J

*,l Parallel Programming

Philippas Tsigas
Chalmers University of Technology

Computer Science and Engineering
Department

© Philippas Tsigas



WHY PARALLEL PROGRAMMING IS
ESSSENTIAL IN DISTRIBUTED
SYSTEMS AND NETWORKING



8086
8085

286

Power Density (W/cm#)

Picture from Pat Gelsinger, Intel
Developer Forum, Spring 2004 (Pentium at 90W)

tsigas@cs.chalmers.se Philippas Tsigas



1) Scalability becomes an issue
for all software.

2) Modern software development
relies on the ability to compose
libraries into larger programs.

;2 Cores
.- 4Cores Our work is to help the

_--"8Cores programmer to develop
————— > efficient parallel
programs but also
survive the multicore

transition.

© Philippas Tsigas /

ZHO9 ZzZHOZT

ZHOE



DISTRIBUTED APPLICATIONS



This is the hardest problem... Slide:

- _ Tim Sweeney
3 10,000's of objects CEO Epic Games

d Each one contains mutable state POPL 2006

d Each one updated 30 times per second
d Each update touches 5-10 other objects

Manual synchronization (shared state
concurrency) is
hopelessly intractable here.
Solutions?

© Philippas Tsigas



. 7w R —

Quite High Level
Data Sharing:

o Commercial computing
(media and information
processing)

o Control Computing (on
board flight-control
system)

---------

© Philippas Tsigas 7



NETWORKING




On chip, there are 40 32-bit,
1.2-GHz packet-processing
engines. Each engine works
on a packet from birth to
death within the Aggregation
Services Router.

each multithreaded engine
handles four threads (each
thread handles one packet at
a time) so each QuantumFlow
Processor chip has the ability
to work on 160 packets
concurrently

© Philippas Tsigas 9



http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/assets/cdc_content_elements/embedded-video/routers/popup.html
http://www.cisco.com/cdc_content_elements/flash/netsol/sp/quantum_flow/demo.html

DATA SHARING




T ———

e Blockln Data Sharinc

A typical Counter Impl: Thread1: Thread2:
getNumber() getNumber()

class Counter {
int next = 0;

_____________________________________________________________ L "_‘_’!E__.__
: synchronlzed- int getNumber () { achI'r ed
"""""""""" int t; 3

t = next; t=0 : Lock

"""""""""""" next = t % 1 T relecased
return t; E
}
result=0 result=1

next =

tsigas@cs.chalmers.se Philippas Tsigas




T ———

nchronization?

2 Th d1: Thread2:
What can gO Wrong here < getN';ler:ber() getNumber()

class Counter {
int next = 0;

int getNumber () {
int t;

""" ST S, S O B s B L i ] R ————
return t;

}
} result=0 result=0

next=0

tsigas@cs.chalmers.se Philippas Tsigas




ﬁ@ Blocking Synchronization =
S0t ial E '

© Philippas Tsigas




O A high priority task is delayed due to a low priority task
holding a shared resource. The low priority task is delayed due
to a medium priority task executing.

O Solutions: Priority inheritance protocols
d Works ok for single processors, but for multiple processors ...

© Philippas Tsigas /



0 Reduced Parallelism. Several tasks with
overlapping critical sections will cause waiting
processors to go idle.

© Philippas Tsigas



v

E The BIGEST Problem with Locks?

)

Blocking Locks are not composable

All code that accesses a piece of shared state
must know and obey the locking convention,

regardless of who wrote the code or where it
resides.

© Philippas Tsigas



g
Sz >

- Synchronization is required for concurrency

- Mutual exclusion (Semaphores, mutexes, spin-locks, disabling
interrupts: Protects critical sections)

Locks limits concurrency

Busy waiting — repeated checks to see if lock has been
released or not

Convoying — processes stack up before locks

All code that accesses a piece of shared state must know
and obey the locking convention, regardless of who wrote
the code or where it resides.

- A better approach is to use data structures
that are ...




In this case a non-blocking design is easy:

class Counter {
int next = 0;

int getNumber () {

int €7 )
do { Atomic compare and swap

t = next;
} while (CAS (&next, t, t + 1) !'= t);

return t; NN New value
Expected value

Location

tsigas@cs.chalmers.se Philippas Tsigas



LET US START FROM THE BEGINING



- Object in shared memory ’ﬂ
- Supports some set of operations (ADT)
- Concurrent access by many processes/threads

- Useful to e.q.
« Exchange data between threads
« Coordinate thread activities

S g e®
@ T




invocation response




—

Concurrent execution




(External) behavior




=73 Interleaving Operations, or

Sequential execution




Interfeaving Operations, or

=i -

: Invocations & response
alternate and match (on process & object)

: All the
sequential behaviors, satisfying the
semantics of the ADT

E.g., for a (LIFO) stack: pop returns the last
item pushed

May 1, 2008

Concurrent algorithms @ COVA



May 1, 2008

[Lamport, 1979]
For every concurrent execution there is a
sequential execution that
Contains the same operations
Is (obeys the sequential specification)

Preserves the order of operations by the same
process

Concurrent algorithms @ COVA



ONSIStENCY:

Concurrent (LIFO) stack
push(4)

push(4)




ONSIStENCY:

Concurrent (LIFO) stack
push(4)




- Linearizable data structure
- defines legal sequential

executions
- Concurrent operations allowed to be
- Operations
« External observer gets the that each operation

at sgme point between its
invocation and its | push(4

concurrent
LIFO stack

Nt

-
Last In First Out

29



R

‘.t —
. . Safety II

An accessible node is never freed.




27y
&g

Liveness

Non-blocking implementations

- Wait-free implementation of a DS
[Lamport, 1977]
«Every operation finishes in a finite number of
its own steps.
- Lock-free (
implementation of a DS [Lamport,
1977]
«+At least one operation (from a set of
concurrent operation) finishes in a finite

number of steps (the data structure as a
system always make progress)



v

Liveness II

‘_.
< o
e?

- every garbage node is eventually collected




e —

o Cover most concurrent applications
O At least encapsulate their data needs
d An object-oriented programming point of view

0 Abstract representation of data
& set of methods (operations)
for accessing it

O Signature
d Specification




Using lower-level ADTs
& procedures




o High-level operations
translate into primitives on
base objects that are
available on H/W

O Obvious: read, write

d Common: compare&swap
(CAS), LL/SC, FAA




We are trying to

that are
used In concurrent
software design for data
sharing.




