
Parallel Programming

Philippas Tsigas
Chalmers University of Technology
Computer Science and Engineering

Department

© Philippas Tsigas

2

WHY PARALLEL PROGRAMMING IS
ESSSENTIAL IN DISTRIBUTED
SYSTEMS AND NETWORKING

© Philippas Tsigas

3
tsigas@cs.chalmers.se Philippas Tsigas

How did we reach there?

Picture from Pat Gelsinger, Intel

Developer Forum, Spring 2004 (Pentium at 90W)

4

 3GHz

Concurrent Software Becomes Essential

 3GHz

6
G

H
z

3GHz

3
G

H
z

1
2

G
H

z

2
4

G
H

z

1 Core

2 Cores
4 Cores

8 Cores

Our work is to help the

programmer to develop

efficient parallel

programs but also

survive the multicore

transition.

© Philippas Tsigas

1) Scalability becomes an issue
for all software.

2) Modern software development
relies on the ability to compose
libraries into larger programs.

5

DISTRIBUTED APPLICATIONS

© Philippas Tsigas

6

Data Sharing:
Gameplay Simulation as an example

This is the hardest problem…

 10,000’s of objects

 Each one contains mutable state

 Each one updated 30 times per second

 Each update touches 5-10 other objects

Manual synchronization (shared state
concurrency) is

hopelessly intractable here.
 Solutions?

Slide:
Tim Sweeney
CEO Epic Games
POPL 2006

© Philippas Tsigas

7

Distributed Applications Demand

Quite High Level
Data Sharing:

 Commercial computing
(media and information
processing)

 Control Computing (on
board flight-control
system)

© Philippas Tsigas

8

NETWORKING

© Philippas Tsigas

9

40 multithreaded packet-processing engines

http://www.cisco.com/assets/cdc_content_elements/
embedded-video/routers/popup.html

 On chip, there are 40 32-bit,
1.2-GHz packet-processing
engines. Each engine works
on a packet from birth to
death within the Aggregation
Services Router.

 each multithreaded engine
handles four threads (each
thread handles one packet at
a time) so each QuantumFlow
Processor chip has the ability
to work on 160 packets
concurrently

© Philippas Tsigas

http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/cdc_content_elements/flash/netsol/sp/quantum_flow/demo.html

10

DATA SHARING

© Philippas Tsigas

11
tsigas@cs.chalmers.se Philippas Tsigas

Blocking Data Sharing

class Counter {

 int next = 0;

 synchronized int getNumber () {

 int t;

 t = next;

 next = t + 1;

 return t;

 }

}

next = 0

A typical Counter Impl: Thread1:

getNumber()

t = 0

Thread2:

getNumber()

result=0

Lock

released

Lock

acquired

result=1
next = 1 next = 2

12
tsigas@cs.chalmers.se Philippas Tsigas

Do we need Synchronization?

class Counter {

 int next = 0;

 int getNumber () {

 int t;

 t = next;

 next = t + 1;

 return t;

 }

}

What can go wrong here?

next = 0

Thread1:

getNumber()

t = 0

Thread2:

getNumber()

t = 0

result=0

next = 1

result=0



13

Blocking Synchronization =
Sequential Behavior

© Philippas Tsigas

14

BS ->Priority Inversion

 A high priority task is delayed due to a low priority task
holding a shared resource. The low priority task is delayed due
to a medium priority task executing.

 Solutions: Priority inheritance protocols
 Works ok for single processors, but for multiple processors …

Task H:

Task M:

Task L:

© Philippas Tsigas

15

Critical Sections + Multiprocessors

 Reduced Parallelism. Several tasks with
overlapping critical sections will cause waiting
processors to go idle.

Task 1:

Task 2:

Task 3:

Task 4:

© Philippas Tsigas

16

 The BIGEST Problem with Locks?

 Blocking Locks are not composable

 All code that accesses a piece of shared state
must know and obey the locking convention,
regardless of who wrote the code or where it
resides.

© Philippas Tsigas

17

Interprocess Synchronization =
Data Sharing

 Synchronization is required for concurrency
 Mutual exclusion (Semaphores, mutexes, spin-locks, disabling

interrupts: Protects critical sections)

- Locks limits concurrency

- Busy waiting – repeated checks to see if lock has been
released or not

- Convoying – processes stack up before locks

- Blocking Locks are not composable

- All code that accesses a piece of shared state must know
and obey the locking convention, regardless of who wrote
the code or where it resides.

 A better approach is to use data structures
that are …

18
tsigas@cs.chalmers.se Philippas Tsigas

A Lock-free Implementation

19

LET US START FROM THE BEGINING

© Philippas Tsigas

20

 Object in shared memory
- Supports some set of operations (ADT)
- Concurrent access by many processes/threads
- Useful to e.g.

Exchange data between threads
Coordinate thread activities

Shared Memory
Data-structures

P1 P2

P3
P4

Op B

Op A

21 Borrowed from H.
Attiya

21

Executing Operations

P1

invocation response

P2

P3

22 22

Interleaving Operations

Concurrent execution

23 23

Interleaving Operations

(External) behavior

24 24

Interleaving Operations, or
Not

Sequential execution

25
May 1, 2008

Concurrent algorithms @ COVA 25

Interleaving Operations, or
Not

Sequential behavior: invocations & response

alternate and match (on process & object)

Sequential specification: All the legal
sequential behaviors, satisfying the
semantics of the ADT

- E.g., for a (LIFO) stack: pop returns the last
item pushed

26
May 1, 2008

Concurrent algorithms @ COVA 26

Correctness: Sequential
consistency

[Lamport, 1979]

 For every concurrent execution there is a
sequential execution that

- Contains the same operations

- Is legal (obeys the sequential specification)

- Preserves the order of operations by the same
process

27 27

Sequential Consistency:
Examples

push(4)

pop():4 push(7)

Concurrent (LIFO) stack

push(4)

pop():4 push(7)

Last In First Out





28 28

Sequential Consistency:
Examples

push(4)

pop():7 push(7)

Concurrent (LIFO) stack

Last In First Out



29

Safety: Linearizability

 Linearizable data structure

- Sequential specification defines legal sequential
executions

- Concurrent operations allowed to be interleaved

- Operations appear to execute atomically

 External observer gets the illusion that each operation takes
effect instantaneously at some point between its
invocation and its response

time

push(4)

pop():4 push(7)

push(4)

pop():4 push(7)

Last In First Out

concurrent

LIFO stack

T1

T2

30

Safety II

An accessible node is never freed.

31

Liveness

Non-blocking implementations
- Wait-free implementation of a DS

[Lamport, 1977]
Every operation finishes in a finite number of

its own steps.

- Lock-free (≠ FREE of LOCKS)
implementation of a DS [Lamport,
1977]
At least one operation (from a set of

concurrent operation) finishes in a finite
number of steps (the data structure as a
system always make progress)

32

Liveness II

 every garbage node is eventually collected

33

Abstract Data Types (ADT)

 Cover most concurrent applications

 At least encapsulate their data needs

 An object-oriented programming point of view

 Abstract representation of data
& set of methods (operations)
for accessing it

 Signature

 Specification data

34

Implementing High-Level ADT

data

data

Using lower-level ADTs

& procedures

35

Lower-Level Operations

 High-level operations
translate into primitives on
base objects that are
available on H/W

Obvious: read, write

 Common: compare&swap
(CAS), LL/SC, FAA

36

Our Research: Non-Blocking Synchronization for

Accessing Shared Data

 We are trying to design

efficient non-blocking

implementations of

building blocks that are

used in concurrent

software design for data

sharing.

