Compiler construction 2012

Lecture 5

Code generation for LLVM

Cods generaion for LLVM

LLVM modules

A LLVM compilation unit (a module) consists of a sequence of
o type definitions.
o global variable definitions.
o function definitions.
o (external) function declarations.

Also global variables may be declared, rather than defined.

This is not necessary for Javalette; the only use of global variables is for
naming string literals (as arguments to printString).

Gosegoneraton o L0
Basic blocks in LLVM

Recall

A basic block starts with a label and
ends with a terminating instruction
(ret or br).

Thus one cannot “fall through” the
end of a block into the next; an
explicit branch to (the label of) the
next instruction is necessary.

Consequence

The basic blocks of a LLVM function
definition can be reordered
arbitrarily; a function body is a
graph of basic blocks (the control

flow graph).

‘Code ganeraton for LLVM

Compilation to LLVM

General observations

o Compilation schemes described for JVM often easily modified.

© Idea with two different codegen functions for expressions useful also
here (one function for test expressions in control structures, one for
Boolean exp ions in assignments and as

o Local variables and parameters should be treated as memory
locations (alloca/load/store instructions). These will be removed
by opt.
(and new memory references maybe introduced during register
allocation).

Gode ganraton for L
Code generation for variables, 1

There are no nested scopes in
LLVM. Thus Javalette variables may
need to be renamed.

Cods generaion for LLVM

Optimizing code from previous slide

$ opt -std-compile-opts a.ll | llvm-dis
; ModuleID = ’<stdin>’

declare void @printInt(i32)
Example
int main O { define i32 @main() {
int x 8 entry:
int y = 3; tail call void @printInt(i32 5)
while (x>0) { tail call void @printInt(i32 4)
int y = x; tail call void @printInt(i32 3)
printInt(y); tail call void @printInt(i32 2)
x==; tail call void @printInt(i32 1)
+ tail call void @printInt(i32 3)
printInt(y); o ret i32 0
return 0; ¥
¥ craLmens cHALMERS
Gode goneraton for LM Gode goneraton for LM

Code generation for variables, 2

© When a variable declaration is seen, generate a (possibly) new name,
generate alloca instruction and save (Javalette name, LLVM name)

pair in lookup table in the code generator.
o Keep track of scope in lookup table.

a In assignment statement, store value of RHS using the LLVM name.
@ When a variable is seen (in an expression), 1oad from memory using

the LLVM name.
o Similar considerations for parameters.

Types of local and global variables
Local variables

The instruction

%x = alloca 132

introduces a new variable %x of type i32%;
%x is a pointer to a newly allocated memory location.

Global variables
The instruction

Ghw = global [13 x i8] c"hello world\OA\0O"

introduces a global name @hw of type [13 x i8 1%;
@hw is a pointer to a byte array.

Cods generaion for LLVM

Treatment of labels

Labels are not instructions in LLVM
But it may be convenient for you to treat them as if they were!

-

Basic blocks without instructions are illegal

Depending on your compilation schemes, you may find yourself in the
situation that a label has just been emitted and the function ends without
further instructions.

The situation can then be saved by emitting the terminator instruction
unreachable.

‘Code ganeraton for LLVM

Cods generaion for LLVM

The getelementptr instruction
From reference manual

The getelementptr instruction is used to get the address of a
subelement of an aggregate data structure. It performs address
calculation only and does not access memory.

Instruction arguments

First argument is always a pointer to the beginning of the structure; the
following are integers specifying the subelement.

Example type Example use
%T = type define i32 @f (4T %x) {
{ i32, %p = getelementptr %T %x,
{[4xi32], i32 0, i32 1, i32 1, i32 7
[8xi32] Yres = load i32* %p
} ret i32 Yres
*

Another getelementptr example

Gmat = global [3 x [4 x i32]]
[[4 x i32] [i32 1, i32 2, i32 3, i32 4],
[4 x i32] [i32 5, i32 6, i32 7, i32 8],
[4 x i32] [i32 9, i32 10, i32 11, i32 12]]
declare void @printInt(i32)

define i32 @main () {
#tl = getelementptr [3 x [4 x i32]]* @mat,
i32 0, i32 1, i32 2
%t2 = load i32% Y%tl
call void @printInt(i32 %t2)
ret i32 0

Executing this program prints 7. Note type of @mat.

‘Code ganeraton for LLVM

Still another getelementptr example

%T1 = type
{432, { [4 x i32 Jx, [8 x i32 J* } }x

define i32 @f1 (%T1 %x) {
%p = getelementptr %T1 %x, i32 0, i32 1, i32 1
%pl = load [8 x i32 1*x Yp
%p2 = getelementptr [8 x i32 1 Ypl, i32 0, i32 7
Y%res = load i32% Y%p2
ret i32 Yres

©f1 returns the last element of the 8-element array in %x.

We can not do this with just one getelementptr instruction; we need to
access memory to get the pointer to the array.

Gode ganraton for L
Why the first 0?7

struct Pair {
int x, y;

}

int f(struct Pair *p) {
return p[0].y + pl[1].x;

¥

%Pair = type { i32, i32 }

define i32 @f (JPairx %p) {

entry: %tl = getelementptr JPairx %p, i32 0, i32 1
%t2 = load i32% %t1
%t3 = getelementptr %Pair* %p, 132 1, i32 0
%t4 = load i32% %t3
%t5 = add 132 %t2, %t4
ret i32 %t

¥

Cods generaion for LLVM

Computing the size of a type

Size of a variable

With the size of a type %T, we mean the size (in bytes) of a variable of type
%T. For a given LLVM type %T, this size can vary between target
architectures (e.g. pointer types differ in size). So, how does one write
portable code?

LLVM does not have a correspondence to C's sizeof macro.

The trick
We use the getelementptr instruction:

= getelementptr %T* null, i32 1
= ptrtoint %T* %p to i32

Now, %s holds the size of %T. Why?

‘Code ganeraton for LLVM

Treatment of string literals

String literals occur in Javalette only as argument to printString.
When you encounter such a string you must introduce a definition that
gives the string literal a global name.

That definition must not appear in the middle of the current function.
(Recall hello world program.)

The type of the global variable is [n x i8]x, where nis the length of
the string (after padding at the end).

QprintString is called with the global variable as argument.

Quiz
What is the type of the parameter to @printString?
declare void @printString(?)

Gosegoneraton o L0
String literals, 2

Answer

We cannot let the parameter typebe [n x i8], since n varies.
We let instead the parameter type be i8+, a pointer to the first byte.
How can we then call @printString in a type-correct way?

We use getelementptr to get a pointer to the first byte of the string (i.e.
to the same address, but the type will change).

Ohw = internal constant [13 x i8] c"hello world\0A\00"
declare void @printString(i8+)

define i32 @main () {

entry: %t1 = getelementptr [13 x i8]* Ghw, i32 0, i32 0
call void @printString(i8* %t1)
ret i32 0

Cods generaion for LLVM

State during code generation

As for JVM, we need to keep some state information during code
generation. This includes at least
o next number for generating register names (and labels).
o definitions of global names for string literals.
o lookup table to find LLVM name for Javalette variable name.
o lookup table to find type of function.

‘Code ganeraton for LLVM

Cods generaion for LLVM

Further properties of functions

In function definitions
o Linkage type, e.g. private, internal.
o Attributes, e.g. readnone, readonly, nounwind.
o Calling convention, e.g. ccc, fastcc.

In function calls
o Tail call indication.
o Attributes.
a Calling convention.

Final example

Javalette code
boolean even(int n) {
if (n==0)
return true;
else
return odd (n-1);

boolean odd(int n) {
if (n==0)
return false;
else
return even (n-1);

Javalette code
int main O {
if (even (20))
printString("Even!");
else
printString("0dd!");
return 0;

}

To be done in class
© Write naive LLVM code.

o Send it through opt to get
better code.

‘Code ganeraton for LLVM

What next?

o Finish submission A at the latest April 22.

o Submit also incomplete solutions or ask for extension before the
deadline.

o Late solutions will not get credit for extensions unless the reasons are
very good.

