Functional Programming At Work
A personal perspective

Magnus Carlsson | 2012-12-05

My background

" Chalmers Datalogi PhD 1998 — with Thomas Hallgren:
Fudgets

From august: ri :33:23 1332 hbi

From thonss@abalon,se Hon Har 2 09:23:13 1992 Din nanne

From thomas@abalon,se Twe Har 3 17:43:24 1392 Re: Din namne

From hvk=88student.cs tha] ors. 58 Thu Har 6 18:30:23 1992 Re:]]cle’cz]]lakl]:\.lect,
41 1992 ESA Information Retrieval Service

1992 Hurz, litt
From augustss Med May 20 003 1932 HIME-mail
dinikaslldtek.chal Hd 20 (8:64:48 199

{llate: Hed, 20 Hay 92 00333:50 40200
HFrom: Lernart Augustsson {augustsss .
{To: nulti i i + Li] i sum all elements in alist,
fiSubject: MINE-mail i : Li

ontent-Type: text/plain: charset=150-8853-1 , B el Sum [21 22 ,.0n] =ul+22+ .,

ag har Fixat en enkel wersion av HIME-standarden far EMACS.
HDetta gir att man kan skicka och ta emot datorpost med 335 1.
{For att arwanda MINE =3 lagg in raden
i {load "mime"
din .emacs, Jag kommer 1 D‘ortsitmingen att skicka alla mina
fHbrev enligt den standarden. Om du tucker det ser fult ut s& beror |
fldet pa att du arwander ett firdldrat mail-pro HE 11 sun €200 & = sum 1 {xral

S OGS

= Lennart

ey]

Figure 7: A collage of fudget applications. All windows belong to programs developed with the FunceETs library.

Fudgets — the counter example (1993)

i3 UptDown Countdd
Q Upl Duwn'

import Fudgets

main = fudlogque (shellF "Up/Down Counter" counterkF)

counterF = intDispF >==<
mapstateF count 0 >==<

(buttonF "Up" >+< buttonF "Down")

count n (Left Click) = (n+1,[n+1])
count n (Right Click) = (n-1,[n-1])

Athena Widget “Hello World” example in C

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/Label.h>

main(int argc,char **argv) {
XtAppContext app context;
Widget toplevel, hello;

toplevel = XtVaAppInitialize(&app context, "XHello",NULL,0,&argc,argv,NULL,NULL);
hello = XtVaCreateManagedwWidget("Hello World!", labelWidgetClass, toplevel, (void*)0);
XtRealizeWidget(toplevel);

XtAppMainLoop(app context);

return 0;

My encounters with Functional Programming

" Oregon Graduate Institute — 2000-2003

* Haskell-embedded real-time control language — C++

* Helicopter control - Alex Bogdanov, Geoff Harvey, Dick Kieburtz
John Hunt, Erik Wan (also with Antonio Baptista)

My encounters with Functional Programming

" Oregon Graduate Institute — 2000-2003

* Timber — specialised OO/FP-language for embedded systems
* Dick Kieburtz, Mark Jones, Johan Nordlander, Bjorn von Sydow

My encounters with Functional Programming

" Carmen Systems (Jeppesen today) — 2004-2006
Optimize schedules for flight crews, aircraft, trains
Dag Wedelin/Erik Andersson (from Chalmers) among founders

RAVE - specialized functional language developed for capturing
union rules

L
dar 17 B e 13 T 2051

uff B f

£ T _E

: _ i
—— I 4] ._I"Mm.; P,)
k Y PR Y _._u Moo ol

. .|mﬂ_ mm-mm
- mvmmm; et

My encounters with Functional Programming

= Galois, Inc. — 2006-2010

* Portland, Oregon

Cangary,

g
-

North
Dakota o
Minnesota I
Minnespons s | s
I:?a:%mw & Wisconsin|
Idaho Wyoming H -\.1|.\==q I'Mi"'hiﬂl"
amin

Salt Uake

lowa
y Nebraska sk
?wl qo i &

ol a5t
MNevada Car

]
nento . Utah 5] 5t La
B o ; Colorado Nansss Missscuf
Wichita@ |

g 0 L |
. California |
F \I.-_I"l-'lﬂ "'o"'
: Arizona New
sl Mverside (@Phoenciy Mexico
|| ana =gt zmics|
s - ~. @

uEsD

Oklahoma Arkansas|

My encounters with Functional Programming

= Galois, Inc. — 2006-2010

* Portland, Oregon — sometimes strange clouds over Mt Hood!

aiiry|
-

“*a Oklahoma Arkansas|
Arizona |
Riverside |@Pfioens v Dakas Missi
hexicd| @ |

What does Galois do?

“Designs dependable software to meet mission-critical
security and safety challenges in government and industry”

Building systems that are trustworthy and secure
Mixture of government and industry clients
R&D with the favorite tools:

* Formal methods
* Typed functional languages
* Languages, compilers, domain-specific languages

Kernels, file systems, analysis tools, ...
Haskell for pretty much everything

Benefits of Haskell for Galois (and others)

" Expressive type system & static type checking
* QuickCheck for teSting map :: (a->b)->[a]->[Db]
* Documentation

* Fast integration — one example project:
— Six engineers

— 50k lines of code, in 5 components, developed over a number of
months

— Integrated, tested, demo performed in only a week, two months ahead
of schedule, significantly above performance spec.

— 1 space leak, spotted and fixed on first day of testing via the heap
profiler

— 2 bugs found (typos from spec)
* Find expensive bugs at compile time!

Benefits of Haskell for Galois (and others)

" Good for prototyping new languages
* Embedded (library-based) domain-specific languages (eDSLs)

* Examples compiled to C:
— Feldspar (Mary Sheeran) — signal processing
— Atom (Tom Hawkins) — hard real-time application compiler

— Copilot (led by Lee Pike from Galois), based on Atom — adds runtime
monitoring to real-time applications

David Monniaux

http://commons.wikimedia.org/wiki/User:David.Monniaux

Atom by Tom Hawkins

- External reference to value A.

Programmer declares rules let a = word32' "a"
that fire when conditions -- External reference to value B.
become true let b = word32' "b"

- The external running flag.

Compiled to C when let running = bool' "running"

Haskell program is run A rule o messiy

atom "a minus b" $ do

Scheduler is also produced il & velle & = vElue b

a <== value a - value b

Example: computing |
greatest common divisor A rgﬁ;iﬁgsfgﬂl;ydg-
using Atom rules cond $ value b >. value a

b <== value b - value a

- A rule to clear the running flag.
atom "stop" $ do

cond $ value a ==. value b

running <== false

Atom — generated C code

Scheduler that
fire rules is
generated for us

Hinclude <stdbool.h>
#include =stdint.h=

#include <stdlib.h>
#include <stdio.h>

unsigned long int a;
unsigned long int b;
unsigned long int x;

unsigned char running = 1;

static uinté4 t
static const uint3
static uint32 t

_global clock = ©;

2 t coverage len = 1;

_coverage[1] = {0};

static uint32 t coverage index = ©;
struct { /* state */
struct { /* example */
} example;
} state =
{ /* state */
{ /* example */

}
+

/* example.a minus b */
static void __ra() q
uint32 t 0
uint3z t 1
bool 2 =
uint32 t 3
uint32 t 4
if (_2){
__coverage[@]
}
a

b;
a;
<

|G o
I\JI—'|
=J -|_.l
2

3 : 1;

= _coverage[®] | (1 << @);

= 4

}

/* example.b minus a */

static void _ rif) {
uint32 t 0 ;
uint3z t 1
bool 2 =
uint32 t
uint3z t
if (_2) {

__coverage[@] =

a;
b;
=

e unn

¥.w|

__coverage[®] | (1 << 1);

/* example.stop */

[~] /* example.stoplf*/

static void _ r2() {
uint32 t 0 = a;
uint3z t 1 =b;
bool 2=_@8= _1;
bool 3 running;
bool 4 _2;
bool 5= 3&& 4;
if (_2) 4

__coverage[0]

= coverage[®] | (1 << 2);

running = _5;

static void

1

__assertion checks() {

void example() {

static uint8 t scheduling clock = @;
if (__scheduling clock == @) {

__assertion checks(); _ r@(); /* example.a minus b */
__assertion checks(); _ rl(); /* example.b minus a */
assertion checks(); _ r2(); /* example.stop */

— scheduling clock = ©;
}
else {
__scheduling clock =
}
}

__global clock =

}

__scheduling clock - 1;

__global clock + 1;

int main{int argc, char* argv[]) {
if (argc < 3) {
printf("usage: gcd <numl> <num2>%n"};

else {
a = atoi(argv[1]);
b = atoi(argv[2]);
printf("Computing the GCD of %lu
while(running) {
example();
printf("iteration: a

printf("GCD result: %
}
return ©;
}

Domain-specific languages at Galois

" Why domain-specific languages?
* Small domains enables more opportunities for verification,
optimization, compilation
" Example — specifying crypto algorithms in Cryptol
* Started out as embedded DSL in Haskell

* Now stand-alone DSL with its own compiler and type checker
(written in Haskell)

Background — specifying crypto algorithms

" The official specification of AES ("Advanced Encryption
Standard”): a mix of English, pseudo code and English

Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+l)])
begin
byte state[4,Nb]

state = in
AddRoundKey (state, w[0, Nb-1]) // See Sec.

for round = 1 step 1 to Nr-1
SubBytes (state) // See Sec.
ShiftRows (state) // See Sec.
MixColumns (state) // See Sec.
AddRoundKey (state, w[round*Nb, (round+l)*Nb-1])
end for

SubBytes (state)
ShiftRows (state)
AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1])

out = state
end

Figure 5. Pseudo Code for the Cipher.!

Background — specifying crypto algorithms

From the Advanced Encryption Standard definitiont?

3.1 Inputs and Qutputs

The input and output for the AES algonithm each consist of sequences of 128 bits (digits with
values of 0 or 1). These sequences will somefimes be referred to as blocks and the number of
bits they contain will be referred to as thewr length. The Cipher Key for the AES algorithm 1s a
sequence of 128, 192 or 256 bits. Other input, output and Cipher Key lengths are not permutted
by this standard.

" Cryptol can capture this precisely in a type signature

Thttp: //csrc.nist.gov/publications/fips/fipsl197/£fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Background — specifying crypto algorithms

From the Advanced Encryption Standard definitiont?

3.1 Inputs and Qutputs

The input and output for the AES algonithm each consist of sequences of 128 bits (digits with
values of 0 or 1). These sequences will somefimes be referred to as blocks and the number of
bits they contain will be referred to as thewr length. The Cipher Key for the AES algorithm 1s a
sequence of 128, 192 or 256 bits. Other input, output and Cipher Key lengths are not permutted
by this standard.

blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*K]) -> [128]

Second input

is a sequence
of 128, 192,
or 256 bits

Output is a
sequence of
128 bits

First input is
a sequence
of 128 bits

...between
2 and 4

Thttp: //csrc.nist.gov/publications/fips/fipsl197/£fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Stream programming in Cryptol

" Recursive stream equations (similar to Haskell)

as = [Ox3F OxE2 0x65 OxCA] # new;

new = [| a ™~ b " c

|| a <- as
|| b <- drop(1,as)
e

<- drop(3,as) |]1;

Cryptol — FPGA — a natural fit

Data: bit streams processed by small blocks of code

For fast crypto implementations: compile to FPGA (field-
programmable gate array)

Stream processing happens in parallel

FPGAs are traditionally programmed in
hardware-description languages
(VHDL, Verilog)

Other DSLs target VHDL/Verilog, e.g. Lava

Verification of crypto implementations

Specification in Cryptol
Optimized implementation in C or VHDL

Challenge: prove that specification and implementation are
equivalent for all input

Solution: translate both specification and implementation
into boolean formulas ("and-inverter graphs")

Use a satisfiability solver to check for equivalence

Cryptol
reference
speclf ication

Refer;enlce Equwalen Implementation
mode checker model

Satisfiability in Cryptol

Given a Cryptol predicate, e.qg.

f : (Bi1t,Bit) - Bit;
f(x,y) = x & ~y;

|s there x and y such that f(x,y) is true?

Trivial in this case, but for large input widths and compex
functions, not so!

The Cryptol interpreter can translate f into a Boolean
formula and feed to satisfiability solver

Equivalence checking in Cryptol

" Given two Cryptol functions f and g, the predicate
\x -> f(x) == g(x)

and a satisfiability solver can be used to check if f and g
are equivalent, or find a counter example for x

Solving Sudoku in Cryptol with
satisfiability solving

" By Levent Erkok at Galois

" Express problem as a
predicate with the empty
squares as variables

" Predicate is true if
variables are assigned so
that puzzle is solved

Solving Sudoku in Cryptol with
satisfiability solving

// Check that a sequence contains all digits 1 through 9
check : [9][4] -> Bit;
check group =

[| contains x || x <- [1 ..

where

contains x = [| x =y || y <- group |] '= zero;

// group is row, column or block

Solving Sudoku in Cryptol with
satisfiability solving

// Check that all groups in a board are valid
valid : [9][9][4] -> Bit;
valid rows =

[| check group

|| group <- rows # columns # squares |] == ~zero

where

columns transpose rows;

regions transpose [| groupBy (3, row)

|| row <- rows |];

squares [| join sq

|| sq <- groupBy(3, join regions)

| 1;

// Express a particular puzzle as a Cryptol predicate
puzzle : [53][4] -> Bit;

puzzle [al a3 a5 ab a9
bl bd b5 b9
c4 c5 cb6 c9
dl d4 do6
el e5 e9
4 6 1)
gl g4 g5 g6
hl h5 h9
1l i4 15 ' 19

= valid [[al 7 a5 ag]
[bl b4 b5 b9]
[8 c9]
[d1 6]
[el e9]
[5 O]
[g1 9]
[h1l h9]
[11 14 1 ' 19]1;

Solving Sudoku in Cryptol with
satisfiability solving

puzzle : [53][4] -> Bit;
Input is a number with 53 digits — large search space!

But by translating puzzle to boolean formula and using a
satisfiability solver, we find a solution in < 2 seconds.

This puzzle translates into about 5000 AND nodes

Realistic crypto algorithms translate
into > 500,000 nodes, may
take > 1 hour to equivalence check

Domain-specific languages at Galois

" Why domain-specific languages?
* Small domains enables more opportunities for verification,
optimization, compilation

" Example — specifying crypto algorithms in Cryptol

The Cryptol team, past and present include:
Sally Browning, Magnus Carlsson, Ledah
Casburn, Jonathan Daugherty, lavor Diatchki,
Trevor Elliott, Levent Erkok, Sigbjorn Finne, Andy
Gill, Fergus Henderson, Joe Hendrix, Joe Hurd,
John Launchbury, Jeff Lewis, Lee Pike, John
Matthews, Thomas Nordin, Mark Shields, Joel
Stanley, Frank Seaton Taylor, Jim Teisher, Philip
Weaver, Adam Wick

Kathy Kopacek

My encounters with Functional Programming

= ATC Solutions AB, 2011 —

* Smart temperature control of residential homes
* Central control developed in Haskell

ATC's Cyber Physical Systems

ATC has developed self-learning smart control systems that reduce the energy
consumption in homes and buildings. The systems have been tested in various
types of buildings both in Sweden and abroad.As the systems are integrated with
the energy meters of the building, other possibilities are related to Advanced
Metering Infrastructure but also Smart Grid (load management) and Intelligent
Demand Response.Unique properties include that the systems are independent of
the type of heating system (and cooling system for that matter) and that it
automatically adjusts to the building and how it is being used.The systems optimize
when to turn on and off heating when set-back control is used to lower the
temperature in case a building isn't occupied. The calculation will be comect
independent of the current indoor and outdoor temperature. ATC is referring to this
technology as “Just In Time Comfort”. The specification for commissioning of the
ATC systems is inspired by the best examples of effective solutions used during the
Scandinavian smart metering roll-outs. The installer will e.g. use a smart phone as
an installation and commissioning tool. Since the systems are connected it will be
possible to detect instances when components are degrading and needs preventive
support or service.

My encounters with Functional Programming

" Scrive.com (former Skrivapa), 2011 —

* Web-based signing solutions (Stockholm)
— Founded by Lukas Duczko & Gracjan Polak
* Service developed in Haskell

Scrive X

Sign tenders and contracts with Scrive

Close deals faster. Less administration. More satisfied customers.

Legally binding of course

As binding as a signature on paper.

100 free signatures!

Get started instantly. No installation. No hidden costs.

Scrive AB

*" Founded 2010

" International team (about 10 people)

Colombia |)

South
Pacific
Ocean

-

Urited n&
Kingdarm

Gﬂn*l.\a_n-_.- Ukraine ‘ Kazakhstan
Func!- - r
Italy
Spain :
Narth L]
Allantic
Ocean o, s
ria Egypt
foe Libya E8Y Saudi
Arabla

Afghanistan

Mali | Mager Sudan
I Chad

" Recent team meeting on Skype

Bedivia

A maoes ndian
Madagascar
South ptease Ocean

Atlantic

Saum
Ocean A

Scrive — sign documents on the web

" Author prepares document

" Sends invitation by email
to other party (signatory

Scrive > EEne [Skpany process Bora fran mall

ra och skickal Write_Monkey_Hack_NDA2 ./

Dokumenttyp | Avtal Levererans med | E-post = | [signera sist

Mottagares sprak | Svenska | [Identifiering med E-legitimation
Forfaller inom 90 dagar # BIFOGA BILAGA (0) L

HELSNINGSMEDDELANDE & BEGAR BILAGA (0)

Confidential Information. This Confidential
Information may be frecly shared among the
Participant Group, this provision includes writing
vulnerability repore and presenting findings 1o course
administration. The Confidential Information. may not
be sharcd outside the Participant group unless it is
shared in accordance with the regulations in Section
1.4.

[it ion: The
Participant bares the solc responsibility for keeping the
SkeivaPa Confidential Information i his posscssion
protected as prescribed in this agreement.

Confidential Information Removal: During the
Competition the Participant will interact with SkeivaPi
saff and may take notes from mectings, get
configuration details, source code snippets and receive

NON DISCLOSURE AND IMMATERIAL other Confidential Information. This Confidential

RIGHTS AGREEMENT Tnﬁ.»rm.mjnn \.h.:\l] l.w‘u ru-r-my.\.ud vfmfx.\ rh.s.- P:\mcipvnnfs

Scrive — sign documents on the web

" Signatory reads email,
follows link

Hi Sven Svensson,

Magnus Carlsson has invited you to sign the
document Write Monkey Hack NDA2.

To continue:

1. Click this link
2. Beview online
3. Sign (or return)
4. Done

Scrive — sign documents on the we

" Signatory reviews agreement online

FOLLOW THE GREEN ARROW TO E-SIGN

Due date 2013-03-6

B Write Monkey Hack NDAZ2.pdf

NON DISCLOSURE AND IMMATERIA
RIGHTS AGREEMENT

1.1 Definitions: “Competition” is the hacking comperition The

Confidential Information. This Confidential
Information may be freely shared among the
Participant Group, this provision includes writing
vulnerability report and presentng findings to course
administration. The Confidential Information may not
be shared outside the Participant group unless it is
shared in accordance with the regulatons in Section
1.4.

Confidential Infor i Pr ion: The
Participant bares the sole responsibility for keeping the
SkrivaP4 Confidental Information in his possession
protected as prescribed in this agreement.

Confidential Information Removal: During the
Competition the Participant will interact with SkrivaPa
staff and may take notes from meetings, get
configuration details, source code snippets and receive
other Confidental Informaton. This Confidental
Information shall be removed from the Participants
computer or any other storage device or space where
the Participant keep them stored.

Scrive — sign documents on the web

= Signatory may reject or sign the agreement

1.5 Confidential Information disclosure within the
Participant Group: The Partcipant will during its
participation in the Competition in communications with
SkrivaPa staff, receive oral or written accounts disclosing

REVIEW PARTIES
Sven Svensson Magnus Carlsson

Org.nr: not entered Org.nr: not entered
Pers.nr: not entered Pers.nr: not entered

SWEN@sVensson.se magnusi@carlssonia.org

B Reviewed online > Signed

Scrive — sign documents on the web

= Signatory may reject or sign the agreement

1.5 Confidential Information disclosure within the
Participant Group: The Partcipant will during its
participation in the Competition in communications with

By clicking the blue button you will sign the contract with the parties and your
signature will be registered by the e-signing service Scrive.

B Reviewed online > Signed

Scrive — sign documents on the web

" After signing, a sealed
PDF with added S
verification page is mailed

Write_Monkey_Hack_NDA2
Main document

to all parties

Sent by Magnus Carlsson

Signing parties
Magnus Carlsson Sven Svensson

magnus@carlssonia.org sven@svensson.se

Registered events

2012-12-05, 12:00:43 CET Magnus Carlsson signs the document online with email as verification
IF: 127.0.0.1 method.

2012-12-05, 12:00:43 CET Scrive sends an invitation to sign to Sven Svensson.
IP: 127.0.0.1

2012-12-05, 12:03:59 CET Sven Svensson reviews the document online.
IP: 127.0.0.1

2012-12-05, 12:11:49 CET Sven Svensson signs the document online with email as verification
IP: 127.0.0.1 method.

2012-12-05, 12:11:49 CET The document is sealed and digitally signed by Scrive.

This verification was issued by Scrive. Information in italics has been safely verified by Scrive. The time stamp
ensures that the originality of this document can be proven mathematically and independently of Scrive. For
more information see the legal attachment (use a PDF-reader that can show concealed attachments). For your
convenience Scrive also provides a service that enables you to automatically verify the documents originality at.
https /scrive.comiverify

n

Scrive — architecture

Database
Browser client (PostgreSQL)
(Javascript)

Server
(Haskell)

PDF renderer
(mupdf)

API client

Scrive — inside the server

Request
handlers

Database
operations

Database
(PostgreSQL)

Access control — putting Haskell to use at Scrive
(original idea by Eric Normand)

= Who should be able to do what?
= Who:

Document author

Signatory

Company administrator

System administrator

Client on behalf of user through the API

" What

* View, edit, sign, reject document, ...

Access control — who is "who"?

"who": an actor that initiates an operation

Captured by a type class representing evidence about who
initiated something

class Actor a where
actorTime :: Time
actorIPAddress :: Maybe IPAddress
actorUserID :: Maybe UserID

Access control — actors

" Instances represent verified actors

instance Actor UserActor
-- a logged-in user, e.g. for creating
—-- and sending documents

instance Actor SignatoryActor
-- a signatory who received an
-- a document to sign

instance Actor CompanyAdminActor
-- a logged-in user with special powers

Access control — actors

Actor instances are abstract types, with trusted functions
for creating values
Example of a web request handler:

handleSendDocument docid = do
author « mkUserActor
dbUpdate author (SendDocumentInvitation docid)

No need to check permissions in the request handler

Good because we have many request handlers
Where is permission checked?

Access control — what is "what"?

* "what": an operation on the database

" Captured by data types

data SendDocumentInvitation =
SendDocumentInvitation DocumentID
—- specific operation

data EditDocument DocumentID =
EditDocument DocumentID
—- describes whole set of operations

Access control — who can do what?

Captured by a class HasPermission

Static check: 'instance HasPermission a o' means an
actor of type 'a' may have permission to do operations of
type 'o’

class Actor a => HasPermission a o

instance HasPermission UserActor SendDocumentInvitation

instance HasPermission SignatoryActor SignDocument

Access control — who can do what?

" Captured by a class HasPermission

= Static check: 'instance HasPermission a o' means an
actor of type 'a' may have permission to do operations of
type 'o’

Dynamic check: if all checks in 'permissionChecks a o'

pass, the actor value 'a' can do the operation 'o'

class Actor a => HasPermission a o where
permissionChecks :: a - o - [SQLPredicate]

instance HasPermission UserActor SendDocumentInvitation
where
permissionChecks u (SendDocumentInvitation docid) =
. —— check that 'u' is owner of 'docid'

Access control — summary

= Benefits of 'HasPermission'

* Declarative specification of access control

— First (conservative) approximation of access can be understood by
looking at what instances of 'HasPermission' we have

Example: no instance
'HasPermission SystemAdminActor SignDocument'

* Separation of concerns

— Request handlers can deal with particular actors and parsing requests,
but not worry about permissions

— Database operations can deal with correct implementation of SQL
queries, without worrying about who the actor is, or permissions

Thank you!

(some stuff © Galois 2010-2012)

