
DISTRIBUTED SYSTEMS II

FAULT-TOLERANT AGREEMENT II

Prof Philippas Tsigas

Distributed Computing and Systems Research Group

Conditions for a solution for Byzantine faults

• Number of processes: n

• Maximum number of possibly failing processes: f

• Necessary and sufficient condition for a solution to Byzantine

agreement:

 f<n/3

 •Minimal number of rounds in a deterministic solution:

 f+1

 •There exist randomized solutions with a lower expected number of

rounds

2

Impossibility of 1-resilient 3-processor Agreement

3

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E1

Impossibility of 1-resilient 3-processor Agreement

4

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E0

Impossibility of 1-resilient 3-processor Agreement

5

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E1

Impossibility of 1-resilient 3-processor Agreement

6

A:VA=0

B:VB=0

C:VC=0 A´:VA´=1

B´:VB´=1

C´:VC´=1

E2

Proof

• In E0 A and B decide 0

• In E1 B´ and C´ decide 1

• In E2 C´ has to decide 1 and A has to decide 0,

contradiction!

7

t-resilient algorithm requiring n<=3t processors, t=>2

8

P1, P4,… P2,… P3,…

P1, P2, P3, P4,...,Pn processors

P´1= P´2= P´3=

Distribute them Evenly to 3

logical Processes: P’1, P’2,

P’3

t-resilient algorithm requiring n<=3t processors, t=>2

9

P1, P4,… P2,… P3,…

P1, P2, P3, P4,...,Pn processors

P´1= P´2= P´3=

|P´1|, |P´2|, |P´3| < t

t-resilient algorithm requiring n<=3t processors, t=>2

10

P1, P4,… P2,… P3,…

P1, P2, P3, P4,...,Pn processors

P´1= P´2= P´3=

In the system with 3 processors (P´1, P´2 and P´3) if one of them is

faulty then at most t processors of the initial system are going to be faulty.

Proof

 Run the solution to the problem (sysyem with n

processes) at the 3 process system.

 Ask P’1, P’2 and P’3 to simulate their respective

substem and decide what the processes of its

subsystem have decided.

 Contradiction! This is a solution to a 3 processes

system with one byzantine process.

11

”I can’t find a solution, I guess I’m just too dumb”

 Picture from Computers and Intractability, by Garey

and Johnson

12

”I can’t find an algorithm, because no such algorithm is
possible”

 Picture from Computers and Intractability, by Garey

and Johnson

13

”I can’t find an algorithm, but neither can all these
famous people.”

 Picture from Computers and Intractability, by Garey

and Johnson

14

o For a system with at most f processes crashing, the
algorithm proceeds in f+1 rounds (with timeout), using
basic multicast.

o Valuesr
i: the set of proposed values known to Pi at the

beginning of round r.
o Initially Values0

i = {} ; Values1
i = {vi}

 for round = 1 to f+1 do

 multicast (Values ri – Valuesr-1
i)

 Values r+1
i  Valuesr

i

 for each Vj received

 Values r+1
i = Values r+1

i  Vj

 end

 end

 di = minimum(Values f+2
i)

Consensus in a Synchronous System with
process crashing

Proof of Correctness

Proof by contradiction.

 Assume that two processes differ in their final set

of values.

 Assume that pi possesses a value v that pj does

not possess.
 A third process, pk, sent v to pi, and crashed before sending v to

pj.

 Any process sending v in the previous round must have crashed;

otherwise, both pk and pj should have received v.

 Proceeding in this way, we infer at least one crash in each of the

preceding rounds.

 But we have assumed at most f crashes can occur and there are

f+1 rounds  contradiction.

Byzantine agreem. with authentication and
Synchrony

• Every message carries a signature

• The signature of a loyal general cannot be forged

• Alteration of the contents of a signed message can be detected

• Every (loyal) general can verify the signature of any other (loyal)

general

• Any number f of traitors can be allowed

• Commander is process 0

• Structure of message from (and signed by) the commander, and

subsequently signed and sent by lieutenants Li1, Li2,…:

• (v : s0 : si1: … : sik)

• Every lieutenant maintains a set of orders V

• Some choice function on V for deciding (e.g., majority, minimum)

17

 •Algorithm in commander:
send(v: s0)to every lieutenant

– Algorithm in every lieutenant Li:
 upon receipt of (v : s0: si1: …. : sik) do

 if (v not in V) then

 V := V union {v}

 if (k < f) then

 for(j in {1,2,…,n-1} \{i,i1,…,ik}) do

 send(v: s0: si1: … : sik: i) to Lj

If (Li will not receive any more messages) then decide(choice(V))

18

19

Atomic commit protocols

 transaction atomicity requires that at the end,
– either all of its operations are carried out or none of them.

 in a distributed transaction, the client has requested the
operations at more than one server

 one-phase atomic commit protocol
– the coordinator tells the participants whether to commit or abort

– what is the problem with that?

– this does not allow one of the servers to decide to abort – it may have
discovered a deadlock or it may have crashed and been restarted

 two-phase atomic commit protocol
– is designed to allow any participant to choose to abort a transaction

– phase 1 - each participant votes. If it votes to commit, it is prepared. It cannot
change its mind. In case it crashes, it must save updates in permanent store

– phase 2 - the participants carry out the joint decision

•
The decision could be commit or abort - participants record it in permanent store

20

Failure model for the commit protocols

 Failure model for transactions
– this applies to the two-phase commit protocol

 Commit protocols are designed to work in
– synchronous system, system failure when a msg does not arrive on time.

– servers may crash but a new process whose state is set from information
saved in permanent storage and information held by other processes.

– messages may NOT be lost.

– assume corrupt and duplicated messages are removed.

– no byzantine faults – servers either crash or they obey their requests

 2PC is an example of a protocol for reaching a consensus.
– Chapter 11 says consensus cannot be reached in an asynchronous system if

processes sometimes fail.

– however, 2PC does reach consensus under those conditions.

– because crash failures of processes are masked by replacing a crashed
process with a new process whose state is set from information saved in
permanent storage and information held by other processes.

•

21

Operations for two-phase commit protocol

 participant interface- canCommit?, doCommit, doAbort

coordinator interface- haveCommitted, getDecision

canCommit?(trans)-> Yes / No

Call from coordinator to participant to ask whether it can commit a transaction.

Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a

transaction.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a

transaction.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) -> Yes / No

Call from participant to coordinator to ask for the decision on a transaction after it

has voted Yes but has still had no reply after some delay. Used to recover from server

crash or delayed messages.
Figure 13.4

•

This is a request with a reply

These are asynchronous requests to avoid delays

Asynchronous request

22

The two-phase commit protocol

Figure 13.5

• Phase 1 (voting phase):

• 1. The coordinator sends a canCommit? request to each of the participants in

the transaction.

• 2. When a participant receives a canCommit? request it replies with its vote

(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by saving

objects in permanent storage. If the vote is No the participant aborts immediately.

• Phase 2 (completion according to outcome of vote):

• 3. The coordinator collects the votes (including its own).

w (a)If there are no failures and all the votes are Yes the coordinator decides to

commit the transaction and sends a doCommit request to each of the participants.

w (b)Otherwise the coordinator decides to abort the transaction and sends doAbort

requests to all participants that voted Yes.

• 4. Participants that voted Yes are waiting for a doCommit or doAbort request from the

coordinator. When a participant receives one of these messages it acts accordingly and

in the case of commit, makes a haveCommitted call as confirmation to the coordinator.

•

Two-Phase Commit Protocol

 canCommit?

23

1

2

3

4

yes

doCommit

no

doAbort

canCommit?

TimeOut Protocol

24

1

2

3

4

At step 2 and 3 no

commit decision

made

OK to abort

Coordinator will

either not collect all

commit votes or will

vote for abort

TimeOut Protocol

25

1

2

3

4

At step 4

o cohort cannot

communicate with

coordinator

oCoordinator mayhave

decided

oCohort must block

until communication re-

established

oMight ask other

cohorts

Restart Protocol

 canCommit?

26

1

2

3

4

yes

doCommit

no

doAbort

canCommit?

If the site
•Has decided, it just picks

up from where it left off

•Is a cohort that had not

voted, it decides abort

•Is a cordinator that has

not decided, it decides

abort

•A cohort that crashed

after voting commit, it

must block until it

discovers

Blocking

 canCommit?

27

1

2

3

4

yes

doCommit

no

doAbort

canCommit?

Blocking can

occur if:
•Coordinatoor crashes

•Cohort cannot

communicate with

coordinator

•Between 2 and 4

Three-Phase Commit Protocol

 canCommit?

28

1

2

3

4

yes

precommit

no

doAbort

canCommit?

ack

commit
5

6

Three-phase commit protocol

29

30

Performance of the two-phase commit protocol

 if there are no failures, the 2PC involving N

participants requires
– N canCommit? messages and replies, followed by N doCommit

messages.

 the cost in messages is proportional to 3N, and the cost in time is three

rounds of messages.

 The haveCommitted messages are not counted

– there may be arbitrarily many server and communication failures

– 2PC is is guaranteed to complete eventually, but it is not possible to

specify a time limit within which it will be completed

 delays to participants in uncertain state

 some 3PCs designed to alleviate such delays

• they require more messages and more rounds for the normal case

•

Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Teaching material

based on Distributed

Systems: Concepts

and Design, Edition 3,

Addison-Wesley 2001.

Distributed Systems Course

Distributed transactions

13.1 Introduction

13.2 Flat and nested distributed transactions

13.3 Atomic commit protocols

13.4 Concurrency control in distributed

transactions

13.5 Distributed deadlocks

13.6 Transaction recovery

32

13.3.2 Two-phase commit protocol for nested
transactions

 Recall Fig 13.1b, top-level transaction T and subtransactions

T1, T2, T11, T12, T21, T22

 A subtransaction starts after its parent and finishes before it

 When a subtransaction completes, it makes an independent

decision either to commit provisionally or to abort.
– A provisional commit is not the same as being prepared: it is a local decision

and is not backed up on permanent storage.

– If the server crashes subsequently, its replacement will not be able to carry

out a provisional commit.

 A two-phase commit protocol is needed for nested

transactions
– it allows servers of provisionally committed transactions that have crashed to

abort them when they recover.

•

