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Graphics hardware – why? 
l  About 100x faster! 
l  Another reason: about 100x faster! 
l  Simple to pipeline and parallelize 

l  Current  hardware based on triangle rasterization 
with programmable shading (e.g., OpenGL 
acceleration) 

l  Ray tracing: there are research architetures, and 
few commercial products 
–  Renderdrive, RPU, (Gelato), NVIDIA OptiX 
–  Or write your own GPU ray-tracer 
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Perspective-correct texturing 
l  How is texture coordinates interpolated over a triangle? 
l  Linearly? 

Linear interpolation Perspective-correct interpolation 
l  Perspective-correct interpolation gives foreshortening effect! 
l  Hardware does this for you, but you need to understand this 

anyway! 
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Recall the following 

l Before projection, v, and after p  (p=Mv) 
l After projection pw is not 1! 
l Homogenization: (px /pw , py /pw , pz /pw , 1) 
l Gives (px´, py ´ , pz´ , 1) 

p =Mv =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/ d 0
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Texture coordinate interpolation 
l  Linear interpolation does not work 
l  Rational linear interpolation does: 

–  u(x)=(ax+b) / (cx+d)   (along a scanline where y=constant) 
–  a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,v) 

l  Not really efficient to compute a,b,c,d per scan line 
l  Smarter: 

–  Compute (u/w,v/w,1/w) per vertex 
–  These quantities can be linearly interpolated! 
–  Then at each pixel, compute 1/(1/w)=w 
–  And obtain: (w*u/w,w*v/w)=(u,v) 
–  The (u,v) are perspectively-correct interpolated 

l  Need to interpolate shading this way too 
–  Though, not as annoying as textures 

l  Since linear interpolation now is OK, compute, e.g., Δ(u/w)/
Δx, and use this to update u/w when stepping in the x-
direction (similarly for other parameters) 
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Put differently: 
l  Linear interpolation in screen space does not work 

for u,v 
l  Solution: 

–  We have applied a non-linear transform to each vertex 
  (x/w, y/w, z/w).  

l  Non-linear due to 1/w – factor from the homogenisation 
–  We must apply the same non-linear transform to u,v 

l  E.g. (u/w, v/w). This can now be correctly screenspace interpolated since 
 it follows the same non-linear (1/w) transform and then interpolation as (x/w, y/w, 
z/w) 

l  When doing the texture lookups, we still need (u,v) and not (u/w, v/w). 
l  So, multiply by w. But we don’t have w at the pixel.  
l  So, linearly interpolate (u/w, v/w, 1/w), which is computed in screenspace at each 

vertex. 
l  Then at each pixel: 

–  u = (u/w) / (1/w) 
–  v = (v/w) / (1/w)  

For a formal proof, see Jim Blinn,”W Pleasure, W Fun”, IEEE Computer 
Graphics and Applications, p78-82, May/June 1998 

Need to interpolate shading this way too, though, not as annoying as textures 
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Background: 
Graphics hardware architectures 
l Evolution of graphics hardware has started 

from the end of the pipeline 
–  Rasterizer was put into hardware first (most 

performance to gain from this) 
–  Then the geometry stage 
–  Application will not be put into hardware (?) 

l Two major ways of getting better 
performance: 
–  Pipelining 
–  Parallellization 
–  Combinations of these are often used 
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On NVIDIA 
8000/9000/200/400/500/
600-series: 
Vertex-, Geometry- and 
Fragment shaders allocated 
from a pool of 
128/240/480/512/1536/2880 
ALUs 
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Beyond Programmable Shading 12 

Graphics Processing Unit - GPU 

§ NVIDIA Geforce GTX 580 

1.5 GB RAM Memory 

 
GPU 
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Kepler GK110 Die Photo	
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Kepler GK110 Full chip block diagram	





SMX:  
•  192 single‐precision 

CUDA cores,  
•  64 double‐precision 

units,  
•  32 special function 

units (SFU), and  
•  32 load/store units  

(LD/ST). 
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Graphics Hardware History 
l  80’s:  

–  linear interpolation of color over a scanline 
–  Vector graphics 

l  91’ Super Nintendo, Neo Geo, 
–  Rasterization of 1 single 3D rectangle per frame (FZero) 

l  95-96’: Playstation 1, 3dfx Voodoo 1 
–  Rasterization of whole triangles (Voodoo 2, 1998) 

l  99’ Geforce (256) 
–  Transforms and Lighting (geometry stage) 

l  02’ 3DLabs WildCat Viper, P10 
–  Pixel shaders, integers,  

l  02’ ATI Radion 9700, GeforceFX 
–  Vertex shaders and Pixel shaders with floats 

l  06’ Geforce 8800 
–  Geometry shaders, integers and floats, logical operations 

l  Then: 
–  More general multiprocessor systems, higher SIMD-width, more cores 



Direct View Storage Tube 

• Created by Tektronix 
– Did not require constant refresh 
– Standard interface to computers 

•  Allowed for standard software 
•  Plot3D in Fortran 

– Relatively inexpensive 
•  Opened door to use of computer 

graphics for CAD community 

Tektronix 4014 
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Briefly about Graphics HW pipelining 
l  In GeForce3: 600-800 pipeline stages! 

–  57 million transistors 
–  First Pentium IV: 20 stages, 42 million transistors, 
–  Core2 Duo, 271 Mtrans, Intel Core 2 Extreme QX9770 – 820Mtrans. 
–  Intel Pentium D 900, 376M trans, Intel i7 (quad): 731Mtrans, 10-core Xeon Westmere: 2.6Gtrans 

l  Evolution of cards: 
–  X800 – 165M transistors 
–  X1800 – 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s 
–  GeForce 6800: 222 M transistors, 400 MHz, 400 MHz core/550 MHz mem 
–  GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, 430 MHz core,mem 650MHz(1.3GHz) 
–  GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, 612 MHz core (1500 for 

shaders), 1080 MHz  mem (effective 2160 GHz) 
–  Geforce 280 GTX: 1.4G trans, 65nm, 602/1296 MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s 
–  ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, 850 MHz,GDDR5,256bit mem bus, 
–  Geforce GTX480: 3Gtrans, 700/1401 MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus, 

40Gtexels/s 
–  GXT580: 3Gtrans, 772/1544, Mem: 2004/4008 MHz, 192.4GB/s, GDDR5,  384bit mem bus,  

49.4 Gtex/s 
–  GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDR5, 256-bit mem bus. 

–  Lesson learned: #trans doubles ~per 2 years. Core clock increases slowly. Mem clock –increases with 
new technology DDR2, DDR3, GDDR5 

–  We want as fast memory as possible! Why? 
l  Parallelization can cover for slow clock. Parallelization more energy efficient than high clock 

frequency. Powerconsumption prop. to freq2. 
l  Memory transfers often the bottleneck 
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Wish: 
1536 ALUs à 1 float/clock => 6KB/clock 
~1GHz core clock => 6000 GB/s request 

We have ~192 GB/s. In reality we can do 20-40 instr. between each RAM–
read/write. Solved by L1$ + latency hiding (warp switching) 
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l  On top of that, effective utilization of bandwith is 
seldom 100%. 

l  However, there are many techniques to reduce 
bandwith usage: 
–  Texture caching with prefetching 
–  Texture compression 
–  Z-compression 
–  Z-occlusion testing (HyperZ) 

Memory bandwidth usage is huge!! 
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Z-occlusion testing and Z-
compression 
l One way of reducing bandwidth 

–  ATI Inc., pioneered with their HyperZ technology 
l Very simple, and very effective 
l Divide screen into tiles of 8x8 pixels 
l Keep a status memory on-chip 

–  Very fast access 
–  Stores additional information that this algorithm uses 

l Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears 

Bonus 
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Architecture of 
Z-cull and Z-
compress 

l  Store zmax per tile, and a flag (whether cleared, compressed/
uncompressed) 

l  Rasterize one tile at a time 
l  Test if zmin on triangle is farther away than tile’s zmax 

–  If so, don’t do any work for that tile!!! 
–  Saves texturing and z-read for entire tile – huge savings! 

l  Otherwize read compressed Z-buffer, & unpack 
l  Write to unpacked Z-buffer, and when finished compress and send 

back to memory, and also: update zmax 
l  For fast Z-clears: just set a flag to ”clear” for each tile 

–  Then we don’t need to read from Z-buffer, just send cleared Z for that tile 

Bonus 
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X1800 GTO 
l Real example 

Z-cull 

Z-compress 

Also note texture compress 
and color compress 



Taxonomy of Hardware 
l We can do many computations in parallel: 

–  Pixel shading, vertex shading, geometry shading 
l  x,y,z,w    r,g,b,a 

l But results need to be sorted somewhere 
before reaching the screen. 
–  Operations can be parallelized but result on screen 

must be as if each triangle where rendered one by 
one in their incoming order (according to OpenGL 
spec) 
l  E.g., for blending (transparency), (z-culling, stencil test) 

25 



26 

Taxonomy of hardware 
l Need to sort from model space to screen 

space 
l Gives four major  
   architectures: 

–  Sort-first 
–  Sort-middle 
–  Sort-Last Fragment 
–  Sort-Last Image 

l Will describe these briefly. Sort-last fragment 
(and sort middle) are most common in 
commercial hardware 
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Sort-First 
l  Sorts primitives before geometry stage 

–  Screen in divided into large regions 
–  A separate pipeline is responsible for each 

region (or many) 

l  G is geometry, FG & FM is part of rasterizer 
–  A fragment is all the generated information for a pixel on a 

triangle 
–  FG is Fragment Generation (finds which pixels are inside 

triangle) 
–  FM is Fragment Merge (merges the created fragments with 

various buffers (Z, color)) 

l  Not explored much at all 

Sorting/dividing work to parallel execution units.	
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Sort-Middle 
l  Sorts betwen G and R 
l  Pretty natural, since after G, we know the 

screen-space positions of the triangles 
l  Older/cheaper hardware uses this 

–  Examples include InfiniteReality (from SGI)                                
and the KYRO architecture (from Imagination) 

l  Spread work arbitrarily among G’s 
l  Then depending on screen-space position, sort to different 

R’s 
–  Screen can be split into ”tiles”. For example: 

l  Rectangular blocks (8x8 pixels) 
l  Every n scanlines 

l  The R is responsible for rendering inside tile 
l  A triangle can be sent to many FG’s depending on overlap 

(over tiles) 
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Sort-Last Fragment 
l  Sorts betwen FG and FM 
l  XBOX, PS3, nVidia use this 
l  Again spread work among G’s 
l  The generated work is sent to FG’s 
l  Then sort fragments to FM’s 

–  An FM is responsible for a tile of pixels 
l  A triangle is only sent to one FG, so this avoids 

doing the same work twice 
–  Sort-Middle: If a triangle overlaps several tiles, then the triangle 

is sent to all FG’s responsible for these tiles 
–  Results in extra work 
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Sort-Last Image 
l  Sorts after entire pipeline 
l  So each FG & FM has a separate frame 

buffer for entire screen (Z and color) 

l  After all primitives have been sent to the pipeline, 
the z-buffers and color buffers are merged into one 
color buffer 

l  Can be seen as a set of independent pipelines 
l  Huge memory requirements! 
l  Used in research, but probably not commerically 
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On NVIDIA 
8000/9000/200/
400/600-series: 
Vertex-, Geometry- 
and Fragment 
shaders allocated 
from a pool of 
128/240/480/1536 
processors 

Logical layout of a graphics card: 



Current	
  and	
  Future	
  Mul\cores	
  in	
  Graphics	
  
•  Cell	
  –	
  2005	
  

–  8	
  cores	
  à	
  4-­‐float	
  SIMD	
  	
  
–  256KB	
  L2	
  cache/core	
  
–  128	
  entry	
  register	
  file	
  
–  3.2	
  GHz	
  

•  NVIDIA	
  8800	
  GTX	
  –	
  Nov	
  2006	
  
–  16	
  cores	
  à	
  8-­‐float	
  SIMD	
  (GTX	
  280	
  -­‐	
  	
  30	
  cores	
  à	
  8,	
  june	
  ’08)	
  
–  16	
  KB	
  L1	
  cache,	
  64KB	
  L2	
  cache	
  (rumour)	
  
–  1.2-­‐1.625	
  GHz	
  

•  Larrabee	
  –	
  ”2010”	
  
–  16-­‐24	
  cores	
  à	
  16-­‐float	
  SIMD	
  (Xeon	
  Phi:	
  61	
  cores,	
  2012)	
  
–  Core	
  =	
  16-­‐float	
  SIMD	
  (=512bit	
  FPU)	
  +	
  	
  x86	
  proc	
  with	
  loops,	
  branches	
  +	
  scalar	
  ops,	
  4	
  threads/core	
  
–  32KB	
  L1cache,	
  256KB	
  L2-­‐cache	
  (512KB/core)	
  
–  1.7-­‐2.4	
  GHz	
  (1.1	
  GHz)	
  

•  NVIDIA	
  Fermi	
  GF100	
  –	
  2010,	
  (GF110	
  2011)	
  	
  
–  16	
  cores	
  à	
  2x16-­‐float	
  SIMD	
  (1x16	
  double	
  SIMD)	
  
–  16/48	
  KB	
  L1	
  cache,	
  768	
  KB	
  L2	
  cache	
  

•  NVIDIA	
  Kepler	
  2012	
  
–  16	
  cores	
  à	
  2x3x16=96	
  float	
  SIMD	
  

PowerXCell 8i Processor – 2008 
–  8 cores à 4-float SIMD 	


–  256KB L2 cache	


–  128 entry register file	


–  but has better double precission 

support 



Intel	
  Xeon	
  Phi	
  

•  Knights	
  Corner	
  

http://www.tomshardware.com/reviews/xeon-phi-
larrabee-stampede-hpc,3342-3.html 
 



Ulf Assarsson © 2004 

Need to know: 
l  Perspective correct texturing 
l  Taxonomy: 

–  Sort first  
–  sort middle 
–  sort last fragment 
–  sort last image 

l  Bandwidth 
–  Why it is a problem 
–  How to ”solve” it 

l  Be able to sketch the architecture  of a moder graphics card 
–  As visualized on the next slide 

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace 
from each triangle vertex i. 
Then at each pixel: 

uip = (uip/wip) / (1/wip) 
vip = (vip/wip) / (1/wip) 
 
where ip = screen-space interpolated value from the 
triangle vertices. 

Sort-first 

Sort-middle 

Sort-last 
fragment 
Sort-last 
image 
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Vertex-, Geometry- 
and Fragment 
shaders allocated 
from a pool of many 
processors (or 
ALUs) 


