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WHY PARALLEL PROGRAMMING IS 
ESSSENTIAL IN DISTRIBUTED 
SYSTEMS AND NETWORKING 
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How did we reach there? 

Picture from Pat Gelsinger, Intel 

Developer Forum, Spring 2004 (Pentium at 90W) 
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Our work is to help the 

programmer to develop 

efficient parallel 

programs but also 

survive the multicore 

transition.  
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1) Scalability becomes an issue 
for all software.  

2) Modern software development 
relies on the ability to compose 
libraries into larger programs. 
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DISTRIBUTED APPLICATIONS 
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Data Sharing:  
Gameplay Simulation as an example 

This is the hardest problem… 

 10,000’s of objects 

 Each one contains mutable state 

 Each one updated 30 times per second 

 Each update touches 5-10 other objects 
  

Manual synchronization (shared state 
concurrency) is  

hopelessly intractable here. 
 Solutions? 

Slide: 
Tim Sweeney 
CEO Epic Games 
POPL 2006 
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Distributed Applications Demand 

Quite High Level 
Data Sharing: 

 

 Commercial computing 
(media and information 
processing)  

 Control Computing (on 
board flight-control 
system) 
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NETWORKING 
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40 multithreaded packet-processing engines 

http://www.cisco.com/assets/cdc_content_elements/
embedded-video/routers/popup.html 

 On chip, there are 40 32-bit, 
1.2-GHz packet-processing 
engines. Each engine works 
on a packet from birth to 
death within the Aggregation 
Services Router. 

 each multithreaded engine 
handles four threads (each 
thread handles one packet at 
a time) so each QuantumFlow 
Processor chip has the ability 
to work on 160 packets 
concurrently 
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http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/cdc_content_elements/flash/netsol/sp/quantum_flow/demo.html
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DATA SHARING 
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Blocking Data Sharing 

class Counter { 

  int next = 0; 

 

  synchronized int getNumber () { 

    int t; 

    t = next; 

    next = t + 1; 

    return t; 

  } 

} 

next = 0 

A typical Counter Impl: Thread1: 

getNumber() 

t = 0 

Thread2: 

getNumber() 

result=0 

Lock 

released 

Lock 

acquired 

result=1 
next = 1 next = 2 
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Do we need Synchronization? 

class Counter { 

  int next = 0; 

 

  int getNumber () { 

    int t; 

    t = next; 

    next = t + 1; 

    return t; 

  } 

} 

What can go wrong here? 

next = 0 

Thread1: 

getNumber() 

t = 0 

Thread2: 

getNumber() 

t = 0 

result=0 

next = 1 

result=0 

 
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Blocking Synchronization =  
Sequential Behavior 
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BS ->Priority Inversion 

 A high priority task is delayed due to a low priority task 
holding a shared resource. The low priority task is delayed due 
to a medium priority task executing. 

 

 Solutions: Priority inheritance protocols 
 Works ok for single processors, but for multiple processors … 

Task H: 

Task M: 

Task L: 
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Critical Sections + Multiprocessors 

 Reduced Parallelism. Several tasks with 
overlapping critical sections will cause waiting 
processors to go idle.  

Task 1: 

Task 2: 

Task 3: 

Task 4: 
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 The BIGEST Problem with Locks? 
 

  

  Blocking Locks are not composable 

 

 All code that accesses a piece of shared state 
must know and obey the locking convention, 
regardless of who wrote the code or where it 
resides. 
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Interprocess Synchronization = 
Data Sharing 

 Synchronization is required for concurrency 
 Mutual exclusion (Semaphores, mutexes, spin-locks, disabling 

interrupts: Protects critical sections) 

- Locks limits concurrency 

- Busy waiting – repeated checks to see if lock has been 
released or not 

- Convoying – processes stack up before locks 

- Blocking Locks are not composable 

-  All code that accesses a piece of shared state must know 
and obey the locking convention, regardless of who wrote 
the code or where it resides. 

 

 A better approach is to use data structures 
that are … 
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A Lock-free Implementation 
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LET US START FROM THE BEGINING 
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 Object in shared memory 
- Supports some set of operations (ADT) 
- Concurrent access by many processes/threads 
- Useful to e.g. 

Exchange data between threads 
Coordinate thread activities 

Shared Memory 
Data-structures  

P1 P2 

P3 
P4 

Op B 

Op A 



21 Borrowed from H. 
Attiya  
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Executing Operations 

P1 

invocation response 

P2 

P3 
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Interleaving Operations 

Concurrent execution 
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Interleaving Operations 

(External) behavior 
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Interleaving Operations, or 
Not 

Sequential execution 
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Interleaving Operations, or 
Not 

 

 

 
Sequential behavior: invocations & response 

alternate and match (on process & object) 

Sequential specification: All the legal 
sequential behaviors, satisfying the 
semantics of the ADT 

- E.g., for a (LIFO) stack: pop returns the last 
item pushed 
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Correctness: Sequential 
consistency 

[Lamport, 1979] 

 For every concurrent execution there is a 
sequential execution that 

- Contains the same operations 

- Is legal (obeys the sequential specification) 

- Preserves the order of operations by the same 
process   
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Sequential Consistency: 
Examples 

push(4) 

pop():4 push(7) 

Concurrent (LIFO) stack 

push(4) 

pop():4 push(7) 

Last In First Out 

 

 
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Sequential Consistency: 
Examples 

push(4) 

pop():7 push(7) 

Concurrent (LIFO) stack 

Last In First Out 

 
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Safety: Linearizability 

 Linearizable data structure  

- Sequential specification defines legal sequential 
executions 

- Concurrent operations allowed to be interleaved  

- Operations appear to execute atomically 

 External observer gets the illusion that each operation takes 
effect instantaneously  at some point between its 
invocation and its response 

 

 

time 

push(4) 

pop():4 push(7) 

push(4) 

pop():4 push(7) 

Last In First Out 

concurrent  

LIFO stack 

T1 

T2 
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Safety II 

An accessible node is never freed. 
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Liveness 

Non-blocking implementations 
- Wait-free implementation of a DS 

[Lamport, 1977] 
Every operation finishes in a finite number of 

its own steps. 

- Lock-free (≠ FREE of LOCKS) 
implementation of a DS [Lamport, 
1977] 
At least one operation (from a set of 

concurrent operation) finishes in a finite 
number of steps (the data structure as a 
system always make progress) 
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Liveness II 

 every garbage node is eventually collected 
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Abstract Data Types (ADT) 

 Cover most concurrent applications 

 At least encapsulate their data needs 

 An object-oriented programming point of view 

 Abstract representation of data 
& set of methods (operations)  
for accessing it 

 Signature 

 Specification data  
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Implementing High-Level ADT 

data  

data  

------------------ 

------------------- 

------------------ 

---------------- 

---------------- 

--------------- 

------------------ 

------------------- 

Using lower-level ADTs 

& procedures 
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Lower-Level Operations 

 High-level operations 
translate into primitives on 
base objects that are 
available on H/W 

Obvious: read, write 

 Common: compare&swap 
(CAS), LL/SC, FAA 
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Our Research: Non-Blocking Synchronization for 

Accessing Shared Data 

 We are trying to design 

efficient non-blocking 

implementations of 

building blocks that are 

used in concurrent 

software design for data 

sharing. 


