
Testing, Debugging, Program Verification
Debugging Programs, Part II

Wolfgang Ahrendt & Vladimir Klebanov & Moa Johansson &
Gabriele Paganelli

14 November 2012

TDV: Debugging II /GU 2011-11-09 1 / 32

Today’s Topic

— Last Week —

4 Bug tracking

4 Program control — Design for Debugging

4 Input simplification

— Today —
I Execution observation

I With logging
I Using debuggers

I Tracking causes and effects

TDV: Debugging II /GU 2011-11-09 2 / 32

Today’s Topic

— Last Week —

4 Bug tracking

4 Program control — Design for Debugging

4 Input simplification

— Today —
I Execution observation

I With logging
I Using debuggers

I Tracking causes and effects

TDV: Debugging II /GU 2011-11-09 2 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

Reproduce failure with test input

TDV: Debugging II /GU 2011-11-09 3 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

Reduction of failure-inducing problem

TDV: Debugging II /GU 2011-11-09 3 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

State known to be sane

TDV: Debugging II /GU 2011-11-09 3 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

State known to be infected

TDV: Debugging II /GU 2011-11-09 3 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

State where failure becomes observable

TDV: Debugging II /GU 2011-11-09 3 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

I Separate sane from infected states

TDV: Debugging II /GU 2011-11-09 3 / 32

The Main Steps in Systematic Debugging

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

I Separate sane from infected states

I Separate relevant from irrelevant states

TDV: Debugging II /GU 2011-11-09 3 / 32

Central Problem

How can we observe the computations in a program run?

Challenges/Obstacles

I Observation of intermediate state not part of functionality
I Execution observation with logging and debuggers

I Narrowing down to relevant time/state sections
I Tracking causes and effects

TDV: Debugging II /GU 2011-11-09 4 / 32

Central Problem

How can we observe the computations in a program run?

Challenges/Obstacles

I Observation of intermediate state not part of functionality

I Execution observation with logging and debuggers

I Narrowing down to relevant time/state sections

I Tracking causes and effects

TDV: Debugging II /GU 2011-11-09 4 / 32

Central Problem

How can we observe the computations in a program run?

Challenges/Obstacles

I Observation of intermediate state not part of functionality
I Execution observation with logging and debuggers

I Narrowing down to relevant time/state sections
I Tracking causes and effects

TDV: Debugging II /GU 2011-11-09 4 / 32

The Quick & Dirty Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed

System.out.println("size = "+ size);

4 Simple and easy

4 Can use any output channel

4 No tools or infrastructure needed, works on any platform

8 Code cluttering

8 Output cluttering (at least need to use debug channel)

8 Performance penalty, possibly changed behaviour (real time apps)

8 Buffered output lost on crash

8 Source code access required, recompilation necessary

TDV: Debugging II /GU 2011-11-09 5 / 32

The Quick & Dirty Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed

System.out.println("size = "+ size);

4 Simple and easy

4 Can use any output channel

4 No tools or infrastructure needed, works on any platform

8 Code cluttering

8 Output cluttering (at least need to use debug channel)

8 Performance penalty, possibly changed behaviour (real time apps)

8 Buffered output lost on crash

8 Source code access required, recompilation necessary

TDV: Debugging II /GU 2011-11-09 5 / 32

The Quick & Dirty Approach: Print Logging

Println Debugging

Manually add print statements at code locations to be observed

System.out.println("size = "+ size);

4 Simple and easy

4 Can use any output channel

4 No tools or infrastructure needed, works on any platform

8 Code cluttering

8 Output cluttering (at least need to use debug channel)

8 Performance penalty, possibly changed behaviour (real time apps)

8 Buffered output lost on crash

8 Source code access required, recompilation necessary

TDV: Debugging II /GU 2011-11-09 5 / 32

Logging Frameworks

Example (Logging Framework log4j for Java)

logging.apache.org/log4j/

Main principles of log4j

I Each class can have its own logger object

I Each logger has level: DEBUG < INFO < WARN < ERROR < FATAL

I Example: log message with myLogger and level INFO:
myLogger.info(Object message);

I Logging is controlled by configuration file:
which logger, level, layout, amount of information, channel, etc.

I No recompilation necessary for reconfiguration

TDV: Debugging II /GU 2011-11-09 6 / 32

logging.apache.org/log4j/

log4j Demo

I Start Eclipse
I Load project logging containing Dubbel.java
I Add library /usr/share/java/log4j-1.2.jar to build path

I Show Dubbel.java

I Run Dubbel.java

I Show SonOfDubbel.java

I Show logging-configuration.cf

I Run SonOfDubbel.java

I Modify logging-configuration.cf: set
log4j.logger.log4fun=WARN

I Refresh the project

I Show SonOfDubbel.log

There are also tools for navigating log files

Output can be configured to be mailto:// or database access

TDV: Debugging II /GU 2011-11-09 7 / 32

log4j Demo

I Start Eclipse
I Load project logging containing Dubbel.java
I Add library /usr/share/java/log4j-1.2.jar to build path

I Show Dubbel.java

I Run Dubbel.java

I Show SonOfDubbel.java

I Show logging-configuration.cf

I Run SonOfDubbel.java

I Modify logging-configuration.cf: set
log4j.logger.log4fun=WARN

I Refresh the project

I Show SonOfDubbel.log

There are also tools for navigating log files

Output can be configured to be mailto:// or database access
TDV: Debugging II /GU 2011-11-09 7 / 32

Evaluation of Logging Frameworks

4 Output cluttering can be mastered

4 Small performance overhead
I Beware: string operations can be expensive! Protection:

i f (logger.isDebugEnabled ()) { ... log ... };

4 Exceptions are loggable

4 Log complete up to crash

4 Instrumented source code reconfigurable w/o recompilation

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with aspects, but also with Debuggers

I post-mortem vs. interactive debugging

TDV: Debugging II /GU 2011-11-09 8 / 32

Evaluation of Logging Frameworks

4 Output cluttering can be mastered

4 Small performance overhead
I Beware: string operations can be expensive! Protection:

i f (logger.isDebugEnabled ()) { ... log ... };

4 Exceptions are loggable

4 Log complete up to crash

4 Instrumented source code reconfigurable w/o recompilation

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with aspects, but also with Debuggers

I post-mortem vs. interactive debugging

TDV: Debugging II /GU 2011-11-09 8 / 32

Evaluation of Logging Frameworks

4 Output cluttering can be mastered

4 Small performance overhead
I Beware: string operations can be expensive! Protection:

i f (logger.isDebugEnabled ()) { ... log ... };

4 Exceptions are loggable

4 Log complete up to crash

4 Instrumented source code reconfigurable w/o recompilation

8 Code cluttering — don’t try to log everything!

Code cluttering avoidable with aspects, but also with Debuggers

I post-mortem vs. interactive debugging

TDV: Debugging II /GU 2011-11-09 8 / 32

What is a Debugger?

Basic Functionality of a Debugger

Execution Control Stop execution at specific locations: breakpoints

Interpretation Step-wise execution of code

State Inspection Observe values of variables and stack

State Change Change state of stopped program

Historical term Debugger is misnomer as there are many debugging tools

I Traditional debuggers (gdb for C) based on command line I/F
I We use the built-in GUI-based debugger of the Eclipse framework

I Feel free to experiment with other debuggers!

TDV: Debugging II /GU 2011-11-09 9 / 32

What is a Debugger?

Basic Functionality of a Debugger

Execution Control Stop execution at specific locations: breakpoints

Interpretation Step-wise execution of code

State Inspection Observe values of variables and stack

State Change Change state of stopped program

Historical term Debugger is misnomer as there are many debugging tools

I Traditional debuggers (gdb for C) based on command line I/F
I We use the built-in GUI-based debugger of the Eclipse framework

I Feel free to experiment with other debuggers!

TDV: Debugging II /GU 2011-11-09 9 / 32

Running Example

public s ta t i c int search(int array[], int target) {

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

}

TDV: Debugging II /GU 2011-11-09 10 / 32

Eclipse Debugger

I Load project binary search from directory example

I Create/show run configuration testBini.run present in directory

I Debug testBini (the button with the bug)

I Open Debugging view of project binary search (it should be
automatic if you set a breakpoint)

TDV: Debugging II /GU 2011-11-09 11 / 32

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

TDV: Debugging II /GU 2011-11-09 12 / 32

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

TDV: Debugging II /GU 2011-11-09 12 / 32

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

TDV: Debugging II /GU 2011-11-09 12 / 32

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

TDV: Debugging II /GU 2011-11-09 12 / 32

Testing

Running a few test cases . . .

search({1,2,3}, 1) == 0 4

search({1,2,3}, 2) == 1 4

search({1,2,3}, 3) == 2 4

search({1,2,3}, 4) throws ArrayIndexOutOfBoundsException 8

Example taken from a published Java text book :-(

TDV: Debugging II /GU 2011-11-09 12 / 32

Halting Program Execution

Breakpoint

A program location that, when it is reached, halts execution

Example (Setting Breakpoint)

In search() at loop, right-click, toggle breakpoint

Some remarks on breakpoints

I Set breakpoint at last statement where state known to be sane

I This should be documented as an explicit hypothesis

I In Eclipse, not all lines can be breakpoints,
because these are actually inserted into bytecode

I Don’t forget to disable breakpoints when no longer needed

TDV: Debugging II /GU 2011-11-09 13 / 32

Resuming Program Execution

Example (Execution Control Commands)

I Start debugging of run configuration testBin1

I Resume halts when breakpoint is reached in next loop execution

I Disable breakpoint for this session

I Resume executes now until end

I Remove from debug log (Remove All Terminated)

I Enable breakpoint again in Breakpoints window

I Close debugging perspective

TDV: Debugging II /GU 2011-11-09 14 / 32

Step-Wise Execution of Programs

Step-Wise Execution Commands

Step Into Execute next statement, then halt

Step Over Consider method call as one statement

Some remarks on step-wise execution

I Usually Java library methods stepped over
I They should not contain defects
I You probably don’t have the source code

I To step over bigger chunks, change breakpoints, then resume

TDV: Debugging II /GU 2011-11-09 15 / 32

Inspecting the Program State

Inspection of state while program is halted

I Variables window
I Unfold reference types
I Pretty-printed in lower half of window

I Tooltips for variables in focus in editor window

I Recently changed variables are highlighted

Example (Tracking search())

I Start debugging at beginning of loop (testBin4)

I Step through one execution of loop body

I After second execution of loop body low==high==3

I Therefore, mid==3, but array[3] doesn’t exist!

I Whenever target is not in array, eventually low==mid==array.length

TDV: Debugging II /GU 2011-11-09 16 / 32

Inspecting the Program State

Inspection of state while program is halted

I Variables window
I Unfold reference types
I Pretty-printed in lower half of window

I Tooltips for variables in focus in editor window

I Recently changed variables are highlighted

Example (Tracking search())

I Start debugging at beginning of loop (testBin4)

I Step through one execution of loop body

I After second execution of loop body low==high==3

I Therefore, mid==3, but array[3] doesn’t exist!

I Whenever target is not in array, eventually low==mid==array.length

TDV: Debugging II /GU 2011-11-09 16 / 32

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

I Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of third round of loop, set high to correct value 2

Resuming execution now yields correct result

TDV: Debugging II /GU 2011-11-09 17 / 32

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

I Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of third round of loop, set high to correct value 2

Resuming execution now yields correct result

TDV: Debugging II /GU 2011-11-09 17 / 32

Changing the Program State

Hypothesis for Correct Value

Variable high should have value array.length-1

Changing state while program is halted

I Right-click on identifier in Variables window, Change Value

Example (Fixing the defect in the current run)

At start of third round of loop, set high to correct value 2

Resuming execution now yields correct result

TDV: Debugging II /GU 2011-11-09 17 / 32

Watching States with Debuggers

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

I From test run we know argument mid of array is 3 at this point

I Create breakpoint after assignment to mid

I Add watch expression mid==3 to breakpoint properties

I Disable breakpoint at start of loop

I Execution halts exactly when mid==3 becomes true

Hints on watch expressions

I Make sure scope of variables in watch expressions is big enough

TDV: Debugging II /GU 2011-11-09 18 / 32

Watching States with Debuggers

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

I From test run we know argument mid of array is 3 at this point

I Create breakpoint after assignment to mid

I Add watch expression mid==3 to breakpoint properties

I Disable breakpoint at start of loop

I Execution halts exactly when mid==3 becomes true

Hints on watch expressions

I Make sure scope of variables in watch expressions is big enough

TDV: Debugging II /GU 2011-11-09 18 / 32

Watching States with Debuggers

Halting Execution upon Specific Conditions

Use Boolean Watch expression in conditional breakpoint

Example (Halting just before exception is thrown)

I From test run we know argument mid of array is 3 at this point

I Create breakpoint after assignment to mid

I Add watch expression mid==3 to breakpoint properties

I Disable breakpoint at start of loop

I Execution halts exactly when mid==3 becomes true

Hints on watch expressions

I Make sure scope of variables in watch expressions is big enough

TDV: Debugging II /GU 2011-11-09 18 / 32

Evaluation of Debuggers

4 Code cluttering completely avoided

4 Prudent usage of breakpoints/watches reduces states to be inspected

4 Full control over all execution aspects

8 Debuggers are interactive tools, re-use difficult

8 Performance can degrade: disable unused watches

8 Inspection of reference types (lists, etc.) is tedious

Important Lessons

I Both, logging and debuggers are necessary and complementary

I Need visualization tools to render complex data structures

I Minimal/small input, localisation of unit is important

TDV: Debugging II /GU 2011-11-09 19 / 32

Evaluation of Debuggers

4 Code cluttering completely avoided

4 Prudent usage of breakpoints/watches reduces states to be inspected

4 Full control over all execution aspects

8 Debuggers are interactive tools, re-use difficult

8 Performance can degrade: disable unused watches

8 Inspection of reference types (lists, etc.) is tedious

Important Lessons

I Both, logging and debuggers are necessary and complementary

I Need visualization tools to render complex data structures

I Minimal/small input, localisation of unit is important

TDV: Debugging II /GU 2011-11-09 19 / 32

Evaluation of Debuggers

4 Code cluttering completely avoided

4 Prudent usage of breakpoints/watches reduces states to be inspected

4 Full control over all execution aspects

8 Debuggers are interactive tools, re-use difficult

8 Performance can degrade: disable unused watches

8 Inspection of reference types (lists, etc.) is tedious

Important Lessons

I Both, logging and debuggers are necessary and complementary

I Need visualization tools to render complex data structures

I Minimal/small input, localisation of unit is important

TDV: Debugging II /GU 2011-11-09 19 / 32

Tracking Causes and Effects

Determine defect that is origin of failure

Fundamental problem
Programs executed forward, but need to reason backward from failure

Example

In search() the failure was caused by wrong value mid,
but the real culprit was the initialization of high

TDV: Debugging II /GU 2011-11-09 20 / 32

Example

public s ta t i c int search(int array[], int target) {

int low = 0;

int high = array.length ;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

}

?

TDV: Debugging II /GU 2011-11-09 21 / 32

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another statement

Control Change the program counter
Determine which statement is executed next

TDV: Debugging II /GU 2011-11-09 22 / 32

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another statement

Control Change the program counter
Determine which statement is executed next

Statements with Write Effect (in Java)

Quiz!

TDV: Debugging II /GU 2011-11-09 22 / 32

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another statement

Control Change the program counter
Determine which statement is executed next

Statements with Write Effect (in Java)

I Assignments

I I/O, because it affects buffer content

I new(), because object initialisation writes to fields

TDV: Debugging II /GU 2011-11-09 22 / 32

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another statement

Control Change the program counter
Determine which statement is executed next

Statements with Control Effect (in Java)

Quiz!

TDV: Debugging II /GU 2011-11-09 22 / 32

Effects of Statements

Fundamental ways how statements may affect each other

Write Change the program state
Assign a new value to a variable read by another statement

Control Change the program counter
Determine which statement is executed next

Statements with Control Effect (in Java)

I Conditionals, switches

I Loops: determine whether their body is executed

I Dynamic method calls: implicit case distinction on implementations

I Abrupt termination statements: break, return, continue, and. . .

I Exceptions: potentially at each object or array access!

TDV: Debugging II /GU 2011-11-09 22 / 32

Statement Dependencies

Definition (Data Dependency)

Statement B is data dependent on statement A iff

1. A writes to a variable v that is read by B and

2. There is at least one execution path between A and B

in which v is not written to

“The outcome of A can directly influence a variable read in B”

Definition (Control Dependency)

Statement B is control dependent on statement A iff

I B’s execution is potentially controlled by A

“The outcome of A can influence whether B is executed”

TDV: Debugging II /GU 2011-11-09 23 / 32

Statement Dependencies

Definition (Data Dependency)

Statement B is data dependent on statement A iff

1. A writes to a variable v that is read by B and

2. There is at least one execution path between A and B

in which v is not written to

“The outcome of A can directly influence a variable read in B”

Definition (Control Dependency)

Statement B is control dependent on statement A iff

I B’s execution is potentially controlled by A

“The outcome of A can influence whether B is executed”

TDV: Debugging II /GU 2011-11-09 23 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Debugging II /GU 2011-11-09 24 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is data-dependent on this statement

TDV: Debugging II /GU 2011-11-09 24 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is control-dependent on the while statement

TDV: Debugging II /GU 2011-11-09 24 / 32

Computing Backward Dependencies

Definition (Backward Dependency)

Statement B is backward dependent on statement A iff

I There is a sequence of statements A = A1, A2, . . . , An = B such that:

1. for all i , Ai+1 is either control dependent or data dependent on Ai

2. there is at least one i with Ai+1 being data dependent on Ai

“The outcome of A can influence the program state in B”

TDV: Debugging II /GU 2011-11-09 25 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

TDV: Debugging II /GU 2011-11-09 26 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is backward-dependent on data- and control- dependent statements

TDV: Debugging II /GU 2011-11-09 26 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

mid is backward-dependent on data- and control- dependent statements

TDV: Debugging II /GU 2011-11-09 26 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Backward-dependent statements for first execution of loop body

TDV: Debugging II /GU 2011-11-09 26 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Backward-dependent statements for repeated execution of loop body

TDV: Debugging II /GU 2011-11-09 26 / 32

Systematic Localization of Defects

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane

Defect

I Separate sane from infected states

I Separate relevant from irrelevant states

TDV: Debugging II /GU 2011-11-09 27 / 32

Systematic Localization of Defects

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane
Defect

I Separate sane from infected states

I Separate relevant from irrelevant states

TDV: Debugging II /GU 2011-11-09 27 / 32

Systematic Localization of Defects

Program State

T
im

e

4

8

8

earliest state known to be infected

latest state known to be sane
Defect

I Separate sane from infected states

I Separate relevant from irrelevant states

I Compute backward-dependent statements from infected locations

TDV: Debugging II /GU 2011-11-09 27 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}

2. Compute statements S that potentially contain origin of defect:
one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:

4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)

4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I

4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Tracking Down Infections

Algorithm for systematic localization of defects

Let I be a set of infected locations (variable+program counter)
Let L be the current location in a failed execution path

1. Let L be infected location reported by failure and set I := {L}
2. Compute statements S that potentially contain origin of defect:

one level of backward dependency from L in execution path

3. Inspect locations L1, . . . , Ln written to in S:
check if they are infected, let M⊆ {L1, . . . , Ln} be infected ones

4. If one of the Li is infected, i.e., M 6= ∅:
4.1 Let I := (I\{L}) ∪M (replace L with the new candidates in M)
4.2 Let new current location L be any location from I
4.3 Goto 2.

5. L depends only on sane locations, it must be the infection site!

TDV: Debugging II /GU 2011-11-09 28 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Call search({1,2}, 3), mid is infected, mid==low==high==2

TDV: Debugging II /GU 2011-11-09 29 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Look for origins of low and high

TDV: Debugging II /GU 2011-11-09 29 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

low was changed in previous loop execution, value low==1 seems sane

TDV: Debugging II /GU 2011-11-09 29 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

high ==2 set at start (if-branch not taken when target not found), infected!

TDV: Debugging II /GU 2011-11-09 29 / 32

Example

int low = 0;

int high = array.length;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

high does not depend on any other location—found infection site!

TDV: Debugging II /GU 2011-11-09 29 / 32

Example

int low = 0;

int high = array.length - 1 ;

int mid;

while (low <= high) {

mid = (low + high)/2;

i f (target < array[mid]) {

high = mid - 1;

} e l se i f (target > array[mid]) {

low = mid + 1;

} e l se {

return mid;

}

}

return -1;

Fixed defect

TDV: Debugging II /GU 2011-11-09 29 / 32

After Fixing the Defect: Testing!

I Failures that exhibited a defect become new test cases after the fix
I used for regression testing

I During/after fixing the bug use existing unit test cases to
I test a suspected method in isolation
I make sure that your bug fix did not introduce new bugs
I exclude wrong hypotheses about the defect

TDV: Debugging II /GU 2011-11-09 30 / 32

What Next?

Three unsolved problems

1. How is evaluation of test runs related to specification?
So far: wrote oracle program or evaluated interactively
How to check automatically whether test outcome conforms to spec?

2. It is tedious to write test cases by hand!
Easy to forget cases
Java: aliasing, run-time exceptions

3. When does a program have no more bugs?
How to prove correctness without executing ∞ many paths?

Three more topics in this course that give some answers

1. Formal Specification

2. Automated Test Case Generation

3. Verifying Program Correctness

TDV: Debugging II /GU 2011-11-09 31 / 32

What Next?

Three unsolved problems

1. How is evaluation of test runs related to specification?
So far: wrote oracle program or evaluated interactively
How to check automatically whether test outcome conforms to spec?

2. It is tedious to write test cases by hand!
Easy to forget cases
Java: aliasing, run-time exceptions

3. When does a program have no more bugs?
How to prove correctness without executing ∞ many paths?

Three more topics in this course that give some answers

1. Formal Specification

2. Automated Test Case Generation

3. Verifying Program Correctness

TDV: Debugging II /GU 2011-11-09 31 / 32

Literature for this Lecture

Essential

Zeller Why Programs Fail: A Guide to Systematic Debugging
2nd edition, Elsevier, 2009
Chapters 7, 8, 9

Recommended

log4j Tutorial logging.apache.org/log4j/1.2/manual.html

See also

Java logging framework Package java.util.logging in JDK 6 Doc

TDV: Debugging II /GU 2011-11-09 32 / 32

logging.apache.org/log4j/1.2/manual.html

	Titleslide
	Introduction
	Logging
	Using Debuggers
	Tracking
	Testing and Debugging
	Literature

