Compiler construction 2012

Lecture 5

Code generation for LLVM

Cods generaion for LLVM

LLVM modules

A LLVM compilation unit (a module) consists of a sequence of
o type definitions.
o global variable definitions.
o function definitions.
o (external) function declarations.

Also global variables may be declared, rather than defined.

This is not necessary for Javalette; the only use of global variables is for
naming string literals (as arguments to printString).
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Basic blocks in LLVM

Recall

A basic block starts with a label and
ends with a terminating instruction
(ret or br).

Thus one cannot “fall through” the
end of a block into the next; an
explicit branch to (the label of) the
next instruction is necessary.

Consequence

The basic blocks of a LLVM function
definition can be reordered
arbitrarily; a function body is a
graph of basic blocks (the control

flow graph).
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Compilation to LLVM

General observations

o Compilation schemes described for JVM often easily modified.

© Idea with two different codegen functions for expressions useful also
here (one function for test expressions in control structures, one for
Boolean exp ions in assignments and as

o Local variables and parameters should be treated as memory
locations (alloca/load/store instructions). These will be removed
by opt.
(and new memory references maybe introduced during register
allocation).
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There are no nested scopes in
LLVM. Thus Javalette variables may
need to be renamed.
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Optimizing code from previous slide

$ opt -std-compile-opts a.ll | llvm-dis
; ModuleID = ’<stdin>’

declare void @printInt(i32)
Example
int main O { define i32 @main() {
int x 8 entry:
int y = 3; tail call void @printInt(i32 5)
while (x>0) { tail call void @printInt(i32 4)
int y = x; tail call void @printInt(i32 3)
printInt(y); tail call void @printInt(i32 2)
x==; tail call void @printInt(i32 1)
+ tail call void @printInt(i32 3)
printInt(y); o ret i32 0
return 0; ¥
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Code generation for variables, 2

© When a variable declaration is seen, generate a (possibly) new name,
generate alloca instruction and save (Javalette name, LLVM name)

pair in lookup table in the code generator.
o Keep track of scope in lookup table.

a In assignment statement, store value of RHS using the LLVM name.
@ When a variable is seen (in an expression), 1oad from memory using

the LLVM name.
o Similar considerations for parameters.

Types of local and global variables
Local variables

The instruction

%x = alloca 132

introduces a new variable %x of type i32%;
%x is a pointer to a newly allocated memory location.

Global variables
The instruction

Ghw = global [ 13 x i8 ] c"hello world\OA\0O"

introduces a global name @hw of type [ 13 x i8 1%;
@hw is a pointer to a byte array.
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Treatment of labels

Labels are not instructions in LLVM
But it may be convenient for you to treat them as if they were!

-

Basic blocks without instructions are illegal

Depending on your compilation schemes, you may find yourself in the
situation that a label has just been emitted and the function ends without
further instructions.

The situation can then be saved by emitting the terminator instruction
unreachable.
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The getelementptr instruction
From reference manual

The getelementptr instruction is used to get the address of a
subelement of an aggregate data structure. It performs address
calculation only and does not access memory.

Instruction arguments

First argument is always a pointer to the beginning of the structure; the
following are integers specifying the subelement.

Example type Example use
%T = type define i32 @f (4T %x) {
{ i32, %p = getelementptr %T %x,
{[4xi32], i32 0, i32 1, i32 1, i32 7
[8xi32] Yres = load i32* %p
} ret i32 Yres
*

Another getelementptr example

Gmat = global [3 x [4 x i32]]
[[4 x i32] [i32 1, i32 2, i32 3, i32 4],
[4 x i32] [i32 5, i32 6, i32 7, i32 8],
[4 x i32] [i32 9, i32 10, i32 11, i32 12]]
declare void @printInt(i32)

define i32 @main () {
#tl = getelementptr [3 x [4 x i32]]* @mat,
i32 0, i32 1, i32 2
%t2 = load i32% Y%tl
call void @printInt(i32 %t2)
ret i32 0

Executing this program prints 7. Note type of @mat.
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Still another getelementptr example

%T1 = type
{432, { [ 4 x i32 Jx, [ 8 x i32 J* } }x

define i32 @f1 (%T1 %x) {
%p = getelementptr %T1 %x, i32 0, i32 1, i32 1
%pl = load [ 8 x i32 1*x Yp
%p2 = getelementptr [ 8 x i32 1 Ypl, i32 0, i32 7
Y%res = load i32% Y%p2
ret i32 Yres

©f1 returns the last element of the 8-element array in %x.

We can not do this with just one getelementptr instruction; we need to
access memory to get the pointer to the array.




Gode ganraton for L
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struct Pair {
int x, y;

}

int f(struct Pair *p) {
return p[0].y + pl[1].x;

¥

%Pair = type { i32, i32 }

define i32 @f (JPairx %p) {

entry: %tl = getelementptr JPairx %p, i32 0, i32 1
%t2 = load i32% %t1
%t3 = getelementptr %Pair* %p, 132 1, i32 0
%t4 = load i32% %t3
%t5 = add 132 %t2, %t4
ret i32 %t

¥
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Computing the size of a type

Size of a variable

With the size of a type %T, we mean the size (in bytes) of a variable of type
%T. For a given LLVM type %T, this size can vary between target
architectures (e.g. pointer types differ in size). So, how does one write
portable code?

LLVM does not have a correspondence to C's sizeof macro.

The trick
We use the getelementptr instruction:

= getelementptr %T* null, i32 1
= ptrtoint %T* %p to i32

Now, %s holds the size of %T. Why?
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Treatment of string literals

String literals occur in Javalette only as argument to printString.
When you encounter such a string you must introduce a definition that
gives the string literal a global name.

That definition must not appear in the middle of the current function.
(Recall hello world program.)

The type of the global variable is [ n x i8 ]x, where nis the length of
the string (after padding at the end).

QprintString is called with the global variable as argument.

Quiz
What is the type of the parameter to @printString?
declare void @printString( ? )
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String literals, 2

Answer

We cannot let the parameter typebe [ n x i8 ], since n varies.
We let instead the parameter type be i8+, a pointer to the first byte.
How can we then call @printString in a type-correct way?

We use getelementptr to get a pointer to the first byte of the string (i.e.
to the same address, but the type will change).

Ohw = internal constant [13 x i8] c"hello world\0A\00"
declare void @printString(i8+)

define i32 @main () {

entry: %t1 = getelementptr [ 13 x i8 ]* Ghw, i32 0, i32 0
call void @printString(i8* %t1)
ret i32 0
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State during code generation

As for JVM, we need to keep some state information during code
generation. This includes at least
o next number for generating register names (and labels).
o definitions of global names for string literals.
o lookup table to find LLVM name for Javalette variable name.
o lookup table to find type of function.
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Further properties of functions

In function definitions
o Linkage type, e.g. private, internal.
o Attributes, e.g. readnone, readonly, nounwind.
o Calling convention, e.g. ccc, fastcc.

In function calls
o Tail call indication.
o Attributes.
a Calling convention.

Final example

Javalette code
boolean even(int n) {
if (n==0)
return true;
else
return odd (n-1);

boolean odd(int n) {
if (n==0)
return false;
else
return even (n-1);

Javalette code
int main O {
if (even (20))
printString("Even!");
else
printString("0dd!");
return 0;

}

To be done in class
© Write naive LLVM code.

o Send it through opt to get
better code.
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What next?

o Finish submission A at the latest April 22.

o Submit also incomplete solutions or ask for extension before the
deadline.

o Late solutions will not get credit for extensions unless the reasons are
very good.




