Testing, Debugging, and Verification
TDA566/DIT082

Introduction

Wolfgang Ahrendt, Vladimir Klebanov, Moa Johansson

29 October 2012

TDV: Introduction CHALMERS/GU 111029

1/28

Organisational Stuff

Course Home Page

www.cse.chalmers.se/edu/course/TDAS66/

Google News Group

» Sign up via course home page (follow News link) entering

> real name
» person number (not necessary if you use @student address)

» Changes, updates, questions, discussions. Don't post solutions!

Passing Criteria
» Written exam 17 Dec 2012; re-exam Apr 2013
» Three lab hand-ins

» Exam and labs can be passed separately

TDV: Introduction CHALMERS/GU 111029

2728

www.cse.chalmers.se/edu/course/TDA566/

Team

Teacher

» Moa Johansson (jomoa), MJ

Course Assistant
» Gabriele Paganelli (gabpag), GP

office hours: see course page

...append @chalmers.se to obtain email address

TDV: Introduction CHALMERS/GU 111029 3/28

Structure

Course Structure

| Topic || # Lectures | Exercises | Lab |
Intro 1 b 4 X
Testing 3 v 4
Debugging 2 v X
Formal Specification 3 v 4
Verification 3 4 (4
Test Generation 2 4 X

TDV: Introduction CHALMERS/GU 111029 4/28

Course Literature

Essential Reading

» Why Programs Fail: A Guide to Systematic Debuggingl),
2nd edition, A Zeller

> The Art of Software Testing'), 2nd Edition, G J Myers

Further Reading
» Introduction to Software Testing, P Ammann & J Offutt
» Code Complete, 2nd Edition, S McConnell

Additional important references, papers on course page

1) available online as e-books via Chalmers library,
navigate to ‘E-book collections’, ‘Books24x7’, and register

TDV: Introduction CHALMERS/GU 111029

5/28

Labs, Exercises

Labs

» Submission via Fire, linked from course home page

» You must team up in groups of two
1. team up with the partner of your choice
2. if you can't find one, call for a partner via Google group
3. if the above does not work, contact Gabriele (gabpag)

> If submission get returned, ca. one week for correction

» Testing 16 Nov, Formal Spec 30 Nov, Verification 13 Dec

Exercises
» One exercise session for each topic (5 in all)
» Before each session:

> we post exercise questions on web page

> you try to solve them (as much as possible, might not have covered
all in lectures)

» During each exercise session:

> we solve remaining questions and discuss solutions together
TDVTIntroduction CHALVIERS]/GU

117029 6

Course Evaluation

5 student representatives (choosen randomly)
» feedback meetings with teachers

» course evaluation

Mathias Forsén forssenm
Hans Lamas lamas
Kasper Karlsson kasperk
Markus Johansson jmarcus
Jonas Astrom jonasas

For email address append: @student.chalmers.se

All participants: web questionnaire after the course

TDV: Introduction CHALMERS/GU 111029

77728

Cost of Software Errors

$ 60 billion

Estimated cost of software errors for US economy per year [2002]

TDV: Introduction CHALMERS/GU 111029 8 /28

Cost of Software Errors

$ 240 billion

Size of US software industry [2002]

incl. profit, sales, marketing, development (50% maybe)

TDV: Introduction CHALMERS/GU 111029

9/728

Cost of Software Errors

estimated

0
50%
of each software project spent on testing

(spans from 30% to 80%)

TDV: Introduction CHALMERS/GU 111029

10 /28

Cost of Software Errors

Very rough estimate:

money cost of
spent on & remaining
testing errors

TDV: Introduction ~~ CHALMERS /GU 111029

11/28

Cost of Software Errors

Very rough estimate:

money cost of
spent on + remaining
testing errors

50% of size of software industry

TDV: Introducton ~~ CHALMERS /GU 111029 12 /28

Cost of Software Errors: Conclusion

Huge gains can be realized in SW development by:
> systematic
» efficient

» tool-supported

testing, debugging, and verification methods

In addition ...
The earlier bugs can be removed, the better.

TDV: Introduction CHALMERS/GU 111029 13 /28

Brainstorming on Course Title

Collect opinions on:
» What is Testing?
» Evaluating software by observing its execution
» A mental discipline that helps IT professionals develop better software
» What is Debugging?
» The process of finding a defect given a failure

> Relating a failure to a defect and subsequent fixing of the defect

» What is Verification?

» Determine whether the products of a given phase in SW development
fulfill requirements established in previous phase

» Determine whether a piece of software fulfills a set of formal
requirements in every execution

TDV: Introduction CHALMERS/GU 111029 14 /28

What is a Bug? Basic Terminology

4o Photo # NH 96566-KN First Computer "Bug". 1945

/49 24

0§ Oakam M‘J {f 2700 F.037 gyy o015
/00 . s ﬂwlﬁ"‘ 9.037 ¥YC T55 connh
13w (033 he ~me ﬁm F=63) 705 725055(4)
859 PRO.> 2. 3ogaGyis

= CAWJ' 2. 1:;57&”. 1
3 ¢-r o~ 031 f s'.,,J Jeod N
im - -:‘T‘w

1790 JJAr+¢J Costhe in.} (Sm‘ r_i-\u\}
1575 | QL I

IJ‘.|~

1S4y

@ekw*ﬁo Cha |

LMuTQ in rl\au\

e e i

i ar(;u" Q::"uxl case o-{ bunl Le.’n1 {ounJﬂ

Qoo

Harvard University, Mark Il Aiken Relay Calculator
see www. jamesshuggins.com/h/tekl/first_computer_bug.htm

TDV: Introduction CHALMERS/GU 111029

15/ 28

www.jamesshuggins.com/h/tek1/first_computer_bug.htm

Failure and Specification

Some failures are obvious
» obviously wrong output/behaviour
» non-termination
» crash

> freeze

... but most are not!

In general, what constitutes a failure, is defined by: a specification! J

Correctness is a relative notion
— Bertrand Meyer, 1997J

Each program is correct with respect to SOME specification
—Wolfgang A.J

TDV: Introduction CHALMERS/GU 111029 16 / 28

Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:

No, there are cows in Scot-
land of which one at least is
brown!

Computer Scientist:

No, there is at least one cow
in Scotland, which on one
side is brown!!

TDV: Introduction CHALMERS/GU 111029 17 /28

Specification: Putting it into Practice

Example
A Sorting Program:

public static Integer[] sort(Integer[] a) {

Testing sort():
» sort({3,2,5}) == {2,3,5}

> sort({}) == {}

» sort({17}) == {17}

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

TDV: Introduction CHALMERS/GU

111029

18/ 28

Example Cont’d

Example

public static Integer[] sort(Integer([] a) { ... %}

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a
Is this a good specification?

sort({2,1,2}) == {1,2,2,17} X

TDV: Introduction CHALMERS/GU 111029 19 /28

Example Cont’d

Example

public static Integer[] sort(Integer([] a) { ... %}

Specification

Requires: a is an array of integers
Ensures: returns a sorted array with only elements from a

sort({2,1,2}) == {1,1,2} X

TDV: Introduction CHALMERS/GU 111029 19 /28

Example Cont’d

Example

public static Integer[] sort(Integer([] a) { ... %}

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted

sort(null) throws NullPointerException X

TDV: Introduction CHALMERS/GU 111029 19 /28

Example Cont’d

Example

public static Integer[] sort(Integer([] a) { ... %}

Specification

Requires: a is a non-null array of integers
Ensures: returns a permutation of a that is sorted

TDV: Introduction CHALMERS/GU 111029 19 /28

Example Cont’d

Example

public static Integer[] sort(Integer[] a) { ... }

Specification

Requires: a is a non-null array of integers
Ensures: returns the unchanged reference a containing
a permutation of the old contents of a that is sorted

cf. the cow joke — unfortunately, in programming the unexpected happens

TDV: Introduction CHALMERS/GU 111029 19 /28

The Contract Metaphor

Contract is preferred specification metaphor for procedural and OO PLs J

first propagated by B. Meyer, Computer 25(10)40-51, 1992

Same Principles as Legal Contract between a Client and Supplier
Supplier aka implementer, in JAVA, a class or method
Client Mostly a caller object, or human user for main()

Contract One or more pairs of ensures/requires clauses
defining mutual obligations of supplier and client

TDV: Introduction CHALMERS/GU 111029 20 /28

The Meaning of a Contract

Specification (of method cem())
Requires: Precondition

Ensures: Postcondition

“If a caller of cem() fulfills the required Precondition, then the class ¢
ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen: J

Wrong!
“Any caller of cem() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then Ccem() is executed.”

TDV: Introduction CHALMERS/GU 111029 21 /28

Specification, Failure, Correctness

Define precisely what constitutes a failure

A method fails whenever it is called in a state fulfilling the required
precondition of its contract and it does not terminate in a state fulfilling
the postcondition to be ensured.

Non-termination, abnormal termination considered as failures here J

Define precisely what correctness means

A method is correct means:
whenever it is started in a state fulfilling the required precondition,
then it terminates in a state fulfilling the postcondition to be ensured.

This amounts to proving absence of failures! J

TDV: Introduction CHALMERS/GU 111029 22 /28

Testing vs Verification

TESTING
Goal: find evidence for presence of failures

Testing means to execute a program with the intent of detecting failure J

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures, contract being honoured

Testing cannot guarantee correctness, i.e., absence of failures J

Related techniques: code generation, program synthesis (from spec)

TDV: Introduction CHALMERS/GU 111029 23 /28

Debugging: from Failures to Defects

» Both, testing and verification attempts exhibit new failures

» Debugging is a systematic process that finds and eliminates the
defect that led to an observed failure
» Programs without known failures may still contain defects:
» if they have not been verified
» if they have been manually/informally verified,
but the defect has been overlooked
» if they have been verified,
but the failure is not covered by the specification

TDV: Introduction CHALMERS/GU 111029 24 /28

Where Formalization Comes In

Testing is very expensive, even with tool support

30-80% of development time goes into testing

Test input h Test input generation

Code under test Formal specification

4

Code checking success h Test oracle generation

TDV: Introduction CHALMERS/GU 111029

25 /28

Formal Verification of Program Correctness

correct

Java Code Formal specification

Program Verification System

Computer support essential for verification of real programs
synchronized java.lang.StringBuffer append(char c)

> ca. 15.000 proof steps

» ca. 200 case distinctions

» Two human interactions, ca. 1 minute computing time

TDV: Introduction CHALMERS/GU 111029

26/ 28

Course Contents

> Testing

terminology, black box vs white box, test generation, coverage
» Debugging

terminology, tracking, execution control, inspection, localisation
» Formal specification

contracts, assertions, invariants, JML, logic
» Automatic test case generation

partitions, symbolic execution, coverage
» Formal verification

Hoare calculus, formal proofs, loop invariants

TDV: Introduction CHALMERS/GU 111029 27 /28

Tool Support is Essential

Some Reasons for Using Tools
» Automate repetitive tasks
» Avoid typos, etc.

» Cope with large programs

Tools Used in This Course

v

Automated running of tests: JUNIT

v

Debugging: ECLIPSE debugger.

v

Formal specification: JML tools

v

Automatic test case generation: JML tools, KeY/TestGen

v

Formal verification: KeY verification system

TDV: Introduction CHALMERS/GU 111029

28/ 28

	Organisation
	Cost of Errors and Testing
	Brainstorming on Course Title
	Terminology
	Specification
	Verification
	Debugging
	Formalisation
	Contents

