
Software Engineering using Formal Methods
Java Modeling Language

Wolfgang Ahrendt & Josef Svenningsson & Meng Wang

2 October 2012

SEFM: Java Modeling Language /GU 121002 1 / 41

Road-map

first half of the course:

Modelling of distributed and concurrent systems

second half of course:

Deductive Verification of JAVA source code

1. specifying JAVA programs

2. proving JAVA programs correct

SEFM: Java Modeling Language /GU 121002 2 / 41

Road-map

first half of the course:

Modelling of distributed and concurrent systems

second half of course:

Deductive Verification of JAVA source code

1. specifying JAVA programs

2. proving JAVA programs correct

SEFM: Java Modeling Language /GU 121002 2 / 41

What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

SEFM: Java Modeling Language /GU 121002 3 / 41

What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

SEFM: Java Modeling Language /GU 121002 3 / 41

What kind of Specifications

system level specifications
(requirements analysis, GUI, use cases)

important, but
not subject of this course

instead:

unit specification – contracts among implementers on various levels:

I application level – application level

I application level – library level

I library level – library level

SEFM: Java Modeling Language /GU 121002 3 / 41

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

SEFM: Java Modeling Language /GU 121002 4 / 41

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

SEFM: Java Modeling Language /GU 121002 4 / 41

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

SEFM: Java Modeling Language /GU 121002 4 / 41

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I pre-state and post-state

accessible part of pre/post-state

SEFM: Java Modeling Language /GU 121002 4 / 41

Unit Specifications

In the object-oriented setting:

units to be specified are interfaces, classes, and their methods

first focus on methods

methods specified by potentially referring to:

I result value,

I initial values of formal parameters,

I accessible part of pre/post-state

SEFM: Java Modeling Language /GU 121002 4 / 41

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology

contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites

SEFM: Java Modeling Language /GU 121002 5 / 41

Specifications as Contracts

to stress the different roles – obligations – responsibilities in a
specification:

widely used analogy of the specification as a contract

“Design by Contract” methodology

contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites

SEFM: Java Modeling Language /GU 121002 5 / 41

Running Example: ATM.java

public class ATM {

// fields:

private BankCard insertedCard = null;

private int wrongPINCounter = 0;

private boolean customerAuthenticated = false;

// methods:

public void insertCard (BankCard card) { ... }

public void enterPIN (int pin) { ... }

public int accountBalance () { ... }

public int withdraw (int amount) { ... }

public void ejectCard () { ... }

}

SEFM: Java Modeling Language /GU 121002 6 / 41

Informal Specification

very informal Specification of ‘enterPIN (int pin)’:

Enter the PIN that belongs to the currently inserted bank card
into the ATM. If a wrong PIN is entered three times in a row,
the card is confiscated. After having entered the correct PIN,
the customer is regarded as authenticated.

SEFM: Java Modeling Language /GU 121002 7 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.

precondition card is inserted, user not yet authenticated,
pin is correct

postcondition user is authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter < 2 and pin is incorrect

postcondition wrongPINCounter is increased by 1

user is not authenticated

precondition card is inserted, user not yet authenticated,
wrongPINCounter >= 2 and pin is incorrect

postcondition card is confiscated
user is not authenticated

SEFM: Java Modeling Language /GU 121002 8 / 41

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

non-termination and abrupt termination ⇒ next lecture

SEFM: Java Modeling Language /GU 121002 9 / 41

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

non-termination and abrupt termination ⇒ next lecture

SEFM: Java Modeling Language /GU 121002 9 / 41

Meaning of Pre/Post-condition pairs

Definition

A pre/post-condition pair for a method m is
satisfied by the implementation of m if:

When m is called in any state that satisfies the precondition
then in any terminating state of m the postcondition is true.

1. No guarantees are given when the precondition is not satisfied.

2. Termination may or may not be guaranteed.

3. Terminating state may be reached by normal or by abrupt
termination (cf. exceptions).

non-termination and abrupt termination ⇒ next lecture

SEFM: Java Modeling Language /GU 121002 9 / 41

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision
I eventually: automation of program analysis of various kinds:

I static checking
I program verification

SEFM: Java Modeling Language /GU 121002 10 / 41

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision
I eventually: automation of program analysis of various kinds:

I static checking
I program verification

SEFM: Java Modeling Language /GU 121002 10 / 41

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision

I eventually: automation of program analysis of various kinds:
I static checking
I program verification

SEFM: Java Modeling Language /GU 121002 10 / 41

What kind of Specifications

Natural language specs are very important.

but this course’s focus:

“formal” specifications:

Describing contracts of units in a mathematically precise language.

Motivation:

I higher degree of precision
I eventually: automation of program analysis of various kinds:

I static checking
I program verification

SEFM: Java Modeling Language /GU 121002 10 / 41

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 121002 11 / 41

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA

+ FO Logic + pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 121002 11 / 41

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic

+ pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 121002 11 / 41

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants

+ more. . .

SEFM: Java Modeling Language /GU 121002 11 / 41

Java Modeling Language (JML)

JML is a specification language tailored to JAVA.

General JML Philosophy

Integrate

I specification

I implementation

in one single language.

⇒ JML is not external to JAVA

JML
is

JAVA + FO Logic + pre/post-conditions, invariants + more. . .

SEFM: Java Modeling Language /GU 121002 11 / 41

JML Annotations

JML extends JAVA by annotations.

JML annotations include:

4 preconditions

4 postconditions

4 class invariants

4 additional modifiers

8 ‘specification-only’ fields

8 ‘specification-only’ methods

4 loop invariants

4 ...

8 ...

4: in this course, 8: not in this course

SEFM: Java Modeling Language /GU 121002 12 / 41

JML/JAVA integration

JML annotations are attached to JAVA programs
by

writing them directly into the JAVA source code files

not to confuse JAVA compiler:

JML annotations live in in special comments,
ignored by JAVA, recognized by JML tools.

SEFM: Java Modeling Language /GU 121002 13 / 41

JML/JAVA integration

JML annotations are attached to JAVA programs
by

writing them directly into the JAVA source code files

not to confuse JAVA compiler:

JML annotations live in in special comments,
ignored by JAVA, recognized by JML tools.

SEFM: Java Modeling Language /GU 121002 13 / 41

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for JAVA.

SEFM: Java Modeling Language /GU 121002 14 / 41

JML by Example

from the file ATM.java

...

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

...

Everything between /* and */ is invisible for JAVA.

SEFM: Java Modeling Language /GU 121002 14 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 121002 15 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 121002 15 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 121002 15 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

But:

A JAVA comment with ‘@’ as its first character
it is not a comment for JML tools.

JML annotations appear in JAVA comments starting with @.

How about “//”comments?

SEFM: Java Modeling Language /GU 121002 15 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML? I.e. comment out the comment:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 121002 16 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML? I.e. comment out the comment:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 121002 16 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML? I.e. comment out the comment:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 121002 16 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated; @*/

equivalent to:

//@ public normal_behavior

//@ requires !customerAuthenticated;

//@ requires pin == insertedCard.correctPIN;

//@ ensures customerAuthenticated;

The easiest way to comment out JML? I.e. comment out the comment:

/* @ public normal_behavior ... @*/

// @ public normal_behavior

// @ requires !customerAuthenticated;

...

SEFM: Java Modeling Language /GU 121002 16 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

SEFM: Java Modeling Language /GU 121002 17 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

SEFM: Java Modeling Language /GU 121002 17 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

What about the intermediate ‘@’s?

Within a JML annotation, a ‘@’ is ignored:

I if it is the first (non-white) character in the line

I if it is the last character before ‘*/’.

⇒ The blue ‘@’s are not required, but it’s a convention to use them.

SEFM: Java Modeling Language /GU 121002 17 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

SEFM: Java Modeling Language /GU 121002 18 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This is a public specification case:

1. it is accessible from all classes and interfaces

2. it can only mention public fields/methods of this class

2. Can be a problem. Solution later in the lecture.

SEFM: Java Modeling Language /GU 121002 18 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception

(on the top level),
if the caller guarantees all preconditions of this specification case.

SEFM: Java Modeling Language /GU 121002 19 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),

if the caller guarantees all preconditions of this specification case.

SEFM: Java Modeling Language /GU 121002 19 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

Each keyword ending with behavior opens a ‘specification case’.

normal_behavior Specification Case

The method guarantees to not throw any exception (on the top level),
if the caller guarantees all preconditions of this specification case.

SEFM: Java Modeling Language /GU 121002 19 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 121002 20 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 121002 20 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has two preconditions (marked by requires)

1. !customerAuthenticated

2. pin == insertedCard.correctPIN

here:
preconditions are boolean JAVA expressions

in general:
preconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 121002 20 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

specifies only the case where both preconditions are true in pre-state

the above is equivalent to:

/*@ public normal_behavior

@ requires (!customerAuthenticated

@ && pin == insertedCard.correctPIN);

@ ensures customerAuthenticated;

@*/

SEFM: Java Modeling Language /GU 121002 21 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 121002 22 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 121002 22 / 41

JML by Example

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@*/

public void enterPIN (int pin) {

if (...

This specification case has one postcondition (marked by ensures)

I customerAuthenticated

here:
postcondition is boolean JAVA expressions

in general:
postconditions are boolean JML expressions (see below)

SEFM: Java Modeling Language /GU 121002 22 / 41

JML by Example

different specification cases are connected by ‘also’.

/*@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@

@ also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) {

if (...
SEFM: Java Modeling Language /GU 121002 23 / 41

JML by Example

/*@ <spec-case1> also

@

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@*/

public void enterPIN (int pin) { ...

for the first time, JML expression not a JAVA expression

\old(E) means: E evaluated in the pre-state of enterPIN.

E can be any (arbitrarily complex) (JML) expression.

SEFM: Java Modeling Language /GU 121002 24 / 41

JML by Example

/*@ <spec-case1> also <spec-case2> also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@*/

public void enterPIN (int pin) { ...

two postconditions state that:

‘Given the above preconditions, enterPIN guarantees:

insertedCard == null and \old(insertedCard).invalid’

SEFM: Java Modeling Language /GU 121002 25 / 41

JML by Example

Question:

could it be

@ ensures \old(insertedCard.invalid);

instead of

@ ensures \old(insertedCard).invalid;

??

SEFM: Java Modeling Language /GU 121002 26 / 41

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

SEFM: Java Modeling Language /GU 121002 27 / 41

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

SEFM: Java Modeling Language /GU 121002 27 / 41

Specification Cases Complete?

consider spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

what does spec-case-1 not tell about post-state?

recall: fields of class ATM:

insertedCard

customerAuthenticated

wrongPINCounter

what happens with insertCard and wrongPINCounter?

SEFM: Java Modeling Language /GU 121002 27 / 41

Completing Specification Cases

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ ensures insertedCard == \old(insertedCard);

@ ensures wrongPINCounter == \old(wrongPINCounter);

SEFM: Java Modeling Language /GU 121002 28 / 41

Completing Specification Cases

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ ensures insertedCard == \old(insertedCard);

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

SEFM: Java Modeling Language /GU 121002 29 / 41

Completing Specification Cases

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ ensures customerAuthenticated

@ == \old(customerAuthenticated);

@ ensures wrongPINCounter == \old(wrongPINCounter);

SEFM: Java Modeling Language /GU 121002 30 / 41

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 121002 31 / 41

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 121002 31 / 41

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 121002 31 / 41

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 121002 31 / 41

Assignable Clause

unsatisfactory to add

@ ensures loc == \old(loc);

for all locations loc which do not change

instead:
add assignable clause for all locations which may change

@ assignable loc1,...,locn;

Meaning: No location other than loc1, . . . , locn can be assigned to.

Special cases:

No location may be changed:

@ assignable \nothing;

Unrestricted, method allowed to change anything:

@ assignable \everything;

SEFM: Java Modeling Language /GU 121002 31 / 41

Specification Cases with Assignable

completing spec-case-1:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

SEFM: Java Modeling Language /GU 121002 32 / 41

Specification Cases with Assignable

completing spec-case-2:

@ public normal_behavior

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

SEFM: Java Modeling Language /GU 121002 33 / 41

Specification Cases with Assignable

completing spec-case-3:

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard,

@ insertedCard.invalid,

SEFM: Java Modeling Language /GU 121002 34 / 41

Assignable Groups

You can specify groups of locations as assignable, using ‘*’.

example:

@ assignable o.*, a[*];

makes all fields of object o and all locations of array a assignable.

SEFM: Java Modeling Language /GU 121002 35 / 41

JML Modifiers

JML extends the JAVA modifiers by additional modifiers.

The most important ones are:

I spec_public

I pure

Aim: admitting more class elements to be used in JML expressions.

SEFM: Java Modeling Language /GU 121002 36 / 41

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

different solution: use specification-only fields (not covered in this course)

SEFM: Java Modeling Language /GU 121002 37 / 41

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

different solution: use specification-only fields (not covered in this course)

SEFM: Java Modeling Language /GU 121002 37 / 41

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

different solution: use specification-only fields (not covered in this course)

SEFM: Java Modeling Language /GU 121002 37 / 41

JML Modifiers: spec_public

in enterPIN example, pre/post-conditions made heavy use of class fields

But: public specifications can only talk about public fields.

Not desired: make all fields public.

one solution:

I keep the fields private/protected

I make those needed for specification spec_public

private /*@ spec_public @*/ BankCard insertedCard = null;

private /*@ spec_public @*/ int wrongPINCounter = 0;

private /*@ spec_public @*/ boolean customerAuthenticated

= false;

different solution: use specification-only fields (not covered in this course)

SEFM: Java Modeling Language /GU 121002 37 / 41

JML Modifiers: pure

It can be handy to use method calls in JML annotations.
Examples:

I o1.equals(o2)

I li.contains(elem)

I li1.max() < li2.min()

allowed if, and only if method is guaranteed to have no side effects.

In JML, you can specify methods to be ‘pure’:

public /*@ pure @*/ int max() { ...

‘pure’ puts obligation on implementer, not to cause side effects,
but allows to use method in annotations

‘pure’ similar to ‘assignable \nothing;’, but global to method

SEFM: Java Modeling Language /GU 121002 38 / 41

JML Modifiers: pure

It can be handy to use method calls in JML annotations.
Examples:

I o1.equals(o2)

I li.contains(elem)

I li1.max() < li2.min()

allowed if, and only if method is guaranteed to have no side effects.

In JML, you can specify methods to be ‘pure’:

public /*@ pure @*/ int max() { ...

‘pure’ puts obligation on implementer, not to cause side effects,
but allows to use method in annotations

‘pure’ similar to ‘assignable \nothing;’, but global to method

SEFM: Java Modeling Language /GU 121002 38 / 41

JML Modifiers: pure

It can be handy to use method calls in JML annotations.
Examples:

I o1.equals(o2)

I li.contains(elem)

I li1.max() < li2.min()

allowed if, and only if method is guaranteed to have no side effects.

In JML, you can specify methods to be ‘pure’:

public /*@ pure @*/ int max() { ...

‘pure’ puts obligation on implementer, not to cause side effects,
but allows to use method in annotations

‘pure’ similar to ‘assignable \nothing;’, but global to method

SEFM: Java Modeling Language /GU 121002 38 / 41

JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)

I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

SEFM: Java Modeling Language /GU 121002 39 / 41

JML Expressions 6= JAVA Expressions

boolean JML Expressions (to be completed)

I each side-effect free boolean JAVA expression is a boolean JML
expression

I if a and b are boolean JML expressions, and x is a variable
of type t, then the following are also boolean JML expressions:

I !a (“not a”)
I a && b (“a and b”)
I a || b (“a or b”)
I a ==> b (“a implies b”)
I a <==> b (“a is equivalent to b”)
I ...
I ...
I ...
I ...

SEFM: Java Modeling Language /GU 121002 39 / 41

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

to be answered in the next lecture

SEFM: Java Modeling Language /GU 121002 40 / 41

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

to be answered in the next lecture

SEFM: Java Modeling Language /GU 121002 40 / 41

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

to be answered in the next lecture

SEFM: Java Modeling Language /GU 121002 40 / 41

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

to be answered in the next lecture

SEFM: Java Modeling Language /GU 121002 40 / 41

Beyond boolean JAVA expressions

How to express the following?

I an array arr only holds values ≤ 2

I the variable m holds the maximum entry of array arr

I all Account objects in the array accountProxies are stored at the
index corresponding to their respective accountNumber field

I all created instances of class BankCard have different cardNumbers

to be answered in the next lecture

SEFM: Java Modeling Language /GU 121002 40 / 41

Literature for this Lecture

essential reading:

in KeY Book A. Roth and Peter H. Schmitt: Formal Specification.
Chapter 5 only sections 5.1, 5.3, In: B. Beckert, R. Hähnle, and
P. Schmitt, editors. Verification of Object-Oriented Software: The
KeY Approach, vol 4334 of LNCS. Springer, 2006.
(e-version via Chalmers Library)

further reading, all available at
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml:

JML Reference Manual Gary T. Leavens, Erik Poll, Curtis Clifton,
Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, and
Joseph Kiniry.
JML Reference Manual

JML Tutorial Gary T. Leavens, Yoonsik Cheon.
Design by Contract with JML

JML Overview Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A Notation for Detailed Design

SEFM: Java Modeling Language /GU 121002 41 / 41

http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml

	Overview
	Unit Specification
	Running Example
	Informal Specification
	JML
	JML by Example
	Assignable Locations
	JML Modifiers
	JML Expressions
	Literature

