
Functional Programming At Work
A personal perspective

Magnus Carlsson | 2012-12-05

My background

 Chalmers Datalogi PhD 1998 – with Thomas Hallgren:
Fudgets

Fudgets – the counter example (1993)

import Fudgets

main = fudlogue (shellF "Up/Down Counter" counterF)

counterF = intDispF >==<
 mapstateF count 0 >==<

 (buttonF "Up" >+< buttonF "Down")

count n (Left Click) = (n+1,[n+1])

count n (Right Click) = (n-1,[n-1])

Athena Widget “Hello World” example in C

#include <X11/Intrinsic.h>

#include <X11/StringDefs.h>

#include <X11/Xaw/Label.h>

main(int argc,char **argv) {

 XtAppContext app_context;

 Widget toplevel,hello;

 toplevel = XtVaAppInitialize(&app_context,"XHello",NULL,0,&argc,argv,NULL,NULL);

 hello = XtVaCreateManagedWidget("Hello World!",labelWidgetClass,toplevel,(void*)0);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app_context);

 return 0;

}

My encounters with Functional Programming

 Oregon Graduate Institute – 2000-2003
• Haskell-embedded real-time control language → C++

• Helicopter control - Alex Bogdanov, Geoff Harvey, Dick Kieburtz
John Hunt, Erik Wan (also with Antonio Baptista)

My encounters with Functional Programming

 Oregon Graduate Institute – 2000-2003
• Timber – specialised OO/FP-language for embedded systems

• Dick Kieburtz, Mark Jones, Johan Nordlander, Björn von Sydow

My encounters with Functional Programming

 Carmen Systems (Jeppesen today) – 2004-2006
• Optimize schedules for flight crews, aircraft, trains

• Dag Wedelin/Erik Andersson (from Chalmers) among founders

• RAVE – specialized functional language developed for capturing
union rules

My encounters with Functional Programming

 Galois, Inc. – 2006-2010
• Portland, Oregon

My encounters with Functional Programming

 Galois, Inc. – 2006-2010
• Portland, Oregon – sometimes strange clouds over Mt Hood!

What does Galois do?

 “Designs dependable software to meet mission-critical
security and safety challenges in government and industry”

 Building systems that are trustworthy and secure

 Mixture of government and industry clients

 R&D with the favorite tools:
• Formal methods

• Typed functional languages

• Languages, compilers, domain-specific languages

 Kernels, file systems, analysis tools, …

 Haskell for pretty much everything

Benefits of Haskell for Galois (and others)

 Expressive type system & static type checking
• QuickCheck for testing

• Documentation

• Fast integration – one example project:
– Six engineers

– 50k lines of code, in 5 components, developed over a number of
months

– Integrated, tested, demo performed in only a week, two months ahead
of schedule, significantly above performance spec.

– 1 space leak, spotted and fixed on first day of testing via the heap
profiler

– 2 bugs found (typos from spec)

• Find expensive bugs at compile time!

map :: (a->b)->[a]->[b]

Benefits of Haskell for Galois (and others)

 Good for prototyping new languages
• Embedded (library-based) domain-specific languages (eDSLs)

• Examples compiled to C:
– Feldspar (Mary Sheeran) – signal processing

– Atom (Tom Hawkins) – hard real-time application compiler

– Copilot (led by Lee Pike from Galois), based on Atom – adds runtime
monitoring to real-time applications

David Monniaux

http://commons.wikimedia.org/wiki/User:David.Monniaux

Atom by Tom Hawkins

 Programmer declares rules
that fire when conditions
become true

 Compiled to C when
Haskell program is run

 Scheduler is also produced

 Example: computing
greatest common divisor
using Atom rules

-- External reference to value A.
let a = word32' "a"

-- External reference to value B.
let b = word32' "b"

-- The external running flag.
let running = bool' "running"

-- A rule to modify A.
atom "a_minus_b" $ do
 cond $ value a >. value b
 a <== value a - value b

-- A rule to modify B.
atom "b_minus_a" $ do
 cond $ value b >. value a
 b <== value b - value a

-- A rule to clear the running flag.
atom "stop" $ do
 cond $ value a ==. value b
 running <== false

Atom – generated C code

 Scheduler that
fire rules is
generated for us

Domain-specific languages at Galois

 Why domain-specific languages?
• Small domains enables more opportunities for verification,

optimization, compilation

 Example – specifying crypto algorithms in Cryptol
• Started out as embedded DSL in Haskell

• Now stand-alone DSL with its own compiler and type checker
(written in Haskell)

Background – specifying crypto algorithms

 The official specification of AES (“Advanced Encryption
Standard”): a mix of English, pseudo code and English

Background – specifying crypto algorithms

 Cryptol can capture this precisely in a type signature

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Background – specifying crypto algorithms

blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

For all k
…between

2 and 4

First input is
a sequence
of 128 bits

Second input
is a sequence
of 128, 192,
or 256 bits

Output is a
sequence of

128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Stream programming in Cryptol

 Recursive stream equations (similar to Haskell)

as = [Ox3F OxE2 Ox65 OxCA] # new;

new = [| a ^ b ^ c || a <- as
 || b <- drop(1,as)
 || c <- drop(3,as) |];

3Fas E2

^

65 CA

^

as
new

Cryptol – FPGA – a natural fit

 Data: bit streams processed by small blocks of code

 For fast crypto implementations: compile to FPGA (field-
programmable gate array)

 Stream processing happens in parallel

 FPGAs are traditionally programmed in
hardware-description languages
(VHDL, Verilog)

 Other DSLs target VHDL/Verilog, e.g. Lava

Verification of crypto implementations

 Specification in Cryptol

 Optimized implementation in C or VHDL

 Challenge: prove that specification and implementation are
equivalent for all input

 Solution: translate both specification and implementation
into boolean formulas ("and-inverter graphs")

 Use a satisfiability solver to check for equivalence

Satisfiability in Cryptol

 Given a Cryptol predicate, e.g.

f : (Bit,Bit) → Bit;
f(x,y) = x & ~y;

 Is there x and y such that f(x,y) is true?

 Trivial in this case, but for large input widths and compex
functions, not so!

 The Cryptol interpreter can translate f into a Boolean
formula and feed to satisfiability solver

Equivalence checking in Cryptol

 Given two Cryptol functions f and g, the predicate

\x -> f(x) == g(x)

and a satisfiability solver can be used to check if f and g
are equivalent, or find a counter example for x

Solving Sudoku in Cryptol with
satisfiability solving

 By Levent Erkök at Galois

 Express problem as a
predicate with the empty
squares as variables

 Predicate is true if
variables are assigned so
that puzzle is solved

Solving Sudoku in Cryptol with
satisfiability solving

// Check that a sequence contains all digits 1 through 9

check : [9][4] -> Bit;

check group =

 [| contains x || x <- [1 .. 9] |] == ~zero

 where

 contains x = [| x == y || y <- group |] != zero;

// group is row, column or block

Solving Sudoku in Cryptol with
satisfiability solving

// Check that all groups in a board are valid

valid : [9][9][4] -> Bit;

valid rows =

 [| check group

 || group <- rows # columns # squares |] == ~zero

 where

 columns = transpose rows;

 regions = transpose [| groupBy (3, row)

 || row <- rows |];

 squares = [| join sq

 || sq <- groupBy(3, join regions)
 |];

// Express a particular puzzle as a Cryptol predicate
puzzle : [53][4] -> Bit;

puzzle [a1 a3 a5 a6 a9
 b1 b4 b5 b7 b9
 c2 c4 c5 c6 c7 c8 c9
 d1 d2 d4 d6 d7 d8
 e1 e2 e3 e5 e7 e8 e9
 f2 f3 f4 f6 f8 f9
 g1 g2 g3 g4 g5 g6 g8
 h1 h3 h5 h6 h9
 i1 i4 i5 i7 i9]

 = valid [[a1 9 a3 7 a5 a6 8 6 a9]
 [b1 3 1 b4 b5 5 b7 2 b9]
 [8 c2 6 c4 c5 c6 c7 c8 c9]
 [d1 d2 7 d4 5 d6 d7 d8 6]
 [e1 e2 e3 3 e5 7 e7 e8 e9]
 [5 f2 f3 f4 1 f6 7 f8 f9]
 [g1 g2 g3 g4 g5 g6 1 g8 9]
 [h1 2 h3 6 h5 h6 3 5 h9]
 [i1 5 4 i4 i5 8 i7 7 i9]];

Solving Sudoku in Cryptol with
satisfiability solving

 puzzle : [53][4] -> Bit;

 Input is a number with 53 digits – large search space!

 But by translating puzzle to boolean formula and using a
satisfiability solver, we find a solution in < 2 seconds.

 This puzzle translates into about 5000 AND nodes

 Realistic crypto algorithms translate
into > 500,000 nodes, may
take > 1 hour to equivalence check

Domain-specific languages at Galois

 Why domain-specific languages?
• Small domains enables more opportunities for verification,

optimization, compilation

 Example – specifying crypto algorithms in Cryptol

The Cryptol team, past and present include:
Sally Browning, Magnus Carlsson, Ledah
Casburn, Jonathan Daugherty, Iavor Diatchki,
Trevor Elliott, Levent Erkök, Sigbjorn Finne, Andy
Gill, Fergus Henderson, Joe Hendrix, Joe Hurd,
John Launchbury, Jeff Lewis, Lee Pike, John
Matthews, Thomas Nordin, Mark Shields, Joel
Stanley, Frank Seaton Taylor, Jim Teisher, Philip
Weaver, Adam Wick

Kathy Kopacek

My encounters with Functional Programming

 ATC Solutions AB, 2011 –
• Smart temperature control of residential homes

• Central control developed in Haskell

My encounters with Functional Programming

 Scrive.com (former Skrivapå), 2011 –
• Web-based signing solutions (Stockholm)

– Founded by Lukas Duczko & Gracjan Polak

• Service developed in Haskell

Scrive AB

 Founded 2010

 International team (about 10 people)

Recent team meeting on Skype

Scrive – sign documents on the web

 Author prepares document

 Sends invitation by email
to other party (signatory)

Scrive – sign documents on the web

 Signatory reads email,
follows link

Scrive – sign documents on the web

 Signatory reviews agreement online

Scrive – sign documents on the web

 Signatory may reject or sign the agreement

Scrive – sign documents on the web

 Signatory may reject or sign the agreement

Scrive – sign documents on the web

 After signing, a sealed
PDF with added
verification page is mailed
to all parties

Scrive – architecture

PDF renderer
(mupdf)

Database
(PostgreSQL)

Server
(Haskell)

Browser client
(Javascript)

API client

HTTP

REST

Scrive – inside the server

Database
(PostgreSQL)Request

handlers

Database
operations

Access control – putting Haskell to use at Scrive
(original idea by Eric Normand)

 Who should be able to do what?

 Who:
• Document author

• Signatory

• Company administrator

• System administrator

• Client on behalf of user through the API

• ...

 What
• View, edit, sign, reject document, ...

Access control – who is "who"?

 "who": an actor that initiates an operation

 Captured by a type class representing evidence about who
initiated something

class Actor a where
 actorTime :: Time
 actorIPAddress :: Maybe IPAddress
 actorUserID :: Maybe UserID
 ...

Access control – actors

 Instances represent verified actors

instance Actor UserActor
 ­­ a logged­in user, e.g. for creating
 ­­ and sending documents

instance Actor SignatoryActor
 ­­ a signatory who received an
 ­­ a document to sign

instance Actor CompanyAdminActor
 ­­ a logged­in user with special powers

Access control – actors

 Actor instances are abstract types, with trusted functions
for creating values

 Example of a web request handler:
handleSendDocument docid = do
 author mkUserActor←
 dbUpdate author (SendDocumentInvitation docid)

 No need to check permissions in the request handler

 Good because we have many request handlers

 Where is permission checked?

Access control – what is "what"?

 "what": an operation on the database

 Captured by data types

data SendDocumentInvitation =
 SendDocumentInvitation DocumentID
 ­­ specific operation

data EditDocument DocumentID =
 EditDocument DocumentID
 ­­ describes whole set of operations

Access control – who can do what?

 Captured by a class HasPermission

 Static check: 'instance HasPermission a o' means an
actor of type 'a' may have permission to do operations of
type 'o'

class Actor a => HasPermission a o

instance HasPermission UserActor SendDocumentInvitation

instance HasPermission SignatoryActor SignDocument

Access control – who can do what?

 Captured by a class HasPermission

 Static check: 'instance HasPermission a o' means an
actor of type 'a' may have permission to do operations of
type 'o'

 Dynamic check: if all checks in 'permissionChecks a o'
pass, the actor value 'a' can do the operation 'o'

class Actor a => HasPermission a o where
 permissionChecks :: a o [SQLPredicate]→ →

instance HasPermission UserActor SendDocumentInvitation
 where
 permissionChecks u (SendDocumentInvitation docid) =
 ... ­­ check that 'u' is owner of 'docid'

Access control – summary

 Benefits of 'HasPermission'
• Declarative specification of access control

– First (conservative) approximation of access can be understood by
looking at what instances of 'HasPermission' we have

Example: no instance
'HasPermission SystemAdminActor SignDocument'

• Separation of concerns
– Request handlers can deal with particular actors and parsing requests,

but not worry about permissions

– Database operations can deal with correct implementation of SQL
queries, without worrying about who the actor is, or permissions

Thank you!

(some stuff © Galois 2010-2012)

