Software Engineering using Formal Methods First-Order Logic

Wolfgang Ahrendt & Josef Svenningsson & Meng Wang

27st September 2012

Install the KeY-Tool...

KeY used in Friday's exercise

Requires: Java ≥ 5

Follow instructions on course page, under:

- ⇒Links, Papers, and Software
- ⇒Go to KeY-SEFM2011 Version

We recommend using Java Web Start:

- start KeY with two clicks (you need to trust our self-signed certificate)
- Java Web Start installed with standard JDK/JRE
- usually browsers know filetype, otherwise open KeY.jnlp with application javaws

Motivation for Introducing First-Order Logic

we will specify JAVA programs with Java Modeling Language (JML)

JML combines

- ▶ JAVA expressions
- ► First-Order Logic (FOL)

SEFM: First-Order Logic CHALMERS 120927 3 / 53

Motivation for Introducing First-Order Logic

we will specify JAVA programs with Java Modeling Language (JML)

JML combines

- ▶ JAVA expressions
- ► First-Order Logic (FOL)

we will verify JAVA programs using Dynamic Logic

Dynamic Logic combines

- ► First-Order Logic (FOL)
- ▶ JAVA programs

SEFM: First-Order Logic CHALMERS

120927

3 / 53

FOL: Language and Calculus

we introduce:

- ► FOL as a language
- (no formal semantics)
- calculus for proving FOL formulas
- KeY system as FOL prover (to start with)

SEFM: First-Order Logic CHALMERS 120927 4 / 53

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

- ▶ a set T_{Σ} of types
- ightharpoonup a set F_{Σ} of function symbols
- a set P_{Σ} of predicate symbols
- a typing α_{Σ}

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

- ▶ a set T_{Σ} of types
- \blacktriangleright a set F_{Σ} of function symbols
- ▶ a set P_{Σ} of predicate symbols
- ▶ a typing α_{Σ}

intuitively, the typing α_{Σ} determines

- for each function and predicate symbol:
 - ▶ its arity, i.e., number of arguments
 - its argument types
- for each function symbol its result type.

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

- ▶ a set T_{Σ} of types
- ightharpoonup a set F_{Σ} of function symbols
- ▶ a set P_{Σ} of predicate symbols
- a typing α_{Σ}

intuitively, the typing α_{Σ} determines

- for each function and predicate symbol:
 - ▶ its arity, i.e., number of arguments
 - its argument types
- for each function symbol its result type.

formally:

- \bullet $\alpha_{\Sigma}(f) \in T_{\Sigma}^* \times T_{\Sigma}$ for all $f \in F_{\Sigma}$ (arity of f is $|\alpha_{\Sigma}(f)| 1$)

 SEFM: First-Order Logic
 CHALMERS
 120927
 5 / 53

```
T_{\Sigma_1} = \{\text{int}\},\ F_{\Sigma_1} = \{+, -\} \cup \{..., -2, -1, 0, 1, 2, ...\},\ P_{\Sigma_1} = \{<\}
```

```
T_{\Sigma_1} = \{\text{int}\},\ F_{\Sigma_1} = \{+, -\} \cup \{..., -2, -1, 0, 1, 2, ...\},\ P_{\Sigma_1} = \{<\}
\alpha_{\Sigma_1}(<) = (\text{int,int})
\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\text{int,int,int})
\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = ... = (\text{int})
```

```
egin{aligned} T_{\Sigma_1} &= \{ 	ext{int} \}, \ F_{\Sigma_1} &= \{ +, - \} \cup \{ ..., -2, -1, 0, 1, 2, ... \}, \ P_{\Sigma_1} &= \{ < \} \ \\ &lpha_{\Sigma_1}(<) &= (	ext{int,int}) \ &lpha_{\Sigma_1}(+) &= lpha_{\Sigma_1}(-) &= (	ext{int,int,int}) \ &lpha_{\Sigma_1}(0) &= lpha_{\Sigma_1}(1) &= lpha_{\Sigma_1}(-1) &= ... &= (	ext{int}) \end{aligned}
```

Constants

A function symbol f with $|\alpha_{\Sigma_1}(f)| = 1$ (i.e., with arity 0) is called *constant symbol*.

Constants

A function symbol f with $|\alpha_{\Sigma_1}(f)| = 1$ (i.e., with arity 0) is called *constant symbol*.

here, the constants are: \dots , -2, -1, 0, 1, 2, \dots

Syntax of First-Order Logic: Signature Cont'd

Type declaration of signature symbols

- ▶ Write τ x; to declare variable x of type τ
- Write $p(\tau_1, \ldots, \tau_r)$; for $\alpha(p) = (\tau_1, \ldots, \tau_r)$
- Write τ $f(\tau_1, \ldots, \tau_r)$; for $\alpha(f) = (\tau_1, \ldots, \tau_r, \tau)$

r = 0 is allowed, then write f instead of f(), etc.

SEFM: First-Order Logic

Syntax of First-Order Logic: Signature Cont'd

Type declaration of signature symbols

- Write τ x; to declare variable x of type τ
- Write $p(\tau_1, \ldots, \tau_r)$; for $\alpha(p) = (\tau_1, \ldots, \tau_r)$
- Write τ $f(\tau_1, \ldots, \tau_r)$; for $\alpha(f) = (\tau_1, \ldots, \tau_r, \tau)$

r = 0 is allowed, then write f instead of f(), etc.

Example

```
Variables integerArray a; int i;
Predicates isEmpty(List); alertOn;
Functions int arrayLookup(int); Object o;
```

Example Signature 1 + Notation

```
typing of Signature 1:
```

```
\begin{split} &\alpha_{\Sigma_1}(<) = (\text{int,int}) \\ &\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\text{int,int,int}) \\ &\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (\text{int}) \end{split}
```

can alternatively be written as:

```
<(int,int);
int +(int,int);
int 0; int 1; int -1; ...
```

```
\begin{split} & T_{\Sigma_2} = \{\text{int, LinkedIntList}\}, \\ & F_{\Sigma_2} = \{\text{null, new, elem, next}\} \cup \{\dots, -2, -1, 0, 1, 2, \dots\} \\ & P_{\Sigma_2} = \{\} \end{split}
```

```
\begin{split} & T_{\Sigma_2} = \{\text{int, LinkedIntList}\}, \\ & F_{\Sigma_2} = \{\text{null, new, elem, next}\} \cup \{\dots, -2, -1, 0, 1, 2, \dots\} \\ & P_{\Sigma_2} = \{\} \end{split}
```

intuitively, elem and next model fields of LinkedIntList objects

```
\begin{split} & T_{\Sigma_2} = \{\text{int, LinkedIntList}\}, \\ & F_{\Sigma_2} = \{\text{null, new, elem, next}\} \cup \{\dots, -2, -1, 0, 1, 2, \dots\} \\ & P_{\Sigma_2} = \{\} \end{split}
```

intuitively, elem and next model fields of LinkedIntList objects

type declarations:

LinkedIntList next(LinkedIntList);

```
T_{\Sigma_2} = \{ \text{int, LinkedIntList} \},
F_{\Sigma_2} = \{ \text{null, new, elem, next} \} \cup \{ \dots, -2, -1, 0, 1, 2, \dots \}
P_{\Sigma_2} = \{\}
intuitively, elem and next model fields of LinkedIntList objects
type declarations:
LinkedIntList null;
LinkedIntList new(int,LinkedIntList);
int elem(LinkedIntList):
```

```
T_{\Sigma_2} = \{ \text{int, LinkedIntList} \},
F_{\Sigma_2} = \{ \text{null, new, elem, next} \} \cup \{ \dots, -2, -1, 0, 1, 2, \dots \}
P_{\Sigma_2} = \{\}
intuitively, elem and next model fields of LinkedIntList objects
type declarations:
LinkedIntList null;
LinkedIntList new(int,LinkedIntList);
int elem(LinkedIntList):
LinkedIntList next(LinkedIntList);
and as before:
int 0; int 1; int -1; ...
```

First-Order Terms

We assume a set V of variables $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset)$. Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

First-Order Terms

We assume a set V of variables $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset)$. Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

Terms are defined recursively:

Terms

A first-order term of type $au \in \mathcal{T}_{\Sigma}$

- \blacktriangleright is either a variable of type τ , or
- ▶ has the form $f(t_1, ..., t_n)$, where $f \in F_{\Sigma}$ has result type τ , and each t_i is term of the correct type, following the typing α_{Σ} of f.

First-Order Terms

We assume a set V of variables $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset)$. Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

Terms are defined recursively:

Terms

A first-order term of type $au \in T_{\Sigma}$

- \blacktriangleright is either a variable of type τ , or
- ▶ has the form $f(t_1, ..., t_n)$, where $f \in F_{\Sigma}$ has result type τ , and each t_i is term of the correct type, following the typing α_{Σ} of f.

If f is a constant symbol, the term is written f, instead of f().

```
example terms over \Sigma_1: (assume variables int v_1; int v_2;)
```

```
example terms over \Sigma_1: (assume variables int v_1; int v_2;)
```

- ▶ -7
- **►** +(-2, 99)
- **▶** -(7, 8)
- **►** +(-(7, 8), 1)
- \rightarrow +(-(v_1 , 8), v_2)

```
example terms over \Sigma_1: (assume variables int v_1; int v_2;)
```

- **▶** -7
- **►** +(-2, 99)
- **▶** -(7, 8)
- \rightarrow +(-(7, 8), 1)
- \rightarrow +(-(v_1 , 8), v_2)

some variants of FOL allow infix notation of functions:

- **▶** -2 + 99
- ▶ 7 8
- \blacktriangleright (7 8) + 1
- $(v_1 8) + v_2$

```
example terms over \Sigma_2: (assume variables LinkedIntList o; int v;)
```

```
example terms over \Sigma_2: (assume variables LinkedIntList o; int v;)
```

- **▶** -7
- ▶ null
- ▶ new(13, null)
- ▶ elem(new(13, null))
- next(next(o))

```
example terms over \Sigma_2: (assume variables LinkedIntList o; int v;)
```

- **▶** -7
- ▶ null
- ▶ new(13, null)
- ▶ elem(new(13, null))
- next(next(o))

for first-order functions modeling object fields, we allow dotted postfix notation:

- ► new(13, null).elem
- o.next.next

Atomic Formulas

Logical Atoms

Given a signature Σ .

A logical atom has either of the forms

- ► true
- false
- ▶ $t_1 = t_2$ ("equality"), where t_1 and t_2 have the same type.
- ▶ $p(t_1,...,t_n)$ ("predicate"), where $p \in P_{\Sigma}$, and each t_i is term of the correct type, following the typing α_{Σ} of p.

```
example formulas over \Sigma_1: (assume variable int v;)
```

```
example formulas over \Sigma_1: (assume variable int v;)
```

- ▶ 7 = 8
- ▶ 7 < 8</p>
- ▶ -2 *v* < 99
- V < (v + 1)

```
example formulas over \Sigma_2: (assume variables LinkedIntList o; int v;)
```

```
example formulas over \Sigma_2: (assume variables LinkedIntList o; int v;)
```

- ightharpoonup new(13, null) = null
- ▶ elem(new(13, null)) = 13
- next(new(13, null)) = null
- ightharpoonup next(next(o)) = o

General Formulas

first-order formulas are defined recursively:

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:
 - $\rightarrow \neg \phi$ ("not ϕ ")
 - $\blacktriangleright \phi \wedge \psi$ (" ϕ and ψ ")

 - $\phi \rightarrow \psi$ (" ϕ implies ψ ")
 - $\phi \leftrightarrow \psi$ (" ϕ is equivalent to ψ ")

SEFM: First-Order Logic CHALMERS 120927 16 / 53

General Formulas

first-order formulas are defined recursively:

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:
 - ► $\neg \phi$ ("not ϕ ") ► $\phi \land \psi$ (" ϕ and ψ ") ► $\phi \lor \psi$ (" ϕ or ψ ")
 - $\bullet \phi \rightarrow \psi$ (" ϕ implies ψ ")
 - $\phi \leftrightarrow \psi$ (" ϕ is equivalent to ψ ")
 - ▶ $\forall \tau x$; ϕ ("for all x of type τ holds ϕ ")

SEFM: First-Order Logic CHALMERS 120927 16 / 53

General Formulas

first-order formulas are defined recursively:

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:

```
▶ \neg \phi ("not \phi")

▶ \phi \land \psi ("\phi and \psi")

▶ \phi \lor \psi ("\phi or \psi")

▶ \phi \rightarrow \psi ("\phi implies \psi")

▶ \phi \leftrightarrow \psi ("\phi is equivalent to \psi")

▶ \forall \tau x; \phi ("for all x of type \tau holds \phi")

▶ \exists \tau x; \phi ("there exists an x of type \tau such that \phi")
```

SEFM: First-Order Logic CHALMERS 120927 16 / 53

General Formulas

first-order formulas are defined recursively:

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:

```
▶ \neg \phi ("not \phi")

▶ \phi \land \psi ("\phi and \psi")

▶ \phi \lor \psi ("\phi or \psi")

▶ \phi \rightarrow \psi ("\phi implies \psi")

▶ \phi \leftrightarrow \psi ("\phi is equivalent to \psi")

▶ \forall \tau x; \phi ("for all x of type \tau holds \phi")

▶ \exists \tau x; \phi ("there exists an x of type \tau such that \phi")
```

In $\forall \tau x$; ϕ and $\exists \tau x$; ϕ the variable x is 'bound' (i.e., 'not free').

 SEFM: First-Order Logic
 CHALMERS
 120927
 16 / 53

General Formulas

first-order formulas are defined recursively:

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:

```
▶ \neg \phi ("not \phi")

▶ \phi \land \psi ("\phi and \psi")

▶ \phi \lor \psi ("\phi or \psi")

▶ \phi \rightarrow \psi ("\phi implies \psi")

▶ \phi \leftrightarrow \psi ("\phi is equivalent to \psi")

▶ \forall \tau x; \phi ("for all x of type \tau holds \phi")

▶ \exists \tau x; \phi ("there exists an x of type \tau such that \phi")
```

In $\forall \tau x$; ϕ and $\exists \tau x$; ϕ the variable x is 'bound' (i.e., 'not free'). Formulas with no free variable are 'closed'.

(signatures/types left out here)

Example (There are at least two elements)

(signatures/types left out here)

Example (There are at least two elements)

$$\exists x, y; \neg (x = y)$$

(signatures/types left out here)

Example (Strict partial order)

(signatures/types left out here)

Example (Strict partial order)

Irreflexivity
$$\forall x; \neg(x < x)$$

Asymmetry $\forall x; \forall y; (x < y \rightarrow \neg(y < x))$
Transitivity $\forall x; \forall y; \forall z;$
 $(x < y \land y < z \rightarrow x < z)$

(signatures/types left out here)

Example (Strict partial order)

Irreflexivity
$$\forall x; \neg(x < x)$$

Asymmetry $\forall x; \forall y; (x < y \rightarrow \neg(y < x))$
Transitivity $\forall x; \forall y; \forall z;$
 $(x < y \land y < z \rightarrow x < z)$

(is any of the three formulas redundant?)

Domain

A domain ${\mathcal D}$ is a set of elements which are (potentially) the meaning of terms and variables.

Domain

A domain $\mathcal D$ is a set of elements which are (potentially) the *meaning* of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Domain

A domain $\mathcal D$ is a set of elements which are (potentially) the *meaning* of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I} , a closed formula evaluates to either \mathcal{T} or \mathcal{F} .

Domain

A domain $\mathcal D$ is a set of elements which are (potentially) the *meaning* of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I} , a closed formula evaluates to either T or F.

Validity

A closed formula is valid if it evaluates to T in all \mathcal{D} and \mathcal{I} .

Domain

A domain $\mathcal D$ is a set of elements which are (potentially) the *meaning* of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I} , a closed formula evaluates to either \mathcal{T} or \mathcal{F} .

Validity

A closed formula is valid if it evaluates to T in all \mathcal{D} and \mathcal{I} .

In the context of specification/verification of programs: each $(\mathcal{D}, \mathcal{I})$ is called a 'state'.

SEFM: First-Order Logic

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

The following formulas are valid:

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

The following formulas are valid:

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) \leftrightarrow

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- $(true \land \phi) \leftrightarrow \phi$
- (false $\lor \phi$) \leftrightarrow

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- $(true \land \phi) \leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- $(true \land \phi) \leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- true $\lor \phi$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- $(true \land \phi) \leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\blacktriangleright \neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- $(true \land \phi) \leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- ightharpoonup true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $\qquad (\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\blacktriangleright \neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow {
 m true}$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\blacktriangleright \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- ightharpoonup true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow {
 m true}$
- false $\rightarrow \phi$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\blacktriangleright \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- \triangleright true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow {
 m true}$
- false $\rightarrow \phi$
- (true $\rightarrow \phi$) \leftrightarrow

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\rightarrow \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- \triangleright true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow {
 m true}$
- $false \rightarrow \phi$
- $(true \rightarrow \phi) \leftrightarrow \phi$

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\blacktriangleright \neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\rightarrow \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- ightharpoonup true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow true$
- false $\rightarrow \phi$
- (true $\rightarrow \phi$) $\leftrightarrow \phi$
- \bullet ($\phi \rightarrow$ false) \leftrightarrow

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not).

- $\neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\rightarrow \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- ightharpoonup true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow true$
- false $\rightarrow \phi$
- (true $\rightarrow \phi$) $\leftrightarrow \phi$
- \bullet ($\phi \rightarrow false$) $\leftrightarrow \neg \phi$

Assume that x is the only variable which may appear freely in ϕ or ψ .

Assume that x is the only variable which may appear freely in ϕ or ψ .

Assume that x is the only variable which may appear freely in ϕ or ψ .

Assume that x is the only variable which may appear freely in ϕ or ψ .

Assume that x is the only variable which may appear freely in ϕ or ψ .

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$

Assume that x is the only variable which may appear freely in ϕ or ψ .

- $\blacktriangleright \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $ightharpoonup \neg (\forall \ \tau \ x; \ \phi) \leftrightarrow \exists \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \wedge \psi) \leftrightarrow$

Assume that x is the only variable which may appear freely in ϕ or ψ .

- $\blacktriangleright \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$

Assume that x is the only variable which may appear freely in ϕ or ψ .

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ \mathsf{x}; \ \phi \lor \psi) \leftrightarrow$

Assume that x is the only variable which may appear freely in ϕ or ψ .

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\exists \ \tau \ x; \ \phi) \lor (\exists \ \tau \ x; \ \psi)$

Assume that x is the only variable which may appear freely in ϕ or ψ .

The following formulas are valid:

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $ightharpoonup \neg (\forall \ \tau \ x; \ \phi) \leftrightarrow \exists \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ \mathsf{x}; \ \phi \lor \psi) \leftrightarrow (\exists \ \tau \ \mathsf{x}; \ \phi) \lor (\exists \ \tau \ \mathsf{x}; \ \psi)$

Are the following formulas also valid?

Assume that x is the only variable which may appear freely in ϕ or ψ .

The following formulas are valid:

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $ightharpoonup \neg (\forall \ \tau \ x; \ \phi) \leftrightarrow \exists \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\exists \ \tau \ x; \ \phi) \lor (\exists \ \tau \ x; \ \psi)$

Are the following formulas also valid?

 $(\forall \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \lor (\forall \ \tau \ x; \ \psi)$

Assume that x is the only variable which may appear freely in ϕ or ψ .

The following formulas are valid:

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $ightharpoonup \neg (\forall \ \tau \ x; \ \phi) \leftrightarrow \exists \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\exists \ \tau \ x; \ \phi) \lor (\exists \ \tau \ x; \ \psi)$

Are the following formulas also valid?

- $(\forall \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \lor (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\exists \ \tau \ x; \ \phi) \land (\exists \ \tau \ x; \ \psi)$

Remark on Concrete Syntax

	Text book	Spin	KeY
Negation	7	ļ.	!
Conjunction	\wedge	&&	&
Disjunction	\vee		
Implication	\rightarrow , \supset	->	->
Equivalence	\leftrightarrow	<->	<->
Universal Quantifier	$\forall x; \phi$	n/a	\forall τ x; ϕ
Existential Quantifier	∃ <i>x</i> ; <i>φ</i>	n/a	\exists τ x; ϕ
Value equality	≐	==	=

Part I

Sequent Calculus for FOL

Prove Validity of ϕ by syntactic transformation of ϕ

Prove Validity of ϕ by syntactic transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \implies \underbrace{\phi_1, \dots, \phi_r}_{\text{Succedent}}$$

Prove Validity of ϕ by syntactic transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \quad \Longrightarrow \quad \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

has same meaning as

$$(\psi_1 \wedge \cdots \wedge \psi_m) \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

Prove Validity of ϕ by syntactic transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \quad \Longrightarrow \quad \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

has same meaning as

$$(\psi_1 \wedge \cdots \wedge \psi_m) \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

which has same meaning (for closed formulas ψ_i, ϕ_i) as

$$\{\psi_1,\ldots,\psi_m\} \models \phi_1 \vee \cdots \vee \phi_n$$

Notation for Sequents

$$\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Notation for Sequents

$$\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

 ϕ,ψ,\dots match formulas, Γ,Δ,\dots match sets of formulas Characterize infinitely many sequents with a single schematic sequent

$$\Gamma \implies \phi \wedge \psi, \Delta$$

Matches any sequent with occurrence of conjunction in succedent

Call $\phi \wedge \psi$ main formula and Γ, Δ side formulas of sequent

Any sequent of the form $\Gamma, \phi \implies \phi, \Delta$ is logically valid: axiom

SEFM: First-Order Logic

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

$$\mathsf{RuleName} \xrightarrow{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\mathsf{Premisses}}} \underbrace{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\mathsf{Premisses}}}_{\mathsf{Conclusion}}$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

Meaning: For proving the Conclusion, it suffices to prove all Premisses.

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\overbrace{ \begin{matrix} \Gamma_1 \Rightarrow \Delta_1 & \cdots & \Gamma_r \Rightarrow \Delta_r \end{matrix} }^{\text{Premisses}}$$

$$\underbrace{ \begin{matrix} \Gamma_1 \Rightarrow \Delta_1 & \cdots & \Gamma_r \Rightarrow \Delta_r \end{matrix} }_{\text{Conclusion}}$$

Meaning: For proving the Conclusion, it suffices to prove all Premisses.

Example

$$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \land \psi, \Delta}$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\Gamma_2 \Rightarrow \Delta}_{\text{Conclusion}}}$$

Meaning: For proving the Conclusion, it suffices to prove all Premisses.

Example

$$\label{eq:definition} \operatorname{andRight} \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \, \wedge \, \psi, \Delta}$$

Admissible to have no premisses (iff conclusion is valid, eg axiom)

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \cdots \Gamma_r \Rightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\Gamma_2 \Rightarrow \Delta_1 \cdots \Gamma_r \Rightarrow \Delta_r}_{\text{Conclusion}}}$$

Meaning: For proving the Conclusion, it suffices to prove all Premisses.

Example

$$\label{eq:definition} \operatorname{andRight} \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \, \wedge \, \psi, \Delta}$$

Admissible to have no premisses (iff conclusion is valid, eg axiom)

A rule is sound (correct) iff the validity of its premisses implies the validity of its conclusion.

main	left side (antecedent)	right side (succedent)
not	$\Gamma \Longrightarrow \phi, \Delta$	$\Gamma, \phi \Longrightarrow \Delta$
IIOL	$\Gamma, \neg \phi \Longrightarrow \Delta$	$\Gamma \Longrightarrow \neg \phi, \Delta$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$ \begin{array}{c} \Gamma, \phi \Rightarrow \Delta \\ \hline \Gamma \Rightarrow \neg \phi, \Delta \end{array} $
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\frac{\Gamma, \phi \Longrightarrow \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \vee \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \land \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{ c c c }\hline \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\\hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \vee \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta} $	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$

close
$$\overline{\Gamma, \phi \Longrightarrow \phi, \Delta}$$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{ c c c }\hline \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\\hline \Gamma, \phi \to \psi \Longrightarrow \Delta \\\hline \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$

close $\frac{}{\Gamma, \phi \Rightarrow \phi, \Delta}$ true $\frac{}{\Gamma \Rightarrow \mathrm{true}, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \vee \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$
close ${\Gamma,\phi\Rightarrow\phi,\Delta}$ true ${\Gamma\Rightarrow\mathrm{true},\Delta}$ false ${\Gamma,\mathrm{false}\Rightarrow\Delta}$		

SEFM: First-Order Logic

Sequent Calculus Proofs

Goal to prove:
$$\mathcal{G} = \psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$$

- find rule $\mathcal R$ whose conclusion matches $\mathcal G$
- \blacktriangleright instantiate $\mathcal R$ such that conclusion identical to $\mathcal G$
- ightharpoonup recursively find proofs for resulting premisses $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- ▶ tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as JAVA Swing tree

- \Rightarrow $(p \land (p \rightarrow q)) \rightarrow q$

$$\cfrac{p \land (p \rightarrow q) \Longrightarrow q}{\Longrightarrow (p \land (p \rightarrow q)) \rightarrow q}$$

$$p, (p
ightarrow q) \Longrightarrow q \ p \wedge (p
ightarrow q) \Longrightarrow q \ \Longrightarrow (p \wedge (p
ightarrow q))
ightarrow q$$

$$\frac{\text{CLOSE} \xrightarrow{p} \Rightarrow q, p}{p \Rightarrow q} \xrightarrow{p} \frac{\text{CLOSE}}{p, q \Rightarrow q} \\
\frac{p, (p \to q) \Rightarrow q}{p \land (p \to q) \Rightarrow q} \\
\Rightarrow (p \land (p \to q)) \to q}$$

$$\begin{array}{c}
\text{CLOSE} \xrightarrow{*} & \xrightarrow{*} & \xrightarrow{p, \ q \Rightarrow q} \text{CLOSE} \\
\hline
p, (p \to q) \Rightarrow q \\
\hline
p \land (p \to q) \Rightarrow q \\
\Rightarrow (p \land (p \to q)) \to q
\end{array}$$

A proof is closed iff all its branches are closed

prop.key

Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 $\forall \text{ int } x$; (even(x) $\rightarrow \text{divByTwo}(x)$)

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 $\forall \text{ int } x$; (even(x) $\rightarrow \text{divByTwo}(x)$)

Let c be an arbitrary number

Declare "unused" constant int c

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 $\forall \text{ int } x$; (even(x) $\rightarrow \text{divByTwo}(x)$)

Let c be an arbitrary number Declare "unused" constant int c

The even number c is divisible by 2 prove $even(c) \rightarrow divByTwo(c)$

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 $\forall \text{ int } x$; (even(x) $\rightarrow \text{divByTwo}(x)$)

Let c be an arbitrary number Declare "unused" constant int c

The even number c is divisible by 2 prove $even(c) \rightarrow divByTwo(c)$

Sequent rule ∀-right

forallRight
$$\frac{\Gamma \Longrightarrow [x/c]\,\phi,\Delta}{\Gamma \Longrightarrow \forall\,\tau\,x;\,\phi,\Delta}$$

- $[x/c] \phi$ is result of replacing each occurrence of x in ϕ with c
- ightharpoonup c new constant of type au

Proving an existentially quantified formula

Claim: $\exists \tau x; \phi$ is true

How is such a claim proved in mathematics?

Proving an existentially quantified formula

Claim: $\exists \tau x$; ϕ is true

How is such a claim proved in mathematics?

There is at least one prime number $\exists int x$; prime(x)

Proving an existentially quantified formula

Claim: $\exists \tau x$; ϕ is true

How is such a claim proved in mathematics?

There is at least one prime number $\exists int x$; prime(x)

Provide any "witness", say, 7 Use variable-free term int 7

```
Proving an existentially quantified formula

Claim: \exists \tau x; \phi is true

How is such a claim proved in mathematics?

There is at least one prime number \exists \operatorname{int} x; \operatorname{prime}(x)
```

Use variable-free term int 7

7 is a prime number prime(7)

Provide any "witness", say, 7

Proving an existentially quantified formula

Claim: $\exists \tau x$; ϕ is true

How is such a claim proved in mathematics?

There is at least one prime number $\exists int x$; prime(x)

Provide any "witness", say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
$$\frac{\Gamma \Longrightarrow [x/t] \phi, \ \exists \tau x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x; \ \phi, \Delta}$$

- ightharpoonup t any variable-free term of type au
- ▶ Proof might not work with t! Need to keep premise to try again

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; $(\operatorname{prime}(x) \to \operatorname{odd}(x))$

SEFM: First-Order Logic CHALMERS 120927

31 / 53

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; (prime(x) $\rightarrow \operatorname{odd}(x)$)

In particular, this holds for 17 Use variable-free term int 17

SEFM: First-Order Logic

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; $(\operatorname{prime}(x) \to \operatorname{odd}(x))$

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd $prime(17) \rightarrow odd(17)$

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; (prime(x) $\rightarrow \operatorname{odd}(x)$)

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd $prime(17) \rightarrow odd(17)$

Sequent rule ∀-left

forallLeft
$$\frac{\Gamma, \forall \tau \, x; \, \phi, \, [x/t'] \, \phi \Longrightarrow \Delta}{\Gamma, \forall \tau \, x; \, \phi \Longrightarrow \Delta}$$

- ightharpoonup t' any variable-free term of type au
- ▶ We might need other instances besides t'! Keep premise $\forall \tau x$; ϕ

Using an existentially quantified formula

We assume $\exists \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

Using an existentially quantified formula

We assume $\exists \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future reference.

Using an existentially quantified formula

We assume $\exists \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future reference.

Sequent rule ∃-left

existsLeft
$$\frac{\Gamma, [x/c] \phi \Rightarrow \Delta}{\Gamma, \exists \tau x; \phi \Rightarrow \Delta}$$

ightharpoonup c new constant of type au

Using an existentially quantified formula

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero.

$$\neg(x \doteq 0), \neg(y \doteq 0)$$

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

$$\neg (x \doteq 0), \neg (y \doteq 0), \exists int \ k; \ k * x \doteq y \Longrightarrow$$

 SEFM: First-Order Logic
 CHALMERS
 120927
 33 / 53

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: $(y/x) * x \doteq y$ ('/') is division on integers, i.e. the equation is not always true, e.g. x = 2, y = 1

$$\neg(x \doteq 0), \neg(y \doteq 0), \exists \text{ int } k; \ k * x \doteq y \Longrightarrow (y/x) * x \doteq y$$

 SEFM: First-Order Logic
 CHALMERS
 120927
 33 / 53

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: $(y/x) * x \doteq y$ ('/') is division on integers, i.e. the equation is not always true, e.g. x = 2, y = 1

Proof: We know x divides y, i.e. there exists a k such that k * x = y.

Let now c denote such a k.

$$\neg(x \doteq 0), \neg(y \doteq 0), c * x \doteq y \Longrightarrow (y/x) * x \doteq y$$
$$\neg(x \doteq 0), \neg(y \doteq 0), \exists \text{ int } k; \ k * x \doteq y \Longrightarrow (y/x) * x \doteq y$$

 SEFM: First-Order Logic
 CHALMERS
 120927
 33 / 53

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: $(y/x) * x \doteq y$ ('/' is division on integers, i.e. the equation is not always true, e.g. x = 2, y = 1)

Proof: We know x divides y, i.e. there exists a k such that $k * x \doteq y$. Let now c denote such a k. Hence we can replace y by c * x on the right side (see slide 35).

$$\frac{\neg(x \doteq 0), \neg(y \doteq 0), c * x \doteq y \Longrightarrow ((c * x)/x) * x \doteq y}{\neg(x \doteq 0), \neg(y \doteq 0), c * x \doteq y \Longrightarrow (y/x) * x \doteq y}$$
$$\frac{\neg(x \doteq 0), \neg(y \doteq 0), \exists \text{ int } k; k * x \doteq y \Longrightarrow (y/x) * x \doteq y}{\neg(x \doteq 0), \neg(y \doteq 0), \exists \text{ int } k; k * x \doteq y \Longrightarrow (y/x) * x \doteq y}$$

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: $(y/x) * x \doteq y$ ('/') is division on integers, i.e. the equation is not always true, e.g. x = 2, y = 1

Proof: We know x divides y, i.e. there exists a k such that $k * x \doteq y$. Let now c denote such a k. Hence we can replace y by c * x on the right side (see slide 35). ...

$$\begin{array}{c}
 \vdots \\
 \neg(x \doteq 0), \neg(y \doteq 0), c * x \doteq y \Longrightarrow ((c * x)/x) * x \doteq y \\
 \neg(x \doteq 0), \neg(y \doteq 0), c * x \doteq y \Longrightarrow (y/x) * x \doteq y \\
 \neg(x \doteq 0), \neg(y \doteq 0), \exists \text{ int } k; k * x \doteq y \Longrightarrow (y/x) * x \doteq y
\end{array}$$

Example (A simple theorem about binary relations)

$$\exists x; \forall y; p(x,y) \Longrightarrow \forall y; \exists x; p(x,y)$$

Untyped logic: let static type of x and y be \top

Example (A simple theorem about binary relations)

$$\frac{\forall y; \ p(c,y) \Longrightarrow \forall y; \ \exists x; \ p(x,y)}{\exists x; \ y; \ p(x,y) \Longrightarrow \forall y; \ \exists x; \ p(x,y)}$$

 \exists -left: substitute new constant c of type \top for x

Example (A simple theorem about binary relations)

$$\frac{\forall y; \ p(c,y) \Rightarrow \exists x; \ p(x,d)}{\forall y; \ p(c,y) \Rightarrow \forall y; \ \exists x; \ p(x,y)}$$
$$\exists x; \ \forall y; \ p(x,y) \Rightarrow \forall y; \ \exists x; \ p(x,y)$$

 \forall -right: substitute new constant d of type \top for y

Example (A simple theorem about binary relations)

$$p(c, d), \forall y; p(c, y) \Rightarrow \exists x; p(x, d)$$

$$\forall y; p(c, y) \Rightarrow \exists x; p(x, d)$$

$$\forall y; p(c, y) \Rightarrow \forall y; \exists x; p(x, y)$$

$$\exists x; \forall y; p(x, y) \Rightarrow \forall y; \exists x; p(x, y)$$

 \forall -left: free to substitute any term of type \top for y, choose d

Example (A simple theorem about binary relations)

$$\begin{array}{c}
p(c,d), \forall y; p(c,y) \Longrightarrow p(c,d), \exists x; p(x,y) \\
p(c,d), \forall y; p(c,y) \Longrightarrow \exists x; p(x,d) \\
\forall y; p(c,y) \Longrightarrow \exists x; p(x,d) \\
\forall y; p(c,y) \Longrightarrow \forall y; \exists x; p(x,y) \\
\exists x; \forall y; p(x,y) \Longrightarrow \forall y; \exists x; p(x,y)
\end{array}$$

 \exists -right: free to substitute any term of type \top for x, choose c

Example (A simple theorem about binary relations)

Close

Example (A simple theorem about binary relations)

Demo

relSimple.key

Using an equation between terms

We assume $t \doteq t'$ is true

How is such a fact used in a mathematical proof?

Using an equation between terms

We assume $t \doteq t'$ is true

How is such a fact used in a mathematical proof?

Use
$$x \doteq y - 1$$
 to simplify $x + 1/y$ $x \doteq y - 1 \Rightarrow 1 \doteq x + 1/y$

$$x \doteq y - 1 \Longrightarrow 1 \doteq x + 1/y$$

Using an equation between terms

We assume $t \doteq t'$ is true

How is such a fact used in a mathematical proof?

Use
$$x \doteq y-1$$
 to simplify $x+1/y$ $x \doteq y-1 \Longrightarrow 1 \doteq x+1/y$

Replace x in conclusion with right-hand side of equation

120927

35 / 53

Using an equation between terms

We assume $t \doteq t'$ is true

How is such a fact used in a mathematical proof?

Use
$$x \doteq y-1$$
 to simplify $x+1/y$ $x \doteq y-1 \Rightarrow 1 \doteq x+1/y$

Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y-1+1/y $x \doteq y-1 \Rightarrow 1 \doteq y-1+1/y$

Using an equation between terms

We assume $t \doteq t'$ is true

How is such a fact used in a mathematical proof?

Use
$$x \doteq y-1$$
 to simplify $x+1/y$ $x \doteq y-1 \Longrightarrow 1 \doteq x+1/y$

Replace x in conclusion with right-hand side of equation

We know:
$$x+1/y$$
 equal to $y-1+1/y$ $x \doteq y-1 \Longrightarrow 1 \doteq y-1+1/y$

Sequent rule ≐-left

$$\mathsf{applyEqL} \ \frac{ \Gamma, t \doteq t', [t/t'] \, \phi \Longrightarrow \Delta }{ \Gamma, t \doteq t', \phi \Longrightarrow \Delta } \quad \mathsf{applyEqR} \ \frac{ \Gamma, t \doteq t' \Longrightarrow [t/t'] \, \phi, \Delta }{ \Gamma, t \doteq t' \Longrightarrow \phi, \Delta }$$

- ► Always replace left- with right-hand side (use eqSymm if necessary)
- ▶ t,t' variable-free terms of the same type

Proving Validity of First-Order Formulas Cont'd

Closing a subgoal in a proof

▶ We derived a sequent that is obviously valid

close
$$\frac{}{\Gamma, \phi \Rightarrow \phi, \Delta}$$
 true $\frac{}{\Gamma \Rightarrow \mathrm{true}, \Delta}$ false $\frac{}{\Gamma, \mathrm{false} \Rightarrow \Delta}$

▶ We derived an equation that is obviously valid

eqClose
$$T \Rightarrow t \doteq t, \Delta$$

Sequent Calculus for FOL at One Glance

	left side, antecedent	right side, succedent
∀ ∃	$ \frac{\Gamma, \forall \tau x; \phi, [x/t'] \phi \Longrightarrow \Delta}{\Gamma, \forall \tau x; \phi \Longrightarrow \Delta} $ $ \Gamma, [x/c] \phi \Longrightarrow \Delta $	$ \frac{\Gamma \Rightarrow [x/c] \phi, \Delta}{\Gamma \Rightarrow \forall \tau x; \phi, \Delta} $ $ \Gamma \Rightarrow [x/t'] \phi, \exists \tau x; \phi, \Delta $
_	$\Gamma, \exists \tau x; \phi \Longrightarrow \Delta$	$\Gamma \Longrightarrow \exists \tau x; \; \phi, \Delta$
Ė	$\frac{\Gamma, t \doteq t' \Longrightarrow [t/t'] \phi, \Delta}{\Gamma, t \doteq t' \Longrightarrow \phi, \Delta}$	$\Gamma \Longrightarrow t \doteq t, \Delta$
	(+ application rule on left side)	

- ▶ $[t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- t,t' variable-free terms of type τ
- c **new** constant of type τ (occurs not on current proof branch)
- Equations can be reversed by commutativity

Recap: 'Propositional' Sequent Calculus Rules

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$
close ${\Gamma,\phi\Rightarrow\phi,\Delta}$ true ${\Gamma\Rightarrow\mathrm{true},\Delta}$ false ${\Gamma,\mathrm{false}\Rightarrow\Delta}$		

SEFM: First-Order Logic

Features of the KeY Theorem Prover

Demo

rel.key, twoInstances.key

Feature List

- ► Can work on multiple proofs simultaneously (task list)
- Proof trees visualized as JAVA Swing tree
- ▶ Point-and-click navigation within proof
- Undo proof steps, prune proof trees
- ▶ Pop-up menu with proof rules applicable in pointer focus
- Preview of rule effect as tool tip
- Quantifier instantiation and equality rules by drag-and-drop
- Possible to hide (and unhide) parts of a sequent
- Saving and loading of proofs

Literature for this Lecture

essential:

W. Ahrendt Using KeY Chapter 10 in [KeYbook]

further reading:

M. Giese
 First-Order Logic
 Chapter 2 in [KeYbook]

KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors, Verification of Object-Oriented Software: The KeY Approach, vol 4334 of *LNCS* (Lecture Notes in Computer Science), Springer, 2006 (access via Chalmers library → E-books → Lecture Notes in Computer Science)

Part II

Appendix: First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- ▶ In first-order logic we must assign meaning to:
 - variables bound in quantifiers
 - constant and function symbols
 - predicate symbols
- ► Each variable or function value may denote a different object
- ► Respect typing: int i, List 1 must denote different objects

What we need (to interpret a first-order formula)

- 1. A collection of typed universes of objects
- 2. A mapping from variables to objects
- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

SEFM: First-Order Logic CHALMERS 120927 42 / 53

First-Order Domains/Universes

1. A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set $\mathcal D$ of objects is a universe or domain Each element of $\mathcal D$ has a fixed type given by $\delta:\mathcal D\to \tau$

- Notation for the domain elements of type $\tau \in \mathcal{T}$: $\mathcal{D}^{\tau} = \{d \in \mathcal{D} \mid \delta(d) = \tau\}$
- ▶ Each type $\tau \in \mathcal{T}$ must 'contain' at least one domain element: $\mathcal{D}^{\tau} \neq \emptyset$

First-Order States

- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

Definition (First-Order State)

Let $\mathcal D$ be a domain with typing function δ

Let f be declared as τ $f(\tau_1, \ldots, \tau_r)$;

Let p be declared as $p(\tau_1, \ldots, \tau_r)$;

Let
$$\mathcal{I}(f): \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r} \to \mathcal{D}^{\tau}$$

Let
$$\mathcal{I}(p) \subseteq \mathcal{D}^{ au_1} imes \cdots imes \mathcal{D}^{ au_r}$$

Then $S = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order state

First-Order States Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$$\mathcal{I}(i) = 17$$
 $\mathcal{I}(j) = 17$
 $\mathcal{I}(\texttt{obj}) = o$
 $\mathcal{D}^{ ext{int}} \mid \mathcal{I}(f)$

$\mathcal{D}^{ ext{int}}$	$\mathcal{I}(f)$
2	2
17	2

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

One of uncountably many possible first-order states!

Semantics of Reserved Signature Symbols

Definition

```
Equality symbol \doteq declared as \doteq (\top, \top)
```

Interpretation is fixed as $\mathcal{I}(\doteq) = \{(d,d) \mid d \in \mathcal{D}\}$

"Referential Equality" (holds if arguments refer to identical object)

Exercise: write down the predicate table for example domain

Signature Symbols vs. Domain Elements

- ▶ Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

```
Signature: Object obj1, obj2; Domain: \mathcal{D} = \{o\}
```

In this state, necessarily $\mathcal{I}(\texttt{obj1}) = \mathcal{I}(\texttt{obj2}) = o$

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type τ then $\beta(x) \in \mathcal{D}^{\tau}$

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, $d \in \mathcal{D}^{\tau}$:

$$\beta_y^d(x) := \left\{ \begin{array}{ll} \beta(x) & x \neq y \\ d & x = y \end{array} \right.$$

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

 $val_{\mathcal{S},\beta}$: Term $\to \mathcal{D}$ such that $val_{\mathcal{S},\beta}(t) \in \mathcal{D}^{\tau}$ for $t \in \mathsf{Term}_{\tau}$:

- \triangleright $val_{S,\beta}(x) = \beta(x)$
- \triangleright $val_{S,\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{S,\beta}(t_1),\ldots,val_{S,\beta}(t_r))$

SEFM: First-Order Logic CHALMERS 120927 49 / 53

Semantic Evaluation of Terms Cont'd

Example

```
Signature: int i; short j; int f(int); \mathcal{D} = \{17, 2, o\} where all numbers are short Variables: Object obj; int x;
```

$$\mathcal{I}(\mathtt{i}) = 17 \ \mathcal{I}(\mathtt{j}) = 17$$

$\mathcal{D}^{ ext{int}}$	$\mathcal{I}(\mathtt{f})$
2	17
17	2

Var	β
obj	0
х	17

- val_{S,β}(f(f(i))) ?
- \triangleright $val_{S,\beta}(x)$?

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

 $val_{\mathcal{S},\beta}(\phi)$ for $\phi \in For$

- lacksquare $val_{\mathcal{S},eta}(p(t_1,\ldots,t_r)=T)$ iff $(val_{\mathcal{S},eta}(t_1),\ldots,val_{\mathcal{S},eta}(t_r))\in\mathcal{I}(p)$
- $ightharpoonup val_{\mathcal{S},\beta}(\phi \wedge \psi) = T$ iff $val_{\mathcal{S},\beta}(\phi) = T$ and $val_{\mathcal{S},\beta}(\psi) = T$
- ...as in propositional logic
- $ightharpoonup val_{\mathcal{S},eta}(orall\ au\ x;\ \phi) = T \quad ext{iff} \quad val_{\mathcal{S},eta^d_v}(orall\ au\ x;\ \phi) = T \quad ext{for all}\ d \in \mathcal{D}^{ au}$
- ▶ $val_{S,\beta}(\forall \tau \ x; \ \phi) = T$ iff $val_{S,\beta_x^d}(\forall \tau \ x; \ \phi) = T$ for at least one $d \in \mathcal{D}^{\tau}$

Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$$\mathcal{I}(j) = 17$$
 $\mathcal{I}(\mathtt{obj}) = o$

$$\begin{array}{|c|c|c|c|}\hline \mathcal{D}^{\mathbf{int}} & \mathcal{I}(f) \\\hline 2 & 2 \\\hline 17 & 2 \\\hline \end{array}$$

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

- ▶ $val_{S,\beta}(f(j) < j)$?
- $ightharpoonup val_{S,\beta}(\exists \operatorname{int} x; f(x) \doteq x) ?$
- ▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 \doteq o2)$?

Semantic Notions

Definition (Satisfiability, Truth, Validity)

```
val_{\mathcal{S},\beta}(\phi) = T (\phi \text{ is satisfiable})

\mathcal{S} \models \phi iff for all \beta : val_{\mathcal{S},\beta}(\phi) = T (\phi \text{ is true in } \mathcal{S})

\models \phi iff for all \mathcal{S} : \mathcal{S} \models \phi (\phi \text{ is valid})
```

Closed formulas that are satisfiable are also true: one top-level notion

SEFM: First-Order Logic CHALMERS 120927 53 / 53

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$val_{\mathcal{S},\beta}(\phi) = T$$
 $(\phi \text{ is satisfiable})$
 $\mathcal{S} \models \phi$ iff for all $\beta : val_{\mathcal{S},\beta}(\phi) = T$ $(\phi \text{ is true in } \mathcal{S})$
 $\models \phi$ iff for all $\mathcal{S} : \mathcal{S} \models \phi$ $(\phi \text{ is valid})$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- ▶ f(j) < j is true in S
- ▶ $\exists \text{ int } x$; $i \doteq x$ is valid
- ▶ $\exists \text{ int } x$; $\neg(x \doteq x)$ is not satisfiable