

Lab 1 Bulletin Board System

Farnaz Moradi

Based on slides by Andreas Larsson

Lab 1 - Bulletin Board System

2

Schedule

- The Ensemble system
 - Introduction
 - Architecture and Protocols
 - How does Ensemble achieve the group communication properties ?
- The Bulletin Board System

The Ensemble System

- A library of protocols that support group communication.
- Ensemble Provides
 - Group membership service
 - Reliable communication
 - Failure detector
 - Secure communication

Terminology

- Deliver a message
 - Send it upwards in the stack
 - From ensemble to the program that uses Ensemble
 - Between layers within ensemble

Distributed Computing and Systems Chalmers university of technology

Group membership service

- Endpoints
 - Abstraction for a communicating entity
 - Normally one per process
- Groups
 - Corresponds to a set of endpoints that communicates
 - Just a *name* for endpoints to use
- Views
 - A snapshot of the group membership at a specified point
 - May change from time to time
 - Maintaining membership

Reliable communication

- Multicast communication
 - Messages are delivered by all group members
 - in the current view of the sender.
 - Possibly based on IP-multicast
- Point-to-Point communication
- Properties:
 - Virtual synchrony
 - Stability
 - Ordering

Virtual synchrony

- AKA: View-synchronous group communication
- Integrity
 - A correct process delivers a message at most once.
- Validity
 - A message from a correct process will be delivered eventually by that process
- Agreement
 - A message delivered by one correct process will be delivered by all correct processes

Virtual Synchrony Examples of trouble

Lab 1 - Bulletin Board System

Lab 1 - Bulletin Board System

9

Schedule

- The Ensemble system
 - Introduction
 - Architecture & Protocols
 - How does Ensemble achieve the group communication properties ?
- The Bulletin Board System

-ab 1 - Bulletin Board System

Infrastructure

- Layered protocol architecture
 - All features are implemented as microprotocols/layers
 - A stack/combination ~ a high-level protocol
- A new stack is created for a new configuration at each endpoint
- Ability to change the group protocol on the fly

- Layers are implemented as a set of callbacks that handle events passed to them.
 - Each layer gives the system 2 callbacks to handle events from its adjacent layers
 - Layers use 2 callbacks of its adjacent layers for passing events.
- Each instance of a layer maintain a private *local state*.

Stacks

- Combinations of layers that work together to provide high-level protocols
- Stack creation:
 - A new protocol stack is created at each endpoint of a group whenever the configuration (e.g. the view) of the group changes.
 - All endpoint in the same partition receive the same ViewState record to create their stack:
 - select appropriate layers according to the ViewState
 - create a new local state for each layer
 - compose the protocol layers
 - connect to the network

-ab 1 - Bulletin Board System

Schedule

- The Ensemble system
 - Introduction
 - Architecture & Protocols
 - How does Ensemble achieve the group communication properties ?
- The Bulletin Board System

The basic stack

 Each group has a *leader* for the membership protocol.

Layers	Functionality
Gmp	Membership algorithm (7 layers)
Slander	Failure suspicion sharing
Synch	Block during membership change
Top_appl	Interface to the application
Sequencer	Total ordering
Suspect	Failure detector
Stable	Stability detection
Mnak	Reliable fifo
Bottom	Interface to the network

- Suspect layer:
 - Regularly ping other members to check for suspected failures
 - Protocol:
 - If (#unacknowledged Ping messages for a member > threshold) send a Suspect event down
- Slander layer:
 - Share suspicions between members of a partition
 - The leader is informed so that faulty members are removed, even if the leader does not detect the failures.
 - Protocol:
 - The protocol multicasts slander messages to other members whenever receiving a new Suspect event

-ab 1 - Bulletin Board System

16

Stability

- Stable layer:
 - Track the stability of multicast messages
 - Protocol:
 - Maintain Acks[N][N] by unreliable multicast:
 - Acks[s][t]: #(s' messages) that t has acknowledged
 - Stability vector

StblVct = {(minimum of row s): ∀s}

NumCast vector

NumCast = {(maximum of row s): ∀s}

 Occasionally, recompute StblVct and NumCast, then send them down in a Stable event.

Reliable multicast

- Mnak layer:
 - Implements a reliable FIFO-ordered multicast protocol
 - Messages from live members are delivered reliably
 - Messages from faulty members are retransmitted by live members
 - Protocol:
 - Keep a record of all multicast messages to retransmit on demand
 - Use Stable event from Stable layer:
 - *StblVct* vector is used for garbage collection
 - *NumCast* vector gives an indication to lost messages ⇒ recover them

Ordering property

- Sequencer layer:
 - Provide total ordering
 - Protocol:
 - Members buffer all messages received from below in a local buffer
 - The leader periodically multicasts an *ordering message*
 - Members deliver the buffered messages according to the leader's instructions
- See Causal layer for causal ordering

Maintaining membership (1)

- Handle Failure by splitting a group into several subgroups: 1 primary and many non-primary (partitionable)
- Protocol:
 - Each member keeps a list of suspected members via Suspect layer
 - A member shares its suspicions via Slander layer
 - View leader *I:*
 - collect all suspicions
 - reliably multicast a *fail(p_{i0},...,p_{ik})* message
 - synchronize the view via Synch layer
 - Install a new view without p_{i0},...,p_{ik}
 - A new leader is elected for the view without leader
 - If p_k in view V₁ suspects that all lower ranked members are faulty, it elects itself as leader and does like *l*.
 - A member that agrees with p_k, continues with p_k to the new view V₂ with p_k as the leader.
 - A member that disagrees with p_k , suspects p_k .

Maintaining membership (2)

- Recover failure by merging non-primary subgroups to the primary subgroup
- Protocol:
 - *I*: local leader, *r*: remote leader
 - 1. / synchronizes its view
 - 2. I sends a merge request to r
 - *3. r* synchronizes its view
 - 4. r installs a new view with its mergers and sends the view to l
 - 5. *I* installs the new view in its subgroup

Join Group

Lab 1 - Bulletin Board System

Distributed Computing and Systems Chalmers university of technology

Č,

Virtual synchrony

- Achieved by a simple leader-based protocol:
 - Idea:
 - Before a membership change from V₁ to V₂ all messages in V₁ must become stable
 - Protocol: before any membership change
 - The leader activates the Synch protocol \Rightarrow the set, M_{V1} , of messages needed to deliver in V_1 is bounded.
 - The leader waits until live members agree on M_{V1} via sending negative acknowledgements and recovering lost messages (i.e. StblVct = NumCast)

Virtual Synchrony

Lab 1 - Bulletin Board System

Distributed Computing and Systems Chalmers university of technology

-ab 1 - Bulletin Board System

24

Schedule

- The Ensemble system
 - Introduction
 - Architecture and Protocols
 - How does Ensemble achieve the group communication properties?
- The Bulletin Board System

The Bulletin Board System

Bulletin board with messages

- Subject, ID, sender, time
- Arriving messages shall be displayed immediately
- No agreed order of messages is needed
- But: Replies should always be after their parent
 - Take advantage of ensemble to do this
- Peer to peer application
 - The bulletin board is shared
 - No server that keeps the messages
 - Stability while endpoints join and leave
- The application should be able to stand the loss of any client
 - Except the last one
 - Warn client when it is the only one left

Ensembled

- An ensembled process needs to run at each computer
 - If none is running at your computer run /chalmers/groups/cse-ds2/ensemble/ensembled
 - Already runs on: remote{1,2,3,4,5}.student.chalmers.se
- Ensembled is providing the ensemble service
 - Ensemble servers are not centralized servers
 - The server serves one host
 - The servers connect to each other and form the network

Get to know the system

- Look at the documentation:
 - Ensemble tutorial
 - Chapter 8 for the java interface
 - 5.8 for quick view of properties/layers
 - Ensemble reference manual
 - Chapter 11 for more details on the layers
 - For additional information
 - client/java/ensemble/JoinOps.java
 - Under /chalmers/groups/cse-ds2/ensemble/
 - To see how to select layers
 - Do not change JoinOps itself.
- Understand the example program
 - Get the Talk app from the course page
 - Get it to run and figure out how it works