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Where are we in the course?

— past course parts —

4 Testing

4 Debugging

— upcoming course parts —

I Formal Specification (starting today)

I Test Case Generation

I Formal Program Verification
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This Part

Theme: Formal Specification

Structure:

I three lectures (19, 21 (x2)/11)

I one exercise (Monday 26/11)

I one lab assignment

Content:

I Specification as such

I Unit Specification

I Formal Unit Specification
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Motivation

As motivating examples, let’s consider two programs.
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Example 1: method alwaysTrue()

// should always return true

public s ta t i c boolean alwaysTrue( int i) {

// Just ’return true;’ is all too boring.

// Instead:

return ( Math.abs(i) >= 0 );

}
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Example 1: Testing alwaysTrue()

Scanner sc = new Scanner(System.in);

while ( true) {

// read an integer from System.in

int i = sc.nextInt ();

// this will print "true"

System.out.println(alwaysTrue(i));

}

Demo: TestAlwaysTrue.java

Surprise: with input -2147483648, the program prints false!
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We want to understand the problem

I Another test:
System.out.println(Math.abs(-2147483648))

prints
-2147483648

I We cannot come any closer to the problem by testing/debugging.

I So how can we?
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Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.
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Caller and Callee disagree

The problem was:

Caller (here alwaysTrue())

had unfulfilled expectations about

Callee (here Math.abs()).

TDV: Formal Specification /GU 121119 9 / 52



Example 2: equal Objects in Sets

public c la s s Book {

private String title;

private String author;

private long isbn;

public Book (...) { ... }

}

public boolean equals(Object obj) {

i f (obj instanceof Book) {

Book other = (Book) obj;

return (isbn == other.isbn);

}

return f a l s e ;
}

public String toString () { ... }

}
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Example 2: equal Objects in Sets

From the Java API Specification, Interface Set:

public interface Set

extends Collection

Sets contain no pair of elements e1, e2 such that e1.equals(e2) ...
...

boolean add(E e)

Adds e to this set if the set contains no element e2 such that
e.equals(e2) ...
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Example 2: equal Objects in Sets

Adding two equal books to a set:

Set catalogue = new HashSet ();

Book b1 = new Book("Effective Java",

"Joshua Bloch",

201310058);

Book b2 = new Book("Effective Java",

"J. Bloch",

201310058);

catalogue.add(b1);

catalogue.add(b2);

How many elements has catalogue now?
Demo: AddTwoBooks.java

two!(?)
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We want to understand the problem also

But again:

I We cannot come any closer to the problem by testing/debugging.

I So how can we?
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Again: Specification is the Answer!

I Here, specification of Set or HashSet does not reveal problem

I Instead: check the specification of Book!

I Is there any?

I Yes, because Book extends Object, and inherits the specifications
from there!
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Checking the API of Object

public int hashCode()

...
If two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce
the same integer result.
...

By overriding equals only, and not hashCode, we broke the
specification of Book.hashCode().
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Caller and Callee disagree

The problem was:

Caller (here HashSet.add())

had unfulfilled expectations about

Callee (here Book.hashCode()).

Here:
The caller is library code, the callee is a method from our own class!

⇒ Call Back Mechanism in OO Programming
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Is this nasty?

I How could the implementer of Book foresee whether some class
implementing Set would call Book.hashCode()?

I He/she cannot!

No alternative to fulfilling the inherited specification of Object, as
potential callers might rely on it in unforeseeable ways!

Demo: fixing AddTwoBooks.java
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Example1/2: Similarities and Differences

In both cases:
caller had unfulfilled expectations about callee

Difference: who is to blame?

Example 1: the caller (alwaysTrue())

Example 2: the callee (Book.hashCode())

We will focus on a crystal clear distinction

I of these different roles, and

I the different obligations attached to either of the roles.
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Specifications as Contracts

To stress the different roles – obligations – responsibilities in a
specification:

Widely used analogy of the specification as a contract

“Design by Contract” methodology

Contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites
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What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification—contracts among implementers on various levels:

I application level ↔ application level

I application level ↔ library level

I library level ↔ library level
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What kind of Specifications

Natural language specs are very important (see the examples above).

Still:
we focus on

“Formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision.
I eventually, automation of program analysis of various kinds:

I static checking
I test case generation
I program verification
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Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

First, focus on methods

Methods can be specified by referring to for example:

I result value,

I initial values of formal parameters,

I pre-state and post-state (accessible part)
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Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}
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Informal Specification

Very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded as authenticated.
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Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
pin is incorrect, and wrongPINCounter < 2

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
pin is incorrect, and wrongPINCounter >= 2

postcondition card is confiscated,
user is not authenticated
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Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

In the above: what do we mean by state?
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Prerequisite: Object-oriented States

By state, we mean a ‘snapshot’ of the system, at any point during the
the computation.

An object oriented state consists of:

I the set C of all loaded classes

I the values of the static fields of classes in C
I the set O of references to all created objects

I the values of the instance fields of objects in O

Here, values of local variables and formal parameters are not considered
part of the state.
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Prerequisite: Accessible State

Like implementations, specifications can only refer to the locally
accessible part of the state (e.g., not to private fields of other classes).
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Prerequisite: Accessible State

In our context, we stick to the following principle:

Same Accessible State for Specifications and Implementations:

In a given local context, specifications and implementations can access
the same part of the overall state.a

aLater, we’ll refine this principle, and introduce well defined exceptions.

Specifications talk only about those parts of the state which are
accessible by:

I respecting Java’s accessibility rules
(public, protected, private),

I following (accessible) references, starting from local fields.
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Stateless Specification

A stateless specification of a (non-void) method talks
I only about

I the result of a call
I the initial value of input parameters

I but not about
I (any part of) the state

examples:

interface/class: method:
Math static int abs(int a)

Math static double sqrt(double a)
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Stateless Specification: Math.abs()

from the Java API:

Specification of static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Green: Intuitive description rather than a specification.
Red: Precise specification by case distinction, given we know what
‘negative’ and ‘negation’ mean exactly.
Blue: A consequence of the specification, i.e., a redundant part of it.

Red and Blue are candidates for formalisation.
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Going a bit more formal

static int abs(int a)

Informal spec:
If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Semi formal:

I Under the precondition ‘a ∈ [0 . . . 2147483647]’,
abs ensures the postcondition ‘result = a’.

I Under the precondition ‘a ∈ [−2147483648 . . . − 1]’,
abs ensures the postcondition ‘result = −a’.
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Going a bit more formal

static int abs(int a)

Redundant informal spec:
Note that if the argument is equal to the value of Integer.MIN VALUE,
the most negative representable int value, the result is that same value,
which is negative.

Semi formal:

I Under the precondition ‘a = −2147483648’,
abs ensures the postcondition ‘result = −2147483648’.

Or simply:1

I abs(−2147483648) = −2147483648

1But be careful when using a method call in a specification, see below.
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State Aware Specification

A state aware specification of a (void or non-void) method talks about

I result of a call (if non-void)

I initial value of input parameters
I two states:

I ‘pre-state’ of method call
I ‘post-state’ of method call

Examples:

interface/class: method:
List Object set(int index, Object element)

TDV: Formal Specification /GU 121119 34 / 52



State Aware Specification: List.set(i,e)

from the Java API of List.set (simplified):

public Object set(int index, Object element)

Replaces the element at the specified position in this list with the
specified element.

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.
Returns:
the element previously at the specified position.
Throws:
IndexOutOfBoundsException

- if the index is out of range (index < 0 || index >= size()).

Why is the spec state aware?
Talks about state, state change

TDV: Formal Specification /GU 121119 35 / 52



Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postcondition:

I element = ‘get(index) evaluated in post-state’

Does this capture the meaning of the word ‘replace’?
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Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element.

Semi formal:
set ensures the following postconditions:

I element = ‘get(index) evaluated in post-state’

I for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’
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Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position.

Semi formal:
set ensures the following postconditions:

I result = ‘get(index) evaluated in pre-state’

I element = ‘get(index) evaluated in post-state’

I for all j ∈ [0...size()− 1] with j 6= index:
‘get(j) in post-state’ = ‘get(j) in pre-state’
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Going a bit more formal

public Object set(int index, Object element)

Informal spec:
Replaces the element at the specified position in this list with the
specified element ... Returns the element previously at the specified
position ... Throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size()).

Semi formal:

I Under the precondition ‘index ∈ [0...size()− 1]’,
set ensures the following postconditions:

I result = ‘get(index) evaluated in pre-state’, and
I element = ‘get(index) evaluated in post-state’, and
I for all j ∈ [0...size()− 1] with j 6= index:

‘get(j) in post-state’ = ‘get(j) in pre-state’

I Under the precondition ‘index 6∈ [0...size()− 1]’,
set throws IndexOutOfBoundsException.
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Reflection

Desired features of framework for formal specification:

I Pairs of
I preconditions
I postconditions

I A language to express these conditions, capturing:
I relations, equality, logical connectives
I quantification

I Constructs to refer to:
I values in new and in old state
I throwing of exceptions
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A Formal Language for Specifications

We will use the ‘Java Modelling Language’ (JML) to specify Java
programs.

JML combines

I Java

I First-Order Logic

In the following, we introduce:

1. First-Order Logic

2. JML
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First-Order Logic: Signature

Signature

A first-order signature Σ consists of

I a set TΣ of types

I a set FΣ of function symbols

I a set PΣ of predicate symbols

I a typing αΣ

Intuitively, the typing-function αΣ determines
I for each function and predicate symbol:

I its arity, i.e., number of arguments
I its argument types

I for each function symbol its result type.

formally:

I αΣ(p) ∈ TΣ
∗ for all p ∈ PΣ (arity of p is |αΣ(p)|)

I αΣ(f ) ∈ TΣ
∗ × TΣ for all f ∈ FΣ (arity of f is |αΣ(f )| − 1)
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Example Signature 1 + Constants

TΣ1 = {int},
FΣ1 = {+, -} ∪ {..., -2, -1, 0, 1, 2, ...},
PΣ1 = {<}

αΣ1(<) = (int,int→ boolean)
αΣ1(+) = αΣ1(-) = (int,int → int)
αΣ1(0) = αΣ1(1) = αΣ1(-1) = ... = (int)

Constants

A function symbol f with |αΣ1(f )| = 1 (i.e., with arity 0)
is called constant symbol.

here, the constants are: ..., -2, -1, 0, 1, 2, ...
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Example Signature 1 + Notation

TΣ1 = {int},
FΣ1 = {+, -} ∪ {..., -2, -1, 0, 1, 2, ...},
PΣ1 = {<}

αΣ1(<) = (int,int→boolean )
αΣ1(+) = αΣ1(-) = (int,int→int)
αΣ1(0) = αΣ1(1) = αΣ1(-1) = ... = (int)

Notation

Notation for typing of functions:
write (τ1, ..., τn → τn+1), where return type is after arrow.
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Example Signature 2

TΣ2 = {int, LinkedIntList},
FΣ2 = {null, new, elem, next} ∪ {...,-2,-1,0,1,2,...}
PΣ2 = {}

intuitively, elem and next model fields of LinkedIntList objects

αΣ2(null) = (LinkedIntList)
αΣ2(new) = (int, LinkedIntList → LinkedIntList)
αΣ2(elem) = (LinkedIntList → int)
αΣ2(next) = (LinkedIntList → LinkedIntList)

and as before:
αΣ2(0) = αΣ2(1) = αΣ2(-1) = ... = (int)
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First-Order Terms

We assume a set V of variables (V ∩ (FΣ ∪ PΣ) = ∅).
Each v ∈ V has a unique type αΣ(v) ∈ TΣ.

Terms are defined recursively:

Terms

A first-order term of type τ ∈ TΣ

I is either a variable of type τ , or

I has the form f (t1, . . . , tn),
where f ∈ FΣ has result type τ , and each ti is term of the correct
type, following the typing αΣ of f .

If f is a constant symbol, we write f instead of f ().
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Terms over Signature 1

Example terms over Σ1:
(assume variables v1, v2 with αΣ1(v1) = αΣ1(v2) = int)

I -7

I +(-2, 99)

I -(7, 8)

I +(-(7, 8), 1)

I +(-(v1, 8), v2)

Some variants of FOL allow infix notation of functions:

I -2 + 99

I 7 - 8

I (7 - 8) + 1

I (v1 - 8) + v2
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Terms over Signature 2

Example terms over Σ2:
(assume variables o with αΣ2(o) = LinkedIntList,
assume variable v with αΣ2(v) = int)

I -7

I null

I new(13, null)

I elem(new(13, null))

I next(next(o))

for first-order functions modeling object fields,
we allow dotted postfix notation:

I new(13, null).elem

I o.next.next
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Atomic Formulas

Logical Atoms

Given a signature Σ.
A logical atom has either of the forms

I true

I false

I t1 = t2 (“equality”),
where t1 and t2 have the same type.

I p(t1, . . . , tn) (“predicate”),
where p ∈ PΣ, and each ti is term of the correct type,
following the typing αΣ of p.
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Atomic Formulas over Signature 1

example formulas over Σ1:
(assume variables v with αΣ1(v) = int)

I 7 = 8

I 7 < 8

I -2 - v < 99

I v < (v + 1)
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Atomic Formulas over Signature 2

example formulas over Σ2:
(assume variables o with αΣ2(o) = LinkedIntList,
assume variable v with αΣ2(v) = int)

I new(13, null) = null

I elem(new(13, null)) = 13

I next(new(13, null)) = null

I next(next(o)) = o
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General Formulas

first-order formulas are defined recursively:

Formulas

I each atomic formula is a formula

I with φ and ψ formulas, x a variable, and τ a type,
the following are also formulas:

I ¬φ (“not φ”)
I φ ∧ ψ (“φ and ψ”)
I φ ∨ ψ (“φ or ψ”)
I φ→ ψ (“φ implies ψ”)
I φ↔ ψ (“φ is equivalent to ψ”)
I ∀ τ x ; φ (“for all x of type τ holds φ”)
I ∃ τ x ; φ (“there exists an x of type τ such that φ”)

In ∀ t x ; φ and ∃ t x ; φ the variable x is ‘bound’ (i.e., ‘not free’).
Formulas with no free variable are ‘closed’.
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