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Overview

* Introduction to group communication
* Desired group communication
* Multicast communication

* Group membership service
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Coordination in distributed systems

* Coordination is needed by distributed systems but
hard to achieve:
Events happen concurrently
Communication links are not reliable
Computers can crash
New nodes can join the systems
Asynchronous environments

—> Need of an efficient way to coordinate a group of
processes [ }
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A Distributed System in war:
Synchronous Example
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A Distributed System in war:
Reality
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Group communication

* What is a group?

A number of processes which cooperate to
provide a service.

An abstract identity to name a collection of
processes.

* Group Communication
For coordination among processes of a group.

o
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Who Needs Group Communication?

* Highly available servers (client-server)
* Database Replication

* Multimedia Conferencing

* Online Games

* Cluster management
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Distributed Web Server

* High availability
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Online Game

* Fault-tolerance, Order




Different Communication Methods

* Unicast
Point-to-Point Communication
Multiple copies are sent.

* Broadcast
One-to-All Communication
Abuse of Network Bandwidth

* Multicast
One-to-multiple Communication
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Overview

Desired group communication
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Desired Group Communication

* Name Abstraction
* Efficiency —Multicast
* Delivery Guarantees —Reliability, Ordering

* Dynamic Membership =Group membership
service
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Properties of Communication

* Ordering

Total ordering, causal ordering
* Failure behavior
* Reliability

Validity, integrity, agreement
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Properties of Group

* Name of group
* Addresses of group members
* Dynamic group membership

* Options:
Peer group or client-server group
Closed or Open Group
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Peer Group

* All the members are
equal.

* All the members send
messages to the group.

* All the members receive
all the messages.
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Client-Server Group

* Replicated servers.

* Clients do not care
which server answers.
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Overview

* Introduction to group communication
* Desired group communication
* Multicast communication

* Group membership service
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Multicast communication

* Use network hardware support for broadcast or
multicast when it is available.

* Send messages over a distribution tree.
* Minimize the time and bandwidth utilization
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Reliability
Correct processes: those that never fail.

* Integrity
A correct process delivers a message at most once.
* Validity

A message from a correct process will be delivered by the
process eventually.

* Agreement

A message delivered by a correct process will be delivered
by all other correct processes in the group.

= Validity + Agreement = Liveness
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Ordering

Assumptions: a process belongs to at
most one group.

* FIFO

if m,—m’,, all correct processes
that deliver m’, will deliver m,
(that is from the same sender)

before m’p.

* Causal

if m— m’, all correct processes
that deliver m” will deliver m

before m’.
* Total
if a correct process delivers m P1 -
before m’, all other correct
processes that deliver m” will P2 S
deliver m before m’. \ \
P3 3




Examples

* Assumption:

Reliable one-to-one send operation (e.g. TCP)

* Basic multicast

Requirement:

All correct processes will eventually deliver the
message from a correct sender.

Implementation:
B-multicast( g, m): Vb < g: send( p, m);
On receive( m) at p: B-deliver( m) at p.
—> Properties: integrity, validity.
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Basic multicast: Agreement?
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Examples (cont.)

* Reliable multicast
Requirements: integrity, validity, agreement

Implementation:
Received := {};
R-multicast( g, m) at process p: B-multicast( g, m);
On B-deliver( m) at process p from process q
if(m & Received)
Received := Received C{m};
if( 9 #p) B-multicast( g, m);
R-deliver( m);
end if

=> Inefficient: each message is sent O(|g|) times to each [ }
process
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Reliable multicast
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Examples (cont.)

* FIFO-ordered multicast:

Assumption:
a process belongs to at most one group.
Implementation:
Local variables at p: S,= 1, R /[ [g] ]={0};
FO-multicast( g, m) at p:
B-multicast( g, <m, Sp>);
Sp++;
On B-deliver( <m, $>) at p from q:
ifl S =R,[q] + 1)
FO-deliver( m);
Rlq] :=S;
else if(S>R,[q] + 1)
place <m, S> in the queue until S = R [q] + 1;
FO-deliver( m);
Rlq] :=S;
end if

* Your task: totally ordered multicasts.
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Overview

* Introduction to group communication
* Desired group communication
* Multicast communication

* Group membership service
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Group membership service

* Four tasks: Group
Interface for group eiﬁi;i?in
membership changes
Failure detector Q >
Membership change utticast Group
notification Communicati(;n rr:grr]gz:?gﬁt

Group address expansion

e Group partition:
— Primary-partition — one partition only
— Partitionable — many partiations at once




Group views

* Group views:
Lists of the current ordered group members
A new one is generated when processes join or leave/fail.

* View delivery
When a member is notified of a membership change

Requirements
Order
* if p delivers v(g)— v’(g), no other process delivers v’(g)— v(g).
Integrity
- if p delivers v(g), p € v(g).
Non-triviality

* if g joins a group and becomes indefinitely reachable from p, eventually
q is always in the view p delivers.
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View-synchronous group comm.

* Extend the reliable multicast
semantics with group views. ; J\ crash
Agreement

Correct processes deliver the same set q — N
of messages in any given view \
Validity '

Correct processes always deliver the
messages they send. (p.,q,r)

K
v

v

d
v

p € Vv,(g) does not deliver minv,(g) =
p £ v,(g) for processes that deliver m.

Integrity




Example

* Ensemble: reliable group communication toolkit

Previous talk
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[P-multicast

* |P:224.0.0.1 - 239.255.255.255

* Multicast: * Group membership
service:
Yes: Yes:
efficiency Interface for group

membership change
Group address

expansion
No: No:
Reliability Failure detector
Ordering Membership change

notification




References

* Distributed Systems: Concepts and Design by G.
Coulouris et al., ISBN 0-201-61918-0

Section 4.5 Group Communication
Section 11.4 Multicast Communication
Section 14.2.2 Group Communication
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L.ab 2: Construct a reliable and
ordered multicast

* Reliable
Integrity, Validity, Agreement
* Ordered

All processes should agree on the order of all
received messages.

Total and causal order.
* No membership service
Processes can still crash though!

* Use the mcgui package
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The GUI

Message display

Message

MC = Judith Butler

izl

Time

Cast

Stress

Debug message display
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The interface

* Provide:
cast

basicreceive
basicpeerdown

* Use:
deliver
debug

basicsend




Implementation

* Cope with process crashs, not just normal leave
* Don’t change the mcgui package

Your code will be checked using the original package
* Use the stress test to test your program

* Don’t add waits to your code to mask problems in

the code
The logic of your program will be checked

* Don’t start threads

Java synchronization is handled in the package
* Don’t use IP multicast

extend the Multicaster class
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Lab Report

* How does the protocol satisfy Integrity
including when processes can crash
* How does the protocol satisfy Validity
including when processes can crash
How does the protocol satisfy Agreement
including when processes can crash

How does the protocol satisfy the ordering
requirements?

Describe any used algorithms.
* How does the protocol deal with crashing processes?

Describe any used algorithms.
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