
Testing, Debugging, and Verification
TDA566/DIT082

Introduction

Wolfgang Ahrendt, Vladimir Klebanov, Moa Johansson

29 October 2012

TDV: Introduction /GU 111029 1 / 28



Organisational Stuff

Course Home Page

www.cse.chalmers.se/edu/course/TDA566/

Google News Group

I Sign up via course home page (follow News link) entering
I real name
I person number (not necessary if you use @student address)

I Changes, updates, questions, discussions. Don’t post solutions!

Passing Criteria

I Written exam 17 Dec 2012; re-exam Apr 2013

I Three lab hand-ins

I Exam and labs can be passed separately

TDV: Introduction /GU 111029 2 / 28

www.cse.chalmers.se/edu/course/TDA566/


Team

Teacher

I Moa Johansson (jomoa), MJ

Course Assistant

I Gabriele Paganelli (gabpag), GP

office hours: see course page

. . . append @chalmers.se to obtain email address

TDV: Introduction /GU 111029 3 / 28



Structure

Course Structure

Topic # Lectures Exercises Lab

Intro 1 8 8

Testing 3 4 4

Debugging 2 4 8

Formal Specification 3 4 4

Verification 3 4 4

Test Generation 2 4 8

TDV: Introduction /GU 111029 4 / 28



Course Literature

Essential Reading

I Why Programs Fail: A Guide to Systematic Debugging1),
2nd edition, A Zeller

I The Art of Software Testing1), 2nd Edition, G J Myers

Further Reading

I Introduction to Software Testing, P Ammann & J Offutt

I Code Complete, 2nd Edition, S McConnell

Additional important references, papers on course page

1) available online as e-books via Chalmers library,
navigate to ‘E-book collections’, ‘Books24x7’, and register

TDV: Introduction /GU 111029 5 / 28



Labs, Exercises

Labs

I Submission via Fire, linked from course home page
I You must team up in groups of two

1. team up with the partner of your choice
2. if you can’t find one, call for a partner via Google group
3. if the above does not work, contact Gabriele (gabpag)

I If submission get returned, ca. one week for correction
I Testing 16 Nov, Formal Spec 30 Nov, Verification 13 Dec

Exercises

I One exercise session for each topic (5 in all)
I Before each session:

I we post exercise questions on web page
I you try to solve them (as much as possible, might not have covered

all in lectures)

I During each exercise session:
I we solve remaining questions and discuss solutions together

TDV: Introduction /GU 111029 6 / 28



Course Evaluation

5 student representatives (choosen randomly)

I feedback meetings with teachers

I course evaluation

Mathias Forsén forssenm

Hans Lämås lamas

Kasper Karlsson kasperk

Markus Johansson jmarcus

Jonas Åström jonasas

For email address append: @student.chalmers.se

All participants: web questionnaire after the course

TDV: Introduction /GU 111029 7 / 28



Cost of Software Errors

$ 60 billion
Estimated cost of software errors for US economy per year [2002]

TDV: Introduction /GU 111029 8 / 28



Cost of Software Errors

$ 240 billion
Size of US software industry [2002]

incl. profit, sales, marketing, development (50% maybe)

TDV: Introduction /GU 111029 9 / 28



Cost of Software Errors

estimated

50%
of each software project spent on testing

(spans from 30% to 80%)

TDV: Introduction /GU 111029 10 / 28



Cost of Software Errors

Very rough estimate:

money cost of
spent on ≈ remaining
testing errors

TDV: Introduction /GU 111029 11 / 28



Cost of Software Errors

Very rough estimate:

money cost of
spent on + remaining
testing errors

=

50% of size of software industry

TDV: Introduction /GU 111029 12 / 28



Cost of Software Errors: Conclusion

Huge gains can be realized in SW development by:

I systematic

I efficient

I tool-supported

testing, debugging, and verification methods

In addition . . .

The earlier bugs can be removed, the better.

TDV: Introduction /GU 111029 13 / 28



Brainstorming on Course Title

Collect opinions on:

I What is Testing?

I Evaluating software by observing its execution

I A mental discipline that helps IT professionals develop better software

I What is Debugging?

I The process of finding a defect given a failure

I Relating a failure to a defect and subsequent fixing of the defect

I What is Verification?

I Determine whether the products of a given phase in SW development
fulfill requirements established in previous phase

I Determine whether a piece of software fulfills a set of formal
requirements in every execution

TDV: Introduction /GU 111029 14 / 28



What is a Bug? Basic Terminology

Harvard University, Mark II Aiken Relay Calculator
see www.jamesshuggins.com/h/tek1/first_computer_bug.htm

Bug-Related Terminology

1. Defect (aka bug, fault) introduced into code by programmer
(not always programmer’s fault, if, e.g., requirements changed)

2. Defect may cause infection of program state during execution
(not all defects cause infection)

3. Infected state propagates during execution
(infected parts of states may be overwritten or corrected)

4. Infection may cause a failure: an externally observable error
(including, e.g., non-termination)

Defect — Infection — Propagation — Failure

TDV: Introduction /GU 111029 15 / 28

www.jamesshuggins.com/h/tek1/first_computer_bug.htm


Failure and Specification

Some failures are obvious

I obviously wrong output/behaviour

I non-termination

I crash

I freeze

. . . but most are not!

In general, what constitutes a failure, is defined by: a specification!

Correctness is a relative notion

— Bertrand Meyer, 1997

Each program is correct with respect to SOME specification

—Wolfgang A.

TDV: Introduction /GU 111029 16 / 28



Specification: Intro

Economist:
The cows in Scotland are
brown

Logician:
No, there are cows in Scot-
land of which one at least is
brown!

Computer Scientist:
No, there is at least one cow
in Scotland, which on one
side is brown!!

TDV: Introduction /GU 111029 17 / 28



Specification: Putting it into Practice

Example

A Sorting Program:

public s ta t i c Integer [] sort(Integer [] a) { ... }

Testing sort():

I sort({3, 2, 5}) == {2, 3, 5} 4

I sort({}) == {} 4

I sort({17}) == {17} 4

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

TDV: Introduction /GU 111029 18 / 28



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ... }

Specification

Requires: a is an array of integers
Ensures: returns the sorted argument array a

Is this a good specification?

sort({2, 1, 2}) == {1, 2, 2, 17} 8

TDV: Introduction /GU 111029 19 / 28



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ... }

Specification

Requires: a is an array of integers
Ensures: returns a sorted array with only elements from a

sort({2, 1, 2}) == {1, 1, 2} 8

TDV: Introduction /GU 111029 19 / 28



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ... }

Specification

Requires: a is an array of integers
Ensures: returns a permutation of a that is sorted

sort(null) throws NullPointerException 8

TDV: Introduction /GU 111029 19 / 28



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ... }

Specification

Requires: a is a non-null array of integers
Ensures: returns a permutation of a that is sorted

TDV: Introduction /GU 111029 19 / 28



Example Cont’d

Example

public s ta t i c Integer [] sort(Integer [] a) { ... }

Specification

Requires: a is a non-null array of integers

Ensures: returns the unchanged reference a containing
a permutation of the old contents of a that is sorted

cf. the cow joke — unfortunately, in programming the unexpected happens

TDV: Introduction /GU 111029 19 / 28



The Contract Metaphor

Contract is preferred specification metaphor for procedural and OO PLs

first propagated by B. Meyer, Computer 25(10)40–51, 1992

Same Principles as Legal Contract between a Client and Supplier

Supplier aka implementer, in Java, a class or method

Client Mostly a caller object, or human user for main()

Contract One or more pairs of ensures/requires clauses
defining mutual obligations of supplier and client

TDV: Introduction /GU 111029 20 / 28



The Meaning of a Contract

Specification (of method C@m())

Requires: Precondition
Ensures: Postcondition

“If a caller of C@m() fulfills the required Precondition, then the class C

ensures that the Postcondition holds after m() finishes.”

Often the following wrong interpretations of contracts are seen:

Wrong!

“Any caller of C@m() must fulfill the required Precondition.”

Wrong!

“Whenever the required Precondition holds, then C@m() is executed.”

TDV: Introduction /GU 111029 21 / 28



Specification, Failure, Correctness

Define precisely what constitutes a failure

A method fails whenever it is called in a state fulfilling the required
precondition of its contract and it does not terminate in a state fulfilling
the postcondition to be ensured.

Non-termination, abnormal termination considered as failures here

Define precisely what correctness means

A method is correct means:
whenever it is started in a state fulfilling the required precondition,
then it terminates in a state fulfilling the postcondition to be ensured.

This amounts to proving absence of failures!

TDV: Introduction /GU 111029 22 / 28



Testing vs Verification

TESTING
Goal: find evidence for presence of failures

Testing means to execute a program with the intent of detecting failure

Related techniques: code reviews, program inspections

VERIFICATION
Goal: find evidence for absence of failures, contract being honoured

Testing cannot guarantee correctness, i.e., absence of failures

Related techniques: code generation, program synthesis (from spec)

TDV: Introduction /GU 111029 23 / 28



Debugging: from Failures to Defects

I Both, testing and verification attempts exhibit new failures

I Debugging is a systematic process that finds and eliminates the
defect that led to an observed failure

I Programs without known failures may still contain defects:
I if they have not been verified
I if they have been manually/informally verified,

but the defect has been overlooked
I if they have been verified,

but the failure is not covered by the specification

TDV: Introduction /GU 111029 24 / 28



Where Formalization Comes In

Testing is very expensive, even with tool support

30–80% of development time goes into testing

Test input

Code under test

Code checking success

Test input generation

Test oracle generation

Formal specification

TDV: Introduction /GU 111029 25 / 28



Formal Verification of Program Correctness

Java Code Formal specification

correct?

Program Verification System

correct4

Computer support essential for verification of real programs

synchronized java.lang.StringBuffer append(char c)

I ca. 15.000 proof steps

I ca. 200 case distinctions

I Two human interactions, ca. 1 minute computing time

TDV: Introduction /GU 111029 26 / 28



Course Contents

I Testing
terminology, black box vs white box, test generation, coverage

I Debugging
terminology, tracking, execution control, inspection, localisation

I Formal specification
contracts, assertions, invariants, JML, logic

I Automatic test case generation
partitions, symbolic execution, coverage

I Formal verification
Hoare calculus, formal proofs, loop invariants

TDV: Introduction /GU 111029 27 / 28



Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large programs

Tools Used in This Course

I Automated running of tests: JUnit

I Debugging: Eclipse debugger.

I Formal specification: JML tools

I Automatic test case generation: JML tools, KeY/TestGen

I Formal verification: KeY verification system

TDV: Introduction /GU 111029 28 / 28


	Organisation
	Cost of Errors and Testing
	Brainstorming on Course Title
	Terminology
	Specification
	Verification
	Debugging
	Formalisation
	Contents

