

Definition (Hoare Triple)

A Hoare triple is an expression of the form

{P}π {Q}

where P and Q are first-order formulas over locations appearing in the
While program π.

(P,Q) is a “first-order logic contract” for π

TDV: Verification I /GU 2012-11-27 24 / 37

Hoare Logic, Truth, and Validity

Definition (Truth in a state)

A Hoare triple {P}π {Q} is true in state s of some Kripke structure K,
exactly when:
If P is true in s, and π terminates when started in s, then Q is true in
the final state reached by π.

Definition (Truth in a Kripke structure)

A Hoare triple {P}π {Q} is true in a Kripke structure K, if it is true in
all states of K.

Definition (Validity of a Hoare triple)

A Hoare triple {P}π {Q} is valid, if it is true in all Kripke structures.

TDV: Verification I /GU 2012-11-27 25 / 37

Hoare Logic, Truth, and Validity

Definition (Truth in a state)

A Hoare triple {P}π {Q} is true in state s of some Kripke structure K,
exactly when:
If P is true in s, and π terminates when started in s, then Q is true in
the final state reached by π.

Definition (Truth in a Kripke structure)

A Hoare triple {P}π {Q} is true in a Kripke structure K, if it is true in
all states of K.

Definition (Validity of a Hoare triple)

A Hoare triple {P}π {Q} is valid, if it is true in all Kripke structures.

TDV: Verification I /GU 2012-11-27 25 / 37

Hoare Logic, Truth, and Validity

Definition (Truth in a state)

A Hoare triple {P}π {Q} is true in state s of some Kripke structure K,
exactly when:
If P is true in s, and π terminates when started in s, then Q is true in
the final state reached by π.

Definition (Truth in a Kripke structure)

A Hoare triple {P}π {Q} is true in a Kripke structure K, if it is true in
all states of K.

Definition (Validity of a Hoare triple)

A Hoare triple {P}π {Q} is valid, if it is true in all Kripke structures.

TDV: Verification I /GU 2012-11-27 25 / 37

Specifications with “Old” Values

Example (Swapping the value of two integer variables)

int x,y,d;

d = x;

x = y;

y = d;

What should a suitable contract express?

Remarks

I Precondition is true exactly in those K and states s ∈ K where
xs = xK

0 , ys = yK
0 , and ds is arbitrary: we don’t care!

I x0 and y0 are rigid constants, cannot be changed by π

TDV: Verification I /GU 2012-11-27 26 / 37

Specifications with “Old” Values

Example (Swapping the value of two integer variables)

int x,y,d;

d = x;

x = y;

y = d;

precondition x and y have certain initial values x0 and y0

postcondition x has now value y0 and y has value x0

Remarks

I Precondition is true exactly in those K and states s ∈ K where
xs = xK

0 , ys = yK
0 , and ds is arbitrary: we don’t care!

I x0 and y0 are rigid constants, cannot be changed by π

TDV: Verification I /GU 2012-11-27 26 / 37

Specifications with “Old” Values

Example (Swapping the value of two integer variables)

int x,y,d;

d = x;

x = y;

y = d;

precondition {x=x0 & y=y0}
postcondition x has now value y0 and y has value x0

Remarks

I Precondition is true exactly in those K and states s ∈ K where
xs = xK

0 , ys = yK
0 , and ds is arbitrary: we don’t care!

I x0 and y0 are rigid constants, cannot be changed by π

TDV: Verification I /GU 2012-11-27 26 / 37

Specifications with “Old” Values

Example (Swapping the value of two integer variables)

int x,y,d;

d = x;

x = y;

y = d;

precondition {x=x0 & y=y0}
postcondition {x=y0 & y=x0}

Remarks

I Precondition is true exactly in those K and states s ∈ K where
xs = xK

0 , ys = yK
0 , and ds is arbitrary: we don’t care!

I x0 and y0 are rigid constants, cannot be changed by π

TDV: Verification I /GU 2012-11-27 26 / 37

Specifications with “Old” Values

Example (Swapping the value of two integer variables)

int x,y,d;

d = x;

x = y;

y = d;

precondition {x=x0 & y=y0}
postcondition {x=y0 & y=x0}

Remarks

I Precondition is true exactly in those K and states s ∈ K where
xs = xK

0 , ys = yK
0 , and ds is arbitrary: we don’t care!

I x0 and y0 are rigid constants, cannot be changed by π

TDV: Verification I /GU 2012-11-27 26 / 37

Contracts: the Good, the Bad, and the Ugly

Example (swap)

int x,y,d;

d = x;

x = y;

y = d;

precondition P : {x=x0 & y=y0}
postcondition Q : {x=y0 & y=x0}

{P} swap {Q} is a valid Hoare triple with suitable contract

TDV: Verification I /GU 2012-11-27 27 / 37

Contracts: the Good, the Bad, and the Ugly

Example (swap)

int x,y,d;

d = x;

x = y;

y = d;

precondition P : {x=17 & y=42}
postcondition Q : {x=42 & y=17}

{P} swap {Q} is a valid Hoare triple, but contract can be more general

TDV: Verification I /GU 2012-11-27 27 / 37

Contracts: the Good, the Bad, and the Ugly

Example (swap)

int x,y,d;

d = x;

x = y;

y = d;

precondition P : {x=x0 & y=y0 & d=17}
postcondition Q : {x=y0 & y=x0}

{P} swap {Q} is a valid Hoare triple, but precondition stronger than needed

TDV: Verification I /GU 2012-11-27 27 / 37

Contracts: the Good, the Bad, and the Ugly

Example (swap)

int x,y,d;

d = x;

x = y;

y = d;

precondition P : {x=x0 & y=y0}
postcondition Q : {x=y0}

{P} swap {Q} is a valid Hoare triple, but postcondition weaker than pos-
sible

TDV: Verification I /GU 2012-11-27 27 / 37

Contracts: the Good, the Bad, and the Ugly

Example (swap)

int x,y,d;

d = x;

x = y;

y = d;

precondition P : {x=x0 & y=y0}
postcondition Q : {x=x0 & y=x0}

{P} swap {Q} is not a valid Hoare triple:
counter example xK

0 = 1, yK
0 = 2

TDV: Verification I /GU 2012-11-27 27 / 37

Proving Validity of Hoare Triples

To prove Hoare triples we need a calculus.

A calculus is a set of (schematic) rules.

The rules of our calculus will perform symbolic execution of programs

TDV: Verification I /GU 2012-11-27 28 / 37

Elements of Symbolic Execution

Components of a State during Symbolic Execution

Path condition — when is this execution path taken?

Program counter — next executable source code statement

Symbolic program state — the values currently assigned to variables

Symbolic Execution in Hoare Logic

Path condition Can be part of precondition of Hoare triple

Program counter Remaining program inside Hoare triple

Symbolic state ???

To mimick symbolic execution in Hoare Logic we must add
a representation of intermediate symbolic program states

TDV: Verification I /GU 2012-11-27 29 / 37

Elements of Symbolic Execution

Components of a State during Symbolic Execution

Path condition — when is this execution path taken?

Program counter — next executable source code statement

Symbolic program state — the values currently assigned to variables

Symbolic Execution in Hoare Logic

Path condition Can be part of precondition of Hoare triple

Program counter Remaining program inside Hoare triple

Symbolic state ???

To mimick symbolic execution in Hoare Logic we must add
a representation of intermediate symbolic program states

TDV: Verification I /GU 2012-11-27 29 / 37

Symbolic Program State Updates

Definition (Atomic Update)

If l is a program location, t a FOL term of same type as l,
then l := t is an atomic update.

Updates help specify program state(s) in which a formula is evaluated

Definition (Semantics of Atomic Updates)

Updates describe state changes:
Given a program state s, the result of applying an update U = (l := t)
to s is the state U s , such that:

locU
s

=

{
ts if loc = l

locs otherwise

TDV: Verification I /GU 2012-11-27 30 / 37

Symbolic Program State Updates

Definition (Atomic Update)

If l is a program location, t a FOL term of same type as l,
then l := t is an atomic update.

Updates help specify program state(s) in which a formula is evaluated

Definition (Semantics of Atomic Updates)

Updates describe state changes:
Given a program state s, the result of applying an update U = (l := t)
to s is the state U s , such that:

locU
s

=

{
ts if loc = l

locs otherwise

TDV: Verification I /GU 2012-11-27 30 / 37

Symbolic Program State Updates Cont’d

Definition (Complex Update)

If U and V are updates, then U ,V is a sequential update and
U||V is a parallel update.

Definition (Semantics of Complex Updates)

Sequential Update For U ,V, first apply U to s to obtain state U s ,
then apply V to U s .

Parallel Update For U = (l1 := t1|| · · · ||lm := tm) in parallel set
the value of each li to the value of ti in s.

Conflict: if lj = lk , then tmax(j ,k) “wins”

Example

The effect of (l := c ||l := 17) is identical to that of l := 17.

TDV: Verification I /GU 2012-11-27 31 / 37

Symbolic Program State Updates Cont’d

Definition (Complex Update)

If U and V are updates, then U ,V is a sequential update and
U||V is a parallel update.

Definition (Semantics of Complex Updates)

Sequential Update For U ,V, first apply U to s to obtain state U s ,
then apply V to U s .

Parallel Update For U = (l1 := t1|| · · · ||lm := tm) in parallel set
the value of each li to the value of ti in s.

Conflict: if lj = lk , then tmax(j ,k) “wins”

Example

The effect of (l := c ||l := 17) is identical to that of l := 17.

TDV: Verification I /GU 2012-11-27 31 / 37

Symbolic Program State Updates Cont’d

Definition (Complex Update)

If U and V are updates, then U ,V is a sequential update and
U||V is a parallel update.

Definition (Semantics of Complex Updates)

Sequential Update For U ,V, first apply U to s to obtain state U s ,
then apply V to U s .

Parallel Update For U = (l1 := t1|| · · · ||lm := tm) in parallel set
the value of each li to the value of ti in s.

Conflict: if lj = lk , then tmax(j ,k) “wins”

Example

The effect of (l := c ||l := 17) is identical to that of l := 17.

TDV: Verification I /GU 2012-11-27 31 / 37

Hoare Triples with State Updates

Definition (Hoare Triple with Update)

A Hoare Triple with Update is an expression of the form

{P} [U]π {Q}

where P and Q are first-order formulas over locations appearing in the
While program π and U is an update.

Definition (Truth of a Hoare Triple with Update in a State)

A Hoare triple {P} [U]π {Q} is true in state s of some Kripke
structure K, exactly when:
If P is true in s, and π terminates when started in U s , then Q is true in
the final state reached by π.

Truth in K and validity defined just as for triples without updates.

TDV: Verification I /GU 2012-11-27 32 / 37

Hoare Triples with State Updates

Definition (Hoare Triple with Update)

A Hoare Triple with Update is an expression of the form

{P} [U]π {Q}

where P and Q are first-order formulas over locations appearing in the
While program π and U is an update.

Definition (Truth of a Hoare Triple with Update in a State)

A Hoare triple {P} [U]π {Q} is true in state s of some Kripke
structure K, exactly when:
If P is true in s, and π terminates when started in U s , then Q is true in
the final state reached by π.

Truth in K and validity defined just as for triples without updates.

TDV: Verification I /GU 2012-11-27 32 / 37

A Calculus for Hoare Logic

General Form of Rule

{P1} [U1] ρ {Q} · · · {Pn} [Un] ρ {Q}
{P} [U]π ρ {Q}

I Symbolically execute first statement π of program in conclusion
I May be necessary to branch (unknown guard in conditional)

I This effect we know already from symbolic execution

I Update U is symbolic state computed so far

I New path conditions P1, . . . ,Pn and updates U1, . . . ,Un in premisses
I Rules applied until program completely executed

I Resulting premisses are FOL formulas ⇒ automated theorem prover

TDV: Verification I /GU 2012-11-27 33 / 37

Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

TDV: Verification I /GU 2012-11-27 34 / 37

Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

Example

{P} [x := x0, x := x + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}

TDV: Verification I /GU 2012-11-27 34 / 37

Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

Example

{P} [x := x0, x := x + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}

TDV: Verification I /GU 2012-11-27 34 / 37

Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

Example

{P} [x := x0, x := x + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}

TDV: Verification I /GU 2012-11-27 34 / 37

Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update

, then simplify

Example

{P} [x := x0 || x := x0 + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}

TDV: Verification I /GU 2012-11-27 34 / 37

Rules of Calculus for Hoare Logic

Assignment

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

I Turn assignment into update and append sequentially
I Important that e has no side effects
I e can be evaluated as FOL term

I Schematic rule: match against concrete update, program, etc.

I Turn sequential into parallel update, then simplify

Example

{P} [x := x0 + 17]π {Q}
{P} [x := x0] x = x + 17;π {Q}

TDV: Verification I /GU 2012-11-27 34 / 37

Rules of Calculus for Hoare Logic, Cont’d

Exit

exit
` P −> U(Q)

{P} [U] {Q}

I Applied when original program is fully symbolically executed

I “Precondition implies postcondition in final state of the original
program, which is now summarized by U”

I The meaning of U(Q) is to apply U to Q:
I If x := t is atomic update in U then

replace each occurrence of x in Q with t
I Assume that U is a parallel update

I Premiss is FOL formula, handed over to automated theorem prover `

TDV: Verification I /GU 2012-11-27 35 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[]

d = x; x = y; y = d;

{x = y0 & y = x0}

Start with empty update []

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[d := x]

x = y; y = d;

{x = y0 & y = x0}

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[d := x || x := y]

y = d;

{x = y0 & y = x0}

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[(d := x || x := y), y := d]

{x = y0 & y = x0}

Empty program

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

{x = x0 & y = y0}

[d := x || x := y || y := x]

{x = y0 & y = x0}

Parallel update: use previous value of d!

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

` (x = x0 & y = y0) ->

[d := x || x := y || y := x](x = y0 & y = x0)

Exit

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Example Proof of Validity of Hoare Triple

Rules assignment and exit suffice to do earlier example:

Example (swap)

` (x = x0 & y = y0) -> (y = y0 & x = x0)

Apply update to postcondition — valid FOL formula!

Rules Used

assignment
{P} [U , x := e]π {Q}
{P} [U] x = e;π {Q}

exit
` P −> U(Q)

{P} [U] {Q}

TDV: Verification I /GU 2012-11-27 36 / 37

Summary

I Testing cannot replace verification

I Formal verification can prove properties for all runs,
. . . but has inherent limitations, too

I We verify While programs specified with first-order logic

I Hoare logic is tailored for verification in this setup

I To avoid exhaustive simulation one uses symbolic reasoning

I Symbolic execution useful paradigm for formal verification

I Use updates to represent intermediate symbolic states

I Calculus for symbolic execution of While programs
Rule application driven by next executable statement

TDV: Verification I /GU 2012-11-27 37 / 37

	About Formal Verification
	Symbolic Execution

