
Testing, Debugging, and Verification
Formal Specification, Part II

Wolfgang Ahrendt, Vladimir Klebanov, Moa Johansson

21 November 2012

TDV: Formal Specification /GU 121121 1 / 46

Recap: First Order Logic

I Signature Σ:
I Types TΣ

I Functions (incl. constants) FΣ

I Predicates PΣ

I Typing function α

I Example Σ1:
I T1 = {int, bool}
I F1 = {+, −} ∪ {. . . ,−2,−1, 0, 1, 2, . . .}
I P1 = {<}
I α(+) = α(−) = (int, int)→ int
α(<) = (int, int)→ bool
. . . = α(−1) = α(0) = α(1) . . .

I In addition, set of (typed) variables V .

TDV: Formal Specification /GU 121121 2 / 46

Recap: First Order Terms and Formulas

Terms are built from

I Functions

I Constants (functions with no arguments) and

I Variables

I E.g. x + 2, −5

Atomic formulas are boolean ’terms’.

I true, false

I Equalities: t1 = t2

I Predicates

I E.g. x < y , x = 4

TDV: Formal Specification /GU 121121 3 / 46

Recap: Boolean Connectives

Formulas are built from (atomic) formulas combined with boolean
connectives:

FOL Meaning Java (if applicable)

¬A not A !A

A ∧ B A and B A && B

A ∨ B A or B A || B

A→ B A implies B
A↔ B A is equivalent of B, A if and only if B
∀ τ x . A For all x of type τ , A holds.
∃ τ x . A There exists some x such that A holds.

TDV: Formal Specification /GU 121121 4 / 46

General Formulas: Examples

(signatures/types left out here)

Example (There exist at least two elements)

∃x , y ;¬(x = y)

Example (Strict partial order)

Irreflexivity ∀x ;¬(x < x)
Asymmetry ∀x ; ∀y ; (x < y → ¬(y < x))
Transitivity ∀x ; ∀y ;∀z ;

(x < y ∧ y < z → x < z)

Example (All models have infinite domain)

Existence Successor ∀x ; ∃y ; x < y

TDV: Formal Specification /GU 121121 5 / 46

In a real Logic Course

... we now would rigorously define:

I validity of formulas

I provability of formulas (in various calculi)

⇒ see course ‘Logic in Computer Science’

In our course, we stick to the intuitive meaning of formulas.

But we mention ‘models’ and ‘validity’.

TDV: Formal Specification /GU 121121 6 / 46

Models, Validity, States

Model

A model assigns meaning to the symbols in FΣ ∪ PΣ

(assigning functions to function symbols, relations to predicate symbols).

In a given model M, a closed formula is either true or not true.

Validity

A closed formula is valid if it is true in all models.

In the context of formal specification of imperative programs:
states1 take over the role of models.

Which of the formulas in this slide set are true in some model?
Which of the formulas in this slide set are valid?

1together with input values and results, and possibly paired with old states
TDV: Formal Specification /GU 121121 7 / 46

Useful Valid Formulas

Let φ and ψ be arbitrary, closed formulas (whether valid or not).

The following formulas are valid:

I ¬(φ ∧ ψ)↔ ¬φ ∨ ¬ψ
I ¬(φ ∨ ψ)↔ ¬φ ∧ ¬ψ
I (true ∧ φ)↔ φ

I (false ∨ φ)↔ φ

I true ∨ φ
I ¬(false ∧ φ)

I (φ→ ψ)↔ (¬φ ∨ ψ)

I φ→ true

I false→ φ

I (true→ φ)↔ φ

I (φ→ false)↔ ¬φ

TDV: Formal Specification /GU 121121 8 / 46

Useful Valid Formulas

Assume that x is the only variable which may appear freely in φ or ψ.

The following formulas are valid:

I ¬(∃ τ x ; φ)↔ ∀ τ x ; ¬φ
I ¬(∀ τ x ; φ)↔ ∃ τ x ; ¬φ
I (∀ τ x ; φ ∧ ψ)↔ (∀ τ x ; φ) ∧ (∀ τ x ; ψ)

I (∃ τ x ; φ ∨ ψ)↔ (∃ τ x ; φ) ∨ (∃ τ x ; ψ)

Are the following formulas also valid?

I (∀ τ x ; φ ∨ ψ)↔ (∀ τ x ; φ) ∨ (∀ τ x ; ψ)

I (∃ τ x ; φ ∧ ψ)↔ (∃ τ x ; φ) ∧ (∃ τ x ; ψ)

TDV: Formal Specification /GU 121121 9 / 46

Java Modeling Language (JML)

JML is a specification language tailored to Java.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to Java

JML
is

Java + FO Logic + pre/post-conditions, invariants + more ...

TDV: Formal Specification /GU 121121 10 / 46

JML Annotations

JML extends Java by annotations.

JML annotations include:

4 preconditions

4 postconditions

4 class invariants

4 additional modifiers

8 ‘specification-only’ fields

8 ‘specification-only’ methods

8 loop invariants (but see last part of the course)

4 ...

8 ...

4: in this course, 8: not in this course

TDV: Formal Specification /GU 121121 11 / 46

JML/Java integration

JML annotations are attached to Java programs
by

writing them directly into the Java source code files

To not confuse Java compiler:

JML annotations live in in special comments,
ignored by Java, recognized by JML.

TDV: Formal Specification /GU 121121 12 / 46

Recall: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}

TDV: Formal Specification /GU 121121 13 / 46

Recall: Informal Specification

very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded is authenticated.

TDV: Formal Specification /GU 121121 14 / 46

Recall: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
pin is incorrect and wrongPINCounter < 2

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
pin is incorrect and wrongPINCounter >= 2

postcondition card is confiscated
user is not authenticated

TDV: Formal Specification /GU 121121 15 / 46

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

...

TDV: Formal Specification /GU 121121 16 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

Everything between /* and */ is invisible for Java.

TDV: Formal Specification /GU 121121 17 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

But:

A Java comment with ‘@’ as its first character
it is not a comment for JML.

JML annotations appear in Java comments starting with @.

How about “//”comments?

TDV: Formal Specification /GU 121121 18 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

public void enterPIN (int pin) {

if (....

TDV: Formal Specification /GU 121121 19 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

TDV: Formal Specification /GU 121121 20 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

TDV: Formal Specification /GU 121121 21 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

Each keyword ending on behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),
if the caller guarantees all preconditions of this specification case.

TDV: Formal Specification /GU 121121 22 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean Java expressions

in general:
preconditions are boolean JML expressions (see below)

TDV: Formal Specification /GU 121121 23 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

specifies only the case where both preconditions are true in pre-state

the above is equivalent to:

/*@ public normal_behavior

@ requires (!customerAuthenticated

@ && pin == insertedCard.correctPIN);

@ ensures customerAuthenticated;

@*/

TDV: Formal Specification /GU 121121 24 / 46

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (....

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean Java expressions

in general:
postconditions are boolean JML expressions (see below)

TDV: Formal Specification /GU 121121 25 / 46

JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if (....
TDV: Formal Specification /GU 121121 26 / 46

JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

for the first time, a JML expression is not a Java expression

\old(E) means: E evaluated in the pre-state of enterPIN.

E can be any (arbitrarily complex) (JML) expression.

TDV: Formal Specification /GU 121121 27 / 46

JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

two postconditions state that:

‘Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid’

TDV: Formal Specification /GU 121121 28 / 46

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

What happens with insertedCard and wrongPINCounter?

TDV: Formal Specification /GU 121121 29 / 46

Completing Specification Cases

Completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ ensures insertedCard == \old(insertedCard);

@ ensures wrongPINCounter == \old(wrongPINCounter);

TDV: Formal Specification /GU 121121 30 / 46

Completing Specification Cases

Completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ ensures insertedCard == \old(insertedCard);

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

TDV: Formal Specification /GU 121121 31 / 46

Completing Specification Cases

Completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

@ ensures wrongPINCounter == \old(wrongPINCounter);

TDV: Formal Specification /GU 121121 32 / 46

Assignable Clause

Unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change.

Instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

TDV: Formal Specification /GU 121121 33 / 46

Specification Cases with Assignable

Completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

TDV: Formal Specification /GU 121121 34 / 46

Specification Cases with Assignable

Completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

TDV: Formal Specification /GU 121121 35 / 46

Specification Cases with Assignable

Completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable wrongPINCounter,

@ insertedCard,

@ insertedCard.invalid;

TDV: Formal Specification /GU 121121 36 / 46

Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

example:

@ assignable o.*, a[*];

makes all fields of object o and all locations of array a assignable.

TDV: Formal Specification /GU 121121 37 / 46

JML Modifiers

JML extends the Java modifiers by additional modifiers.

The most important ones are:

I spec_public

I pure

Aim: admitting more class elements to be used in JML expressions.

TDV: Formal Specification /GU 121121 38 / 46

JML Modifiers: spec_public

In enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

One solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

TDV: Formal Specification /GU 121121 39 / 46

JML Modifiers: pure

It can be handy to use method calls in JML annotations.
Examples:

I o1.equals(o2)

I li.contains(elem)

I li1.max() < li2.min()

allowed if, and only if method is guaranteed to have no side effects.

In JML, you can specify methods to be ‘pure’:

public /*@ pure @*/ int max() { ...

‘pure’ puts obligation on implementer, not to cause side effects,
but allows to use method in annotations

‘pure’ similar to ‘assignable \nothing;’, but global to method

TDV: Formal Specification /GU 121121 40 / 46

JML Expressions 6= Java Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean Java expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

TDV: Formal Specification /GU 121121 41 / 46

Beyond boolean Java expressions

How to express the following?

I An array arr only holds values ≤ 2

I The variable m holds the maximum entry of array arr

I All Account objects in the array bank are stored at the index
corresponding to their respective accountNumber field

I All created instances of class BankCard have different cardNumbers

TDV: Formal Specification /GU 121121 42 / 46

First-order Logic in JML Expressions

JML boolean expressions extend Java boolean expressions by:

I implication

I equivalence

I quantification

TDV: Formal Specification /GU 121121 43 / 46

boolean JML Expressions

boolean JML expressions are defined recursively:

boolean JML Expressions

I each side-effect free boolean Java expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I (\forall t x; a) (“for all x of type t, a is true”)
I (\exists t x; a) (“there exists x of type t such that a”)
I (\forall t x; a; b) (“for all x of type t fulfilling a, b is true”)
I (\exists t x; a; b) (“there exists an x of type t fulfilling a,

such that b”)

TDV: Formal Specification /GU 121121 44 / 46

JML Quantifiers

In

(\forall t x; a; b)

(\exists t x; a; b)

a called “range predicate”

those forms are redundant:

(\forall t x; a; b)

equivalent to
(\forall t x; a ==> b)

(\exists t x; a; b)

equivalent to
(\exists t x; a && b)

TDV: Formal Specification /GU 121121 45 / 46

Pragmatics of Range Predicates

(\forall t x; a; b) and (\exists t x; a; b)

widely used

pragmatics of range predicate:

a used to restrict range of x further than t

Example: “arr is sorted at indexes between 0 and 9”:

(\forall int i,j; 0<=i && i<j && j<10; arr[i] <= arr[j])

TDV: Formal Specification /GU 121121 46 / 46

	Titlepage
	Continuing FOL
	Models, Validity
	Useful Validities
	JML
	Recall: ATM
	JML by Example
	Assignable Locations
	JML Modifiers
	JML Expressions

