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Part I

Where are we?
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Where Are We?

last week specification of Java programs with JML

this week dynamic logic (DL) for resoning about Java programs

next week generating DL from JML/Java

+ verifying the resulting proof obligations
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Motivation

Consider the method

public doubleContent( int [] a) {

int i = 0;

while (i < a.length) {

a[i] = a[i] * 2;

i++;

}

}

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a 6= null

then doubleContent terminates normally
and afterwards all elements of a are twice the old value

SEFM: DL 1 /GU 121009 4 / 47



Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a 6 .= null

∧ a 6 .= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i]
.

= b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i]

.
= 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL
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Today

introducing dynamic logic for Java

I recap first-order logic (FOL)

I semantics of FOL
I dynamic logic = extending FOL with

I dynamic interpretations
I programs to describe state change
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Repetition: First-Order Logic

Typed first-order logic as in 8th lecture:

Signature

A first-order signature Σ consists of

I a set TΣ of types

I a set FΣ of function symbols

I a set PΣ of predicate symbols

Type Declarations

I τ x ; ‘variable x has type τ ’

I p(τ1, . . . , τr ); ‘predicate p has argument types τ1, . . . , τr ’

I τ f (τ1, . . . , τr ); ‘function f has argument types τ1, . . . , τr
and result type τ ’
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Part II

First-Order Semantics
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First-Order Semantics

From propositional to first-order semantics

I In prop. logic, an interpretation of variables with {T ,F} sufficed
I In first-order logic we must assign meaning to:

I function symbols (incl. constants)
I predicate symbols

I Respect typing: int i, List l must denote different elements

What we need (to interpret a first-order formula)

1. A collection of typed universes of elements

2. A mapping from variables to elements

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds
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First-Order Domains/Universes

1. A collection of typed universes of elements

Definition (Universe/Domain)

A non-empty set D of elements is a universe or domain.
Each element of D has a fixed type given by δ : D → TΣ

I Notation for the domain elements of type τ ∈ TΣ:
Dτ = {d ∈ D | δ(d) = τ}

I Each type τ ∈ TΣ must ‘contain’ at least one domain element:
Dτ 6= ∅
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First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)

Let D be a domain with typing function δ.

For each f be declared as τ f (τ1, . . . , τr );

and each p be declared as p(τ1, . . . , τr );

I(f ) is a mapping I(f ) : Dτ1 × · · · × Dτr → Dτ

I(p) is a set I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state
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First-Order States Cont’d

Example

Signature: int i; int j; int f(int); Object obj; <(int,int);

D = {17, 2, o}

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f )

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) no
(2, 17) yes
(17, 2) no

(17, 17) no

One of uncountably many possible first-order states!
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Semantics of Reserved Signature Symbols

Definition

Reserved predicate symbol for equality:
.

=

Interpretation is fixed as I(
.

=) = {(d , d) | d ∈ D}

Exercise: write down all elements of the set I(
.

=) for example domain

SEFM: DL 1 /GU 121009 13 / 47



Signature Symbols vs. Domain Elements

I Domain elements different from the terms representing them

I First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this state, necessarily I(obj1) = I(obj2) = o
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Variable Assignments

2. A mapping from variables to domain elements

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements
It respects the variable type, i.e., if x has type τ then β(x) ∈ Dτ
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Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) = β(x)

I valS,β(f (t1, . . . , tr )) = I(f )(valS,β(t1), . . . , valS,β(tr ))
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Semantic Evaluation of Terms Cont’d

Example

Signature: int i; int j; int f(int);

D = {17, 2, o} Variables: Object obj; int x;

I(i) = 17
I(j) = 17

Dint I(f)

2 17
17 2

Var β

obj o
x 17

I valS,β(f(f(i))) ?

I valS,β(f(f(x))) ?

I valS,β(obj) ?
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Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, d ∈ Dτ :

βdy (x) :=

{
β(x) x 6= y
d x = y
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr )) = T iff (valS,β(t1), . . . , valS,β(tr )) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I . . . as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(φ) = T for all d ∈ Dτ

I valS,β(∃ τ x ; φ) = T iff valS,βd
x

(φ) = T for at least one d ∈ Dτ
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Semantic Evaluation of Formulas Cont’d

Example

Signature: int j; int f(int); Object obj; <(int,int);

D = {17, 2, o}

I(j) = 17
I(obj) = o

Dint I(f )

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

I valS,β(f (j) < j) ?

I valS,β(∃ int x ; f (x)
.

= x) ?

I valS,β(∀ Object o1; ∀ Object o2; o1
.

= o2) ?
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Semantic Notions

Definition (Satisfiability, Truth, Validity)

valS,β(φ) = T (S, β satisfies φ)
S |= φ iff for all β : valS,β(φ) = T (φ is true in S)
|= φ iff for all S : S |= φ (φ is valid)

Example

I f (j) < j is true in S
I ∃ int x ; i

.
= x is valid

I ∃ int x ; ¬(x
.

= x) is not satisfiable

SEFM: DL 1 /GU 121009 21 / 47



Part III

Towards Dynamic Logic
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Type Hierarchy

First, we refine the type system of FOL:

Definition (Type Hierarchy)

I TΣ is set of types

I Given subtype relation ‘v’, with top element ‘any ’

I τ v any for all τ ∈ TΣ

Example (A Minimal Type Hierarchy)

T = {any}
All signature symbols have same type any .

Example (Type Hierarchy for Java)

(see next slide)
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Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java’s type hierarchy (simplified)

any

booleanint Object

API, user-defined classes

Null

Each class in API and target program is a type, with appropriate
subtyping.
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Modelling Classes and Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I domain of all Person objects: DPerson

I each o ∈ DPerson has associated age value

I I(age) is mapping from Person to int

I for each class C with field τ a:
FSym declares function τ a(C );

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML
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Dynamic View

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Property (invariant) of a subclass implies property of a superclass

I ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.
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Observation

Need a logic that allows us to

I relate different program states, i.e., before and after execution,
within one formula

I program variables/fields represented by
constant/function symbols that depend on program state

Dynamic Logic meets the above requirements.
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Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + ... (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.
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Type Hierarchy

Dynamic Logic = Typed FOL + . . .

Type hierarchy

TΣ = {int, boolean, any} with int, boolean incomparable, both are
subtypes of any

int and boolean are the only types for today.
Classes, interfaces etc. in next lecture.
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Program Variables

Dynamic Logic = Typed FOL + . . .

i > 5 → [i = i + 10;]i > 15

Program variable i refers to different values before and after execution of
a program.

I Program variables like i are state-dependent constant symbols.

I Value of state dependent symbols changeable by program.

Three words one meaning: flexible, state-dependent, non-rigid
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Rigid versus Flexible Symbols

Signature of dynamic logic defined as in FOL, but:
In addition there are flexible symbols

Rigid versus Flexible

I Rigid symbols, same interpretation in all program states

I First-order variables (aka logical variables)
I Built-in functions and predicates such as 0,1,...,+,*,...,<,...

I Flexible (or non-rigid) symbols, interpretation depends on state

Capture side effects on state during program execution

I Functions modeling program variables and fields are flexible

Any term containing at least one flexible symbol is also flexible
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Signature of Dynamic Logic

Definition (Dynamic Logic Signature)

Σ = (PSymr , FSymr , FSymf , α), FSymr ∩ FSymf = ∅

Rigid Predicate Symbols PSymr = {>, >=, . . .}
Rigid Function Symbols FSymr = {+, −, ∗, 0, 1, . . .}
Flexible Function Symbols FSymf = {i , j , k , . . .}

Standard typing: boolean TRUE; <(int,int); etc.

Flexible constant/function symbols FSymf used to model

I program variables (constants) and

I fields (unary flexible functions)
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Dynamic Logic Signature - KeY input file

\sorts {

// only additional sorts (predefined: int/boolean/any)
}

\functions {

// only additional rigid functions

// (arithmetic functions like +,- etc. predefined)

}

\predicates { /* same as for functions */ }

\programVariables { // flexible functions

int i, j;

boolean b;

}

Empty sections can be left out.
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Variables

Logical Variables

Typed logical variables (rigid), declared locally in quantifiers as T x;

Program Variables

Flexible constants int i; boolean p; used as program variables
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Terms

I First-order terms defined as in FOL

I First-order terms may contain rigid and flexible symbols

Example

Signature for FSymf : int j; boolean p

Quantified variables: int x ; boolean b;

I j and j+ x are flexible terms of type int

I p is a flexible term of type boolean

I x + x is a rigid term of type int

I j+ b and j + p are not well-typed
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Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs . . .
Programs here: any legal sequence of Java statements.

Example

Signature for FSymf : int r; int i; int n;

Signature for FSymr : int 0; int +(int,int); int -(int,int);

Signature for PSymr : <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;

Which value does the program compute in r?
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Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

I 〈p〉φ (diamond)

I [p]φ (box)

with p a program, φ another DL formula

Intuitive Meaning

I 〈p〉φ: p terminates and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates then formula φ holds in final state
(partial correctness)

Attention: Java programs are deterministic, i.e., if a Java program
terminates then exactly one state is reached from a given initial state.
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i
.

= old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i
.

= old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . ( 〈p〉 i .
= x ↔ 〈q〉 i .

= x )
p and q are equivalent concerning termination and the final value

of i.
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Dynamic Logic - KeY input file

KeY

\programVariables { // Declares global program variables

int i, j;

int old_i, old_j;

}

\problem { // The problem to verify is stated here.

i = old_i -> \<{ i = i + 1; }\> i > old_i

}

KeY

Visibility: Program variables declared

I global can be accessed anywhere in the formula.

I inside modality like pre → 〈int j; p〉post only visible in p and
post and only if declaration on top level.
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Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

I Each FOL formula is a DL formula

I If p is a program and φ a DL formula then

{
〈p〉φ
[p]φ

}
is a DL formula

I DL formulas closed under FOL quantifiers and connectives

I Program variables are flexible constants: never bound in quantifiers

I Program variables need not be declared or initialized in program

I Programs contain no logical variables

I Modalities can be arbitrarily nested
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 1;〉x .
= y) ↔ (〈x = 1*1;〉x .

= y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested
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Dynamic Logic Semantics: States

First-order state can be considered as program state

I Interpretation of flexible symbols can vary from state to state

(eg, program variables, field values)

I Interpretation of rigid symbols is the same in all states

(eg, built-in functions and predicates)

Program states as first-order states

From now, consider program state s as first-order state (D, δ, I)

I Only interpretation I of flexible symbols in FSymf can change

⇒ only record values of f ∈ FSymf

I States is set of all states s
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Kripke Structure

Definition (Kripke Structure)

Kripke structure or Labelled transition system K = (States, ρ)

I State (=first-order model) s = (D, δ, I) ∈ States

I Transition relation ρ : Program→ (States ⇀ States)

ρ(p)(s1) = s2
iff.

program p executed in state s1 terminates and its final state is s2,
otherwise undefined.

I ρ is the semantics of programs ∈ Program

I ρ(p)(s) can be undefined (‘⇀’):
p may not terminate when started in s

I Our programs are deterministic (unlike Promela):
ρ(p) is a function (at most one value)
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Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

I s |= 〈p〉φ iff ρ(p)(s) is defined and ρ(p)(s) |= φ

(p terminates and φ is true in the final state after execution)

I s |= [p]φ iff ρ(p)(s) |= φ whenever ρ(p)(s) is defined

(If p terminates then φ is true in the final state after execution)

I Duality: 〈p〉φ iff ¬[p]¬φ
Exercise: justify this with help of semantic definitions

I Implication: if 〈p〉φ then [p]φ
Total correctness implies partial correctness

I converse is false
I holds only for deterministic programs
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More Examples

valid?
meaning?

Example

∀ τ y ; ((〈p〉x .
= y) ↔ (〈q〉x .

= y))

Not valid in general

Programs p behave q equivalently on variable τ x

Example

∃ τ y ; (x
.

= y → 〈p〉true)

Not valid in general

Program p terminates if only initial value of x is suitably chosen
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Semantics of Programs

In labelled transition system K = (States, ρ):
ρ : Program→ (States ⇀ States) is semantics of programs p ∈ Program

ρ defined recursively on programs

Example (Semantics of assignment)

States s interpret flexible symbols f with Is(f )

ρ(x=t;)(s) = s ′ where s ′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java. ⇒ Not in this course.
Next lecture, we go directly to calculus for program formulas!
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Literature for this Lecture

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic (Sections 3.1, 3.2, 3.4,
3.5, 3.6.1, 3.6.3, 3.6.4)
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