
 Department of Computer Engineering	

Graphics Hardware

Ulf Assarsson

2

Graphics hardware – why?
l  About 100x faster!
l  Another reason: about 100x faster!
l  Simple to pipeline and parallelize

l  Current hardware based on triangle rasterization
with programmable shading (e.g., OpenGL
acceleration)

l  Ray tracing: there are research architetures, and
few commercial products
–  Renderdrive, RPU, (Gelato), NVIDIA OptiX
–  Or write your own GPU ray-tracer

3

4

Perspective-correct texturing
l  How is texture coordinates interpolated over a triangle?
l  Linearly?

Linear interpolation Perspective-correct interpolation
l  Perspective-correct interpolation gives foreshortening effect!
l  Hardware does this for you, but you need to understand this

anyway!

5

6

Recall the following

l Before projection, v, and after p (p=Mv)
l After projection pw is not 1!
l Homogenization: (px /pw , py /pw , pz /pw , 1)
l Gives (px´, py ´ , pz´ , 1)

p =Mv =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/ d 0

"

#

$
$
$
$

%

&

'
'
'
'

vx
vy
vz
1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

vx
vy
vz

−vz / d

"

#

$
$
$
$
$

%

&

'
'
'
'
'

7

Texture coordinate interpolation
l  Linear interpolation does not work
l  Rational linear interpolation does:

–  u(x)=(ax+b) / (cx+d) (along a scanline where y=constant)
–  a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,v)

l  Not really efficient to compute a,b,c,d per scan line
l  Smarter:

–  Compute (u/w,v/w,1/w) per vertex
–  These quantities can be linearly interpolated!
–  Then at each pixel, compute 1/(1/w)=w
–  And obtain: (w*u/w,w*v/w)=(u,v)
–  The (u,v) are perspectively-correct interpolated

l  Need to interpolate shading this way too
–  Though, not as annoying as textures

l  Since linear interpolation now is OK, compute, e.g., Δ(u/w)/
Δx, and use this to update u/w when stepping in the x-
direction (similarly for other parameters)

8

Put differently:
l  Linear interpolation in screen space does not work

for u,v
l  Solution:

–  We have applied a non-linear transform to each vertex
 (x/w, y/w, z/w).

l  Non-linear due to 1/w – factor from the homogenisation
–  We must apply the same non-linear transform to u,v

l  E.g. (u/w, v/w). This can now be correctly screenspace interpolated since
 it follows the same non-linear (1/w) transform and then interpolation as (x/w, y/w,
z/w)

l  When doing the texture lookups, we still need (u,v) and not (u/w, v/w).
l  So, multiply by w. But we don’t have w at the pixel.
l  So, linearly interpolate (u/w, v/w, 1/w), which is computed in screenspace at each

vertex.
l  Then at each pixel:

–  u = (u/w) / (1/w)
–  v = (v/w) / (1/w)

For a formal proof, see Jim Blinn,”W Pleasure, W Fun”, IEEE Computer
Graphics and Applications, p78-82, May/June 1998

Need to interpolate shading this way too, though, not as annoying as textures

9

Background:
Graphics hardware architectures
l Evolution of graphics hardware has started

from the end of the pipeline
–  Rasterizer was put into hardware first (most

performance to gain from this)
–  Then the geometry stage
–  Application will not be put into hardware (?)

l Two major ways of getting better
performance:
–  Pipelining
–  Parallellization
–  Combinations of these are often used

 Department of Computer Engineering	

Application

PCI-E x16

Vertex
shader	

Vertex
shader	

Vertex
shader	

…

Primitive assembly	

Clipping	

Fragment Generation	

Fragment
shader	

Fragment
shader	

Fragment
shader	

…

Fragment
Merge	

Fragment
Merge	

Fragment
Merge	

…

Geo
shader	

Geo
shader	

Geo
shader	

On NVIDIA
8000/9000/200/400/500/
600-series:
Vertex-, Geometry- and
Fragment shaders allocated
from a pool of
128/240/480/512/1536/2880
ALUs

 Department of Computer Engineering	

Beyond Programmable Shading 12

Graphics Processing Unit - GPU

§ NVIDIA Geforce GTX 580

1.5 GB RAM Memory

GPU

 Department of Computer Engineering	

Kepler GK110 Die Photo	

 Department of Computer Engineering	

Kepler GK110 Full chip block diagram	

SMX:
•  192 single‐precision

CUDA cores,
•  64 double‐precision

units,
•  32 special function

units (SFU), and
•  32 load/store units

(LD/ST).

16

Graphics Hardware History
l  80’s:

–  linear interpolation of color over a scanline
–  Vector graphics

l  91’ Super Nintendo, Neo Geo,
–  Rasterization of 1 single 3D rectangle per frame (FZero)

l  95-96’: Playstation 1, 3dfx Voodoo 1
–  Rasterization of whole triangles (Voodoo 2, 1998)

l  99’ Geforce (256)
–  Transforms and Lighting (geometry stage)

l  02’ 3DLabs WildCat Viper, P10
–  Pixel shaders, integers,

l  02’ ATI Radion 9700, GeforceFX
–  Vertex shaders and Pixel shaders with floats

l  06’ Geforce 8800
–  Geometry shaders, integers and floats, logical operations

l  Then:
–  More general multiprocessor systems, higher SIMD-width, more cores

Direct View Storage Tube

• Created by Tektronix
– Did not require constant refresh
– Standard interface to computers

•  Allowed for standard software
•  Plot3D in Fortran

– Relatively inexpensive
•  Opened door to use of computer

graphics for CAD community

Tektronix 4014

18

Briefly about Graphics HW pipelining
l  In GeForce3: 600-800 pipeline stages!

–  57 million transistors
–  First Pentium IV: 20 stages, 42 million transistors,
–  Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 – 820Mtrans.
–  Intel Pentium D 900, 376M trans, Intel i7 (quad): 731Mtrans, 10-core Xeon Westmere: 2.6Gtrans

l  Evolution of cards:
–  X800 – 165M transistors
–  X1800 – 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s
–  GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem
–  GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, 430 MHz core,mem 650MHz(1.3GHz)
–  GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, 612 MHz core (1500 for

shaders), 1080 MHz mem (effective 2160 GHz)
–  Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
–  ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, 850 MHz,GDDR5,256bit mem bus,
–  Geforce GTX480: 3Gtrans, 700/1401 MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus,

40Gtexels/s
–  GXT580: 3Gtrans, 772/1544, Mem: 2004/4008 MHz, 192.4GB/s, GDDR5, 384bit mem bus,

49.4 Gtex/s
–  GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDR5, 256-bit mem bus.

–  Lesson learned: #trans doubles ~per 2 years. Core clock increases slowly. Mem clock –increases with
new technology DDR2, DDR3, GDDR5

–  We want as fast memory as possible! Why?
l  Parallelization can cover for slow clock. Parallelization more energy efficient than high clock

frequency. Powerconsumption prop. to freq2.
l  Memory transfers often the bottleneck

2008

2006

2004
2005

2001

2004
2005

2010

2011

2007

2012

GPU-­‐	
 Nvidia’s	
 Kepler	
 2012	

768	
 KB	
 L2	
 $	

	

RAM	
 –	
 GDDR5	

1-­‐4	
 GB,	
 ~6	
 GHz	

	

Core	
 1	

L1	
 $	

	

Core	
 1	

L1	
 $	

	

Core	
 16	

L1	
 $	
 16/48 KB per
each 48 SIMD

16 cores à
96-SIMD width
(2*3*16)

Overview:

Bandwidth
~150-200 GB/s

Bus: 256/384
bits
Compare to
ATI 2900:
 - 2x512bits
Larrabee:
 - 2x512bits

Bus

Wish:
1536 ALUs à 1 float/clock => 6KB/clock
~1GHz core clock => 6000 GB/s request

We have ~192 GB/s. In reality we can do 20-40 instr. between each RAM–
read/write. Solved by L1$ + latency hiding (warp switching)

CPU	
 -­‐	
 2011	

Core	
 1	
 L1	
 d$	

L1	
 i$	

Core	
 2	
 L1	
 d$	

L1	
 i$	

Core	
 3	
 L1	
 d$	

L1	
 i$	

Core	
 4	
 L1	
 d$	

L1	
 i$	

L2	
 shared	
 $	

32 KB
32 KB

2-4 MB

L3	
 shared	
 $	
 8-10 MB

MC	

1 – 8 cores à
4 SIMD floats
(16 SIMD for
bytes)

256bits
internal
buses

Graphics
Memory
Controller
HUB

64 bits

AVX:
Intel’s Sandybridge
AMD’s Bulldozer

FSB •  8	
 cores	
 à	
 4	
 floats	

⇒ We	
 want	
 128	
 bytes/clock	

(e.g.	
 from	
 RAM)	

⇒  	
 128GByte/s,	
 1GHz	
 CPU	

•  In	
 addi\on,	
 x3,	
 since:	

	
 r1	
 =	
 r2	
 +	
 r3;	

In	
 reality:	
 6-­‐12GB/s	

Solved	
 by	
 $-­‐hierarchy	
 +	

registers	

21

l  On top of that, effective utilization of bandwith is
seldom 100%.

l  However, there are many techniques to reduce
bandwith usage:
–  Texture caching with prefetching
–  Texture compression
–  Z-compression
–  Z-occlusion testing (HyperZ)

Memory bandwidth usage is huge!!

22

Z-occlusion testing and Z-
compression
l One way of reducing bandwidth

–  ATI Inc., pioneered with their HyperZ technology
l Very simple, and very effective
l Divide screen into tiles of 8x8 pixels
l Keep a status memory on-chip

–  Very fast access
–  Stores additional information that this algorithm uses

l Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears

Bonus

23

Architecture of
Z-cull and Z-
compress

l  Store zmax per tile, and a flag (whether cleared, compressed/
uncompressed)

l  Rasterize one tile at a time
l  Test if zmin on triangle is farther away than tile’s zmax

–  If so, don’t do any work for that tile!!!
–  Saves texturing and z-read for entire tile – huge savings!

l  Otherwize read compressed Z-buffer, & unpack
l  Write to unpacked Z-buffer, and when finished compress and send

back to memory, and also: update zmax
l  For fast Z-clears: just set a flag to ”clear” for each tile

–  Then we don’t need to read from Z-buffer, just send cleared Z for that tile

Bonus

24

X1800 GTO
l Real example

Z-cull

Z-compress

Also note texture compress
and color compress

Taxonomy of Hardware
l We can do many computations in parallel:

–  Pixel shading, vertex shading, geometry shading
l  x,y,z,w r,g,b,a

l But results need to be sorted somewhere
before reaching the screen.
–  Operations can be parallelized but result on screen

must be as if each triangle where rendered one by
one in their incoming order (according to OpenGL
spec)
l  E.g., for blending (transparency), (z-culling, stencil test)

25

26

Taxonomy of hardware
l Need to sort from model space to screen

space
l Gives four major
 architectures:

–  Sort-first
–  Sort-middle
–  Sort-Last Fragment
–  Sort-Last Image

l Will describe these briefly. Sort-last fragment
(and sort middle) are most common in
commercial hardware

27

Sort-First
l  Sorts primitives before geometry stage

–  Screen in divided into large regions
–  A separate pipeline is responsible for each

region (or many)

l  G is geometry, FG & FM is part of rasterizer
–  A fragment is all the generated information for a pixel on a

triangle
–  FG is Fragment Generation (finds which pixels are inside

triangle)
–  FM is Fragment Merge (merges the created fragments with

various buffers (Z, color))

l  Not explored much at all

Sorting/dividing work to parallel execution units.	

28

Sort-Middle
l  Sorts betwen G and R
l  Pretty natural, since after G, we know the

screen-space positions of the triangles
l  Older/cheaper hardware uses this

–  Examples include InfiniteReality (from SGI)
and the KYRO architecture (from Imagination)

l  Spread work arbitrarily among G’s
l  Then depending on screen-space position, sort to different

R’s
–  Screen can be split into ”tiles”. For example:

l  Rectangular blocks (8x8 pixels)
l  Every n scanlines

l  The R is responsible for rendering inside tile
l  A triangle can be sent to many FG’s depending on overlap

(over tiles)

29

Sort-Last Fragment
l  Sorts betwen FG and FM
l  XBOX, PS3, nVidia use this
l  Again spread work among G’s
l  The generated work is sent to FG’s
l  Then sort fragments to FM’s

–  An FM is responsible for a tile of pixels
l  A triangle is only sent to one FG, so this avoids

doing the same work twice
–  Sort-Middle: If a triangle overlaps several tiles, then the triangle

is sent to all FG’s responsible for these tiles
–  Results in extra work

30

Sort-Last Image
l  Sorts after entire pipeline
l  So each FG & FM has a separate frame

buffer for entire screen (Z and color)

l  After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

l  Can be seen as a set of independent pipelines
l  Huge memory requirements!
l  Used in research, but probably not commerically

 Department of Computer Engineering	

Application

PCI-E x16

Vertex
shader	

Vertex
shader	

Vertex
shader	

…

Primitive assembly	

Clipping	

Fragment Generation	

Fragment
shader	

Fragment
shader	

Fragment
shader	

…

Fragment
Merge	

Fragment
Merge	

Fragment
Merge	

…

Geo
shader	

Geo
shader	

Geo
shader	

On NVIDIA
8000/9000/200/
400/600-series:
Vertex-, Geometry-
and Fragment
shaders allocated
from a pool of
128/240/480/1536
processors

Logical layout of a graphics card:

Current	
 and	
 Future	
 Mul\cores	
 in	
 Graphics	

•  Cell	
 –	
 2005	

–  8	
 cores	
 à	
 4-­‐float	
 SIMD	
 	

–  256KB	
 L2	
 cache/core	

–  128	
 entry	
 register	
 file	

–  3.2	
 GHz	

•  NVIDIA	
 8800	
 GTX	
 –	
 Nov	
 2006	

–  16	
 cores	
 à	
 8-­‐float	
 SIMD	
 (GTX	
 280	
 -­‐	
 	
 30	
 cores	
 à	
 8,	
 june	
 ’08)	

–  16	
 KB	
 L1	
 cache,	
 64KB	
 L2	
 cache	
 (rumour)	

–  1.2-­‐1.625	
 GHz	

•  Larrabee	
 –	
 ”2010”	

–  16-­‐24	
 cores	
 à	
 16-­‐float	
 SIMD	
 (Xeon	
 Phi:	
 61	
 cores,	
 2012)	

–  Core	
 =	
 16-­‐float	
 SIMD	
 (=512bit	
 FPU)	
 +	
 	
 x86	
 proc	
 with	
 loops,	
 branches	
 +	
 scalar	
 ops,	
 4	
 threads/core	

–  32KB	
 L1cache,	
 256KB	
 L2-­‐cache	
 (512KB/core)	

–  1.7-­‐2.4	
 GHz	
 (1.1	
 GHz)	

•  NVIDIA	
 Fermi	
 GF100	
 –	
 2010,	
 (GF110	
 2011)	
 	

–  16	
 cores	
 à	
 2x16-­‐float	
 SIMD	
 (1x16	
 double	
 SIMD)	

–  16/48	
 KB	
 L1	
 cache,	
 768	
 KB	
 L2	
 cache	

•  NVIDIA	
 Kepler	
 2012	

–  16	
 cores	
 à	
 2x3x16=96	
 float	
 SIMD	

PowerXCell 8i Processor – 2008
–  8 cores à 4-float SIMD 	

–  256KB L2 cache	

–  128 entry register file	

–  but has better double precission

support

Intel	
 Xeon	
 Phi	

•  Knights	
 Corner	

http://www.tomshardware.com/reviews/xeon-phi-
larrabee-stampede-hpc,3342-3.html

Ulf Assarsson © 2004

Need to know:
l  Perspective correct texturing
l  Taxonomy:

–  Sort first
–  sort middle
–  sort last fragment
–  sort last image

l  Bandwidth
–  Why it is a problem
–  How to ”solve” it

l  Be able to sketch the architecture of a moder graphics card
–  As visualized on the next slide

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace
from each triangle vertex i.
Then at each pixel:

uip = (uip/wip) / (1/wip)
vip = (vip/wip) / (1/wip)

where ip = screen-space interpolated value from the
triangle vertices.

Sort-first

Sort-middle

Sort-last
fragment
Sort-last
image

 Department of Computer Engineering	

Application

PCI-E x16

Vertex
shader	

Vertex
shader	

Vertex
shader	

…

Primitive assembly	

Clipping	

Fragment Generation	

Fragment
shader	

Fragment
shader	

Fragment
shader	

…

Fragment
Merge	

Fragment
Merge	

Fragment
Merge	

…

Geo
shader	

Geo
shader	

Geo
shader	

Vertex-, Geometry-
and Fragment
shaders allocated
from a pool of many
processors (or
ALUs)

