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Conditions for a solution for Byzantine faults 

 
• Number of processes: n 

• Maximum number of possibly failing processes: f 

• Necessary and sufficient condition for a solution to Byzantine 

agreement: 

    f<n/3 

 •Minimal number of rounds in a deterministic solution: 

    f+1 

 •There exist randomized solutions with a lower expected number of 

rounds 
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Impossibility of 1-resilient 3-processor Agreement 
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Impossibility of 1-resilient 3-processor Agreement 
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Proof 

• In E0 A and B decide 0 

• In E1 B´ and C´ decide 1 

• In E2 C´ has to decide 1 and A has to decide 0, 

contradiction! 
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t-resilient algorithm requiring n<=3t processors, t=>2 
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P1, P4,… P2,… P3,… 

P1, P2, P3, P4,...,Pn processors 

P´1= P´2= P´3= 

Distribute them Evenly to 3 

logical Processes: P’1, P’2, 

P’3 



t-resilient algorithm requiring n<=3t processors, t=>2 
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P1, P4,… P2,… P3,… 

P1, P2, P3, P4,...,Pn processors 

P´1= P´2= P´3= 

|P´1|, |P´2|, |P´3| < t  



t-resilient algorithm requiring n<=3t processors, t=>2 
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P1, P4,… P2,… P3,… 

P1, P2, P3, P4,...,Pn processors 

P´1= P´2= P´3= 

In the system with 3 processors (P´1, P´2 and P´3) if one of them is  

faulty then at most t processors of the initial system are going to be faulty.  



Proof  

 Run the solution to the problem (sysyem with n 

processes) at the 3 process system. 

 Ask P’1, P’2 and P’3 to simulate their respective 

substem and decide what the processes of its 

subsystem have decided. 

 Contradiction! This is a solution to a 3 processes 

system with one byzantine process. 
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”I can’t find a solution, I guess I’m just too dumb” 

 Picture from Computers and Intractability, by Garey 

and Johnson 
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”I can’t find an algorithm, because no such algorithm is 
possible” 

 Picture from Computers and Intractability, by Garey 

and Johnson 
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”I can’t find an algorithm, but neither can all these 
famous people.”   

 Picture from Computers and Intractability, by Garey 

and Johnson 
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o For a system with at most f processes crashing, the 
algorithm proceeds in f+1 rounds (with timeout), using 
basic multicast.  

 

o  Valuesr
i: the set of proposed values known to Pi at the 

beginning of round r. 
o Initially Values0

i = {} ; Values1
i = {vi} 

  for round = 1 to f+1 do 

  multicast (Values ri –  Valuesr-1
i) 

   Values r+1
i  Valuesr

i 

  for each Vj received  

   Values r+1
i = Values r+1

i   Vj 

  end 

  end 

 di = minimum(Values f+2
i) 

Consensus in a Synchronous System  with 
process crashing 



Proof of Correctness 

Proof by contradiction. 

 Assume that two processes differ in their final set 

of values. 

 Assume that pi possesses a value v that pj does 

not possess. 
 A third process, pk, sent v to pi, and crashed before sending v to 

pj. 

 Any process sending v in the previous round must have crashed; 

otherwise, both pk and pj should have received v. 

 Proceeding in this way, we infer at least one crash in each of the 

preceding rounds.  

 But we have assumed at most f crashes can occur and there are 

f+1 rounds  contradiction. 



 
Byzantine agreem. with authentication and 
Synchrony 

 
• Every message carries a signature 

• The signature of a loyal general cannot be forged 

• Alteration of the contents of a signed message can be detected 

• Every (loyal) general can verify the signature of any other (loyal) 

general 

• Any number f of traitors can be allowed 

• Commander is process 0 

• Structure of message from (and signed by) the commander, and 

subsequently signed and sent by lieutenants Li1, Li2,…: 

• (v : s0 : si1: … : sik) 

• Every lieutenant maintains a set of orders V 

• Some choice function on V for deciding (e.g., majority, minimum) 
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 •Algorithm in commander: 
send(v: s0)to every lieutenant 

 

– Algorithm in every lieutenant Li: 
 upon receipt of (v : s0: si1: …. : sik) do  

  if (v not in V) then 

  V := V union {v} 

  if (k < f) then  

   for(j in {1,2,…,n-1} \{i,i1,…,ik}) do 

    send(v: s0: si1: … : sik: i) to Lj 

If (Li will not receive any more messages) then decide(choice(V)) 
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Atomic commit protocols  

 transaction atomicity requires that at the end,  
– either all of its operations are carried out or none of them.  

 in a distributed transaction, the client has requested the 
operations at more than one server 

 one-phase atomic commit protocol 
– the coordinator tells the participants whether to commit or abort 

– what is the problem with that? 

– this does not allow one of the servers to decide to abort – it may have 
discovered a deadlock or it may have crashed and been restarted 

 two-phase atomic commit protocol 
– is designed to allow any participant to choose to abort a transaction 

– phase 1 - each participant votes. If it votes to commit, it is prepared. It cannot 
change its mind. In case it crashes, it must save updates in permanent store 

– phase 2 - the participants carry out the joint decision 

• 
The decision could be commit or abort - participants record it in permanent store  
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Failure model for the commit protocols 

 Failure model for transactions 
– this applies to the two-phase commit protocol 

 Commit protocols are designed to work in 
– synchronous system, system failure when a msg does not arrive on time. 

– servers may crash but a new process whose state is set from information 
saved in permanent storage and information held by other processes. 

– messages may NOT be lost.  

– assume corrupt and duplicated messages are removed.  

– no byzantine faults – servers either crash or they obey their requests  

 2PC is an example of a protocol for reaching a consensus.  
– Chapter 11 says consensus cannot be reached in an asynchronous system if 

processes sometimes fail. 

– however, 2PC does reach consensus under those conditions.  

– because crash failures of processes are masked by replacing a crashed 
process with a new process whose state is set from information saved in 
permanent storage and information held by other processes. 

 
• 
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Operations for two-phase commit protocol 

 participant interface- canCommit?, doCommit, doAbort 

coordinator interface- haveCommitted, getDecision 

 

canCommit?(trans)-> Yes / No 

Call from coordinator to participant to ask whether it can commit a transaction. 

Participant replies with its vote. 

doCommit(trans)  

Call from coordinator to participant to tell participant to commit its part of a 

transaction. 

doAbort(trans)  

Call from coordinator to participant to tell participant to abort its part of a 

transaction. 

haveCommitted(trans, participant)  

Call from participant to coordinator to confirm that it has committed the transaction. 

getDecision(trans) -> Yes / No 

Call from participant to coordinator to ask for the decision on a transaction after it 

has voted Yes but has still had no reply after some delay. Used to recover from server 

crash or delayed messages. 
Figure 13.4 

• 

This is a request with a  reply 

These are asynchronous requests to avoid delays 

Asynchronous request 
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The two-phase commit protocol 

Figure 13.5 

• Phase 1 (voting phase):  

• 1.  The coordinator sends a canCommit? request to each of the participants in 

the transaction. 

• 2.  When a participant receives a canCommit? request it replies with its vote 

(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by saving 

objects in permanent storage. If the vote is No the participant aborts immediately. 

• Phase 2 (completion according to outcome of vote): 

• 3.  The coordinator collects the votes (including its own).  

w (a)If there are no failures and all the votes are Yes the coordinator decides to 

commit the transaction and sends a doCommit request to each of the participants.  

w (b)Otherwise the coordinator decides to abort the transaction and sends doAbort 

requests to all participants that voted Yes. 

• 4.  Participants that voted Yes are waiting for a doCommit or doAbort request from the 

coordinator. When a participant receives one of these messages it acts accordingly and 

in the case of commit, makes a haveCommitted call as confirmation to the coordinator. 

• 



Two-Phase Commit Protocol 

 canCommit?  
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1 
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3 

4 
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doCommit 

no 

doAbort 

canCommit? 



TimeOut Protocol 
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1 

2 

3 

4 

At step 2 and 3 no 

commit decision 

made 

OK to abort 

Coordinator will 

either not collect all 

commit votes or will 

vote for abort 



TimeOut Protocol 
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1 

2 

3 

4 

At step 4 

o cohort cannot 

communicate with 

coordinator 

oCoordinator mayhave 

decided 

oCohort must block 

until communication re-

established 

oMight ask other 

cohorts 



Restart Protocol 

 canCommit?  
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1 

2 

3 

4 

yes 

doCommit 

no 

doAbort 

canCommit? 

If the site 
•Has decided, it just picks 

up from where it left off 

•Is a cohort that had not 

voted, it decides abort 

•Is a cordinator that has 

not decided, it decides 

abort 

•A cohort that crashed 

after voting commit, it 

must block until it 

discovers 



Blocking 

 canCommit?  
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1 

2 

3 

4 

yes 

doCommit 

no 

doAbort 

canCommit? 

Blocking can 

occur if: 
•Coordinatoor crashes 

•Cohort cannot 

communicate with 

coordinator 

•Between 2 and 4 



Three-Phase Commit Protocol 

 canCommit?  
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5 
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Three-phase commit protocol 
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Performance of the two-phase commit protocol 

 if there are no failures, the 2PC involving N 

participants requires 
–  N  canCommit? messages and replies, followed by N  doCommit 

messages.  

 the cost in messages is proportional to 3N, and the cost in time is three 

rounds of messages.  

 The haveCommitted messages are not counted 

– there may be arbitrarily many server and communication failures 

– 2PC is is guaranteed to complete eventually, but it is not possible to 

specify a time limit within which it will be completed 

 delays to participants in uncertain state 

 some 3PCs designed to alleviate such delays 

• they require more messages and more rounds for the normal case 

• 



Copyright © George 

Coulouris, Jean Dollimore, 

Tim Kindberg 2001 

email: authors@cdk2.net 

This material is made 

available for private study 

and for direct use by 

individual teachers. 

It may not be included in any 

product or employed in any 

service without the written 

permission of the authors. 

Viewing: These slides 

must be viewed in 

slide show mode. 

Teaching material 

based on Distributed 

Systems: Concepts 

and Design, Edition 3, 

Addison-Wesley 2001.  

 

Distributed Systems Course  

Distributed transactions 

13.1  Introduction 

13.2 Flat and nested distributed transactions 

13.3 Atomic commit protocols 

13.4 Concurrency control in distributed 

transactions 

13.5 Distributed deadlocks 

13.6 Transaction recovery 
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13.3.2 Two-phase commit protocol for nested 
transactions 

 Recall Fig 13.1b, top-level transaction T and subtransactions 

T1, T2, T11, T12, T21, T22 

 A subtransaction starts after its parent and finishes before it 

 When a subtransaction completes, it makes an independent 

decision either to commit provisionally or to abort.  
– A provisional commit is not the same as being prepared: it is a local decision 

and is not backed up on permanent storage.  

– If the server crashes subsequently, its replacement will not be able to carry 

out a provisional commit.  

 A two-phase commit protocol is needed for nested 

transactions  
– it allows servers of provisionally committed transactions that have crashed to 

abort them when they recover. 

• 


