s

..“ h\t-’.".

TDASGLE gcm,),uer o
J,)Z 20/ Z

Ulf Assarsson
Department of Computer Engineering

Chalmers University of Technology

Tracing Photons

One way to form an image iIs to
follow rays of light from a

point source finding which

rays enter the lens of the

camera. However, each

ray of light may have

multiple interactions with objects
before being absorbed or going to infinity.

Other Physical Approaches

 Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

—Can handle global effects
« Multiple reflections
 Translucent objects

—Faster but still slow

I’'m here to help...

1. | am located in room 4115 in "EDIT-huset”
2. Email: uffe at chalmers dot se

3. Phone: 031-772 1775 (office)
4

Course assistant:
1. erik dot sintorn at chalmers dot se
2. kampe at chalmers dot se (Viktor Kampe)
3. karsch at student dot chalmers dot se (Karl Schmidt)
4.

jamot at student dot chalmers dot se (Per Jamot
Johansson)

CHALMERS

Studentrepresentanternas ansvar

* Informerar sig om sina kurskamraters synpunkter
pa kursen.

* Vidarebefordrar dessa samt deltar 1 ovrigt 1
diskussionen vid motena med egna synpunkter.

« Kan foresla kursspecifika fragor 1 kursenkaten.

e Informerar sina kurskamrater om diskussioner och
rekommendationer fran motena.

BRANDL ANTON brandl@student.chalmers.se
AHMAD MUMTAZ mumtaza@student.chalmers.se
SALLERGARD ADAM sallerga@student.chalmers.se
OLSSON GUSTAV golsson@student.chalmers.se
LUQ ER erlu@student.chalmers.se

Kursutvérderingar vid Chalmers

Course Info

e Study Period 2 (Ip2)

Real-Time
Hendacing

 Real Time Rendering, 3™ edition
o Available on Cremona

e Schedule;

> Wed 08-10 HC3+ Fri 9-12 HB4
|4 lectures in total, ~2 / week

o Labs: |7-21 everyday,

|3-17 Thursday and Friday
* Homepage:

> Google “TDA361” or

TOAMSDITZS - Computet
e 1)

o “Computer Graphics Chalmers”

Tutorials

Rooms 4211,4213,4215
— Or your favorite place/home

4t floor EDIT-building

EntranceCards (inpasseringskort)

— Automatically activated for all of you that are
course registered and have a CTH/GU-entrance
card (inpasseringskort)

Recommended to do the tutorials in groups
(Labgrupper) of 2 and 2

30 Werld Tuterizl - SCLUTION

Overview of the
Graphics Rendering Pipeline
and OpenGL

CHALMERS

3D G&@j_qié? e

G g
i

Ulf

CHALMERS Department of Computer Engineering

The screen consists of many pixels

CHALMERS Department of Computer Engineering

3D-Rendering

* Objects are often made
of triangles

* X,y,Z- coordinate for
each vertex

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

Display screen window

_ showing pelygon's
; ; projection Z
Viewer's eye

CHALMERS Department of Computer Engineering

4D Matrix Multiplication

ol)
§=
-
O
i)
-
D)
Y

Real-Time

CHALMERS Department of Computer Engineering

Textures

e One application of texturing is to "glue”
Images onto geometrical object

CHALMERS Department of Computer Engineering

Texturing: Glue 1mages onto
geometrical objects

* Purpose: more realism, and this 1s a cheap way to do
it

CHALMERS Department afLomputer Eggineering

Lighting computation per triangle vertex

/ ® Iight Rasterizer

The Graphics Rendering
Pipeline

You say that you render a
”3D scene’”’, but what Is 1t?

 First, of all to take a picture, it takes a camera — a

virtual one.
— Decides what should end up in the final image

* A 3D scene is:
— Geometry (triangles, lines, points, and more)
— Light sources

— Material properties of geometry
 Colors, shader code
« Textures (images to glue onto the geometry)

A triangle consists of 3 vertices

— A vertex Is 3D position, and may
include normals.

Lecture 1: Real-time Rendering

The Graphics Rendering

Pipeline

* The pipeline 1s the “engine” t
Images from 3D scenes

nat creates

« Three conceptual stages of the pipeline:
— Application (executed on the CPU)

— Geometry
— Rasterizer

Application Geometry Rasterizer

: 3D
INPUL (scene

Image

output

- Geometry Rasterizer
The APPLICATION stage

« Executed on the CPU

— Means that the programmer decides what
happens here

« Examples:
— Collision detection
— Speed-up techniques
— Animation

* Most important task: feed geometry stage
with the primitives (e.g. triangles) to render

Application - Rasterizer
The GEOI\/IETRY stage

, Task: “geometrical” Operatlons
on the input data (e.g. triangles)

« Allows:
— Move objects (matrix multiplication)
— Move the camera (matrix multiplication)
— Lighting computations per triangle vertex
— Project onto screen (3D to 2D)
— Clipping (avoid triangles outside screen)
— Map to window

Application - Rasterizer
The GEOMETRY stage

| Screen

Model & View | Vertex | Projection | Clipping
‘ Mapping

Transform ' Shading |

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen

* (Instances)

* Vertex Shader
— A program executed

Polygon in world

per vertex
 Transformations
Display screen wmqow
’ P rOJ eCt I O n Viewer's eye Shovgg?e%%ggon S

 E.g., color per vertex

 Clipping
« Screen Mapping

Application Geometry -

The RASTERIZER stage

« Main task: take output from GEOMETRY
and turn into visible pixels on screen
|

/
/

—

D

/I

e Computes color per pixel, using fragment
shader (=pixel shader)

- textures, (light sources, normal), colors and various
other per-pixel operations

e And visibility is resolved here: sorts the
primitives In the z-direction

The rasterizer stage

Triangle Triangle Merging

Setup Traversal

Triangle Setup:
 collect three vertices + vertex shader output (incl.
normals) and make one triangle.

Triangle Traversal
« Scan conversion

Pixel Shading
« Compute pixel color

Merging:
 output color to screen

Rendering Pipeline and
Hardware

CPU GPU

Application Stage Geometry Stage

Rasterization Stage

Rendering Pipeline and
Hardware

CPU

Appli-

cation
Stage

GPU

Vertex Geometry
shader shader

Hardware design Vertex shader:

LR (earers)

eScreen space positions

Infinitely extending viewing

frustum formed from
viewer's eye through the
comers of the display screen

f - blue

_1 Geometfyl-> —

. green
Display screen window
. showing polygon's
iewer's eye

projection

Polygon in world

Hardware design Geometry shader:

EEIASIEE -One input primitive

*Many output primitives

or

Vertex ‘ Geometry | Pixel
shader | shader | shader

Hardware design Clips triangles against

Geometry Stage the unit cube (i.e.,

’screen borders™)

Vertex Geometry ‘ | Pixel
shader shader | | shader

Hardware design Maps window size to

unit cube

Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]

Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Vertex Geometry Pixel
shader shader shader

Hardware desi gn Collects three vertices
into one triangle

/>

&,
Vertex || Geometry Pixel s K\
shader shader shader | N

| Display |

Hardware design Creates the
fragments/pixels for the

triangle
/

Vertex Geometry
shader shader

Hardware design g
\ L A

ANEEEEN

ENEEEERT
Bl

L

Pixel Shader:

blue Compute color
using:

o Textures
- A *Interpolated data

(e.g. Colors +

| Rasterizerl normals) from

vertex shader

red green

Vertex Geometry
shader shader

Hardware design

The merge units update
the frame buffer with the
pixel’s color

Frame buffer:
« Color buffers
* Depth buffer
Stencil buffer

CHALMERS Department of Computer Engineering
What 1s vertex and fragment (pixel)
shaders?

@ Foreach vertex, a vertex program (vertex shader) is executed

@ For each fragment (pixel) a fragment program (fragment shader) is executed

Application Geometry Rasterizer

Rewind!
[et’s take a closer look

* The programmer ”’sends” down primtives to
be rendered through the pipeline (using API
calls)

* The geometry stage does per-vertex
operations

» The rasterizer stage does per-pixel
operations

» Next, scrutinize geometry and rasterizer

Application - Rasterizer
GEOMETRY - Summary

T N (T ™
HIQ §\50 @ Y O
H:(}D*_" -\ \\—> @
o \Q b
S Y\ D/ &\ D,
model space world space world space camera space
O Y | e
™® = . o |7 . O ||
’ &
jecti : map to screen
compute lighting inf;g’:(;g;e clip

Done in vertex shader

Fixed hardware function

Application - Rasterizer
Virtual Camera

 Defined by position, direction vector, up
vector, field of view, near and far plane.

dir

fov near
(angle)

e Create image of geometry inside gray region
e Used by OpenGL, DirectX, ray tracing, etc.

point far

—

Application - Rasterizer
GEOMETRY - The view transform

 You can move the camera in the same
manner as objects

 But apply inverse transform to objects, so
that camera looks down negative z-axis

NS — \g{\jz\
1 &/

> /
|-

GEOMETRY - Summary

Application - Rasterizer

e .

-

O

N

ﬂ(}ﬂ——»
O

|

<z I\ &/
o IV

model space world space
M ! 2\
@ QO e[

—p | —>~ O |=
\ Y —
compute lighting : projection

Image space

Done in vertex shader

G
world space

camera space

S

clip

map to screen

Fixed hardware function

sopicaon [GRRRGR estenzer
GEOMETRY - Projection

« Two major ways to do it
— Orthogonal (useful in few applications)

— Perspective (most often used)

« Mimics how humans perceive the world, i.e.,
objects’ apparent size decreases with distance

Application - Rasterizer
GEOMETRY - Projection

 Also done with a matrix multiplication!

* Pinhole camera (left), analog used in CG
(right)

- -
- > -
- - -~ -
- - - -
- -
- -

Application - Rasterizer

GEOMETRY - Summary

=of

model space

o!Q

——p | Q

Hjo ﬁ\ﬁj o o y ®
—> — \ \\—> @
N
@ | \Q |
world space WE)I‘|d space camera space
T =)
O
- L O |=* ! eNing L
¥ -
\S map to screen
projection clip P
Image space

compute lighting

Done in vertex shader

Fixed hardware function

G EO M ET RY Application - Rasterizer

Clipping and Screen Mapping

 Square (cube) after projection
 Clip primitives to square

P <j_. - <
O O

e Screen mapping, scales and translates t

e

sguare so that it ends up in a rendering window

e These "screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

GEOMETRY - Summary

=of

-

O

Application - Rasterizer

model space

o!Q

——p | Q

O

|

™t

\
—> \Q

world space

)
~—>
|

on
Q

\
world space

O
B

O |=»

camera space

(=)
O >
-
\C >4

compute lighting

projection

Image space

Done in vertex shader

clip

map to screen

Fixed hardware function

Application Geometry -
The RASTERIZER

IN more detall

Scan-conversion D

— Find out which pixels are inside the primitive

Fragment shaders
— E.g. put textures on triangles

— Use interpolated data over triangle btue . .
— and/or compute per-pixel lighting -\ A
Z-buffering

— Make sure that what is visible from the camera
really is displayed

Doublebuffering

+

The RASTERIZER i o - i
Z-buffering

A triangle that is covered by a more closely
located triangle should not be visible

« Assume two equally large tris at different
depths

incorrect correct

a4 W M

Triangle 1 Triangle 2 Draw 1 then 2 Draw 2 then 1

The RASTERIZER i [i
Z-buffering

* Would be nice to avoid sorting...

» The Z-buffer (aka depth buffer) solves this

* |dea:
— Store z (depth) at each pixel

— When rasterizing a triangle, compute z at each
pixel on triangle

— Compare triangle’s z to Z-buffer z-value

— If triangle’s z is smaller, then replace Z-buffer and
color buffer

— Else do nothing
« Can render In any order

e

The RASTERIZER i o - i
double-buffering

* The monitor displays one image at a time
» Top of screen — new Image

Bottom — old image

No control of split position

* And even worse, we often clear the screen
before generating a new image

* A better solution is “double buffering”

— (Could Instead keep track of rasterpos and
vblank).

Application Geometry -
The RASTERIZER

double-buffering

e Use two buffers: one front and one back
 The front buffer is displayed
e The back buffer i1s rendered to

* \When new image has been created in back
buffer, swap front and back

OpenGL

A Simple Program
Computer Graphics version of
“Hello World”

Generate a triangle on a solid background

EEX

Simple Application...

int main(int argc, char *argv[])

{

glutinit(&argc, argv);

[* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowsSize(512,512);
glutCreateWindow("Test App");

/* the display function is called once when the gluMainLoop is called,
* but also each time the window has to be redrawn due to window

* changes (overlap, resize, etc). */

glutDisplayFunc(display); // Set the main redraw function

glutMainLoop(); /* start the program main loop */
return O;

void display(void)

{
glClearColor(0.2,0.2,0.8,1.0); // Set clear color - for background

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer
int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

glViewport(0, 0, w, h); Il Set viewport (OpenGL draws with this resolution)

glDisable(GL_CULL_FACE);
drawScene();

glutSwapBuffers(); I/ swap front and back buffer. This frame will now been displayed.

static void drawScene(void)
{
I/ Shader Program

glUseProgramObjectARB(shaderProgram); // Set the shader program to use for this draw call
CHECK_GL_ERROR();

glBindVertexArray(vertexArrayObject); /] Tells which vertex arrays to use
CHECK_GL_ERROR();

glDrawArrays(GL_TRIANGLES, 0, 3); // Render the three first vertices as a triangle
CHECK_GL_ERROR();

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

Display screen window
showing polygon's

g projection
Viewer's eye

Shaders

/I \Vertex Shader
#version 130

in vec3 vertex;
in vec3 color;
out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

outColor = color;

/[Fragment Shader:
#version 130

in vec3 outColor;
out vec4 fragColor;

void main()

{

fragColor =
vec4(outColor,1);

Demonstration of SimpleApp

Available on course homepage in Schedule.

— You need OpenGL 3.0 or later
TDA361ID|T220 - Computer
graph_lcs 2012 Ip2

Examiner:

uffe@c:halmers.se

Home Schedule Literature Tutorials Exam
SCHEDULE:

= Link to schedule.
= Alllectures are at Campus Johanneberg

« MAP for lecture hall and tutorial rooms

Schedule for tutorials

The links for the Bonus-OH are located under the table. Bonus material is simply non-compulsory additional material that is fun or highlighting

for the interested reader. Unfortunately, that material only exists in Swedish. Non-swedish speakers can find related material in OpenGL: A
Primer.

(For non-Swedish speakers: translate the following sentence with e.g. google:)
Losenordsskyddade bonusfiler packas upp med I6senord "datorgrafik”.
All self-studies below are non-compulsory

ILecture]Readingleésanvisningar ||Tutoria! |Deadlines |
o Lab 1+2, Friday week 2.
) RTR chapter 2, ch 15.2. pip ydf, Lab 3+4, Friday week 3.
Lecture 1 - Introduction +||- Lab 5+6. Friday week 4
Pipeline and OpenGL Bonus: OH 1-16 , simpleapp.zi; -the testappllcanon shown at Iemure ++ for sl ! : $
. 5 521 ‘ Lab “3D-World", Friday
‘ . Also, see A Qulch Ini : with ¢ ple code
week 6.
Self studies - Languages

(non-compulsory) Lang cs.pdl (in Swedish) - Read briefly and only if you find itinteresting

Cool application

Repetition

« What is important:

— Understand the Application-, Geometry- and
Rasterization Stage

» See you on Friday 9:00

UIf Assarsson© 2011

