Understanding Why Forward-Backward is Belief Propagation in Two Easy Steps

Charles Sutton

June 24, 2004

Suppose that we run belief propagation on the HMM in Figure 1, with the following schedule: First all of the observed nodes o_t send a message $m_{o_t}(s_t)$ to their parent:

$$m_{o_t}(s_t) = p(o_t|s_t),\tag{1}$$

and then we send messages $m_{t-1,t}(j)$ forward, starting with s_0 , and finally we send messages $m_{t+1,t}(i)$ backward, starting with s_T . These messages are depicted in Figure 1, and given by:

$$m_{t-1,t}(j) = \sum_{i} p(s_t = j | s_{t-1} = i) m_{t-2,t-1}(i) m_{o_{t-1}}(i)$$
(2)

$$m_{t+1,t}(i) = \sum_{j} p(s_{t+1} = j | s_t = i) m_{t+2,t+1}(j) m_{o_{t+1}}(j),$$
(3)

where the summations over i and j are over the possible labels of the HMM.

The purpose of this note is simply to say: forward-backward is equivalent to belief propagation using this schedule, because in Figure 1 each α is the product of the red messages and β is the blue message.

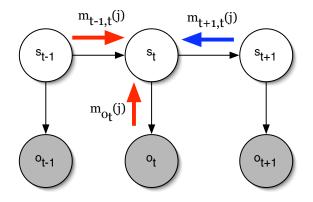


Figure 1: A sample HMM, marked with the messages sent by belief propagation. The forward-backward value for α_t is the product of the red messages, and β_t is the blue message.

This can be proven by induction. For t = 0, we allow by convention $m_{-1,0}(j) = p(s_0 = j)$, so that

$$\alpha_0(j) = p(s_0 = j)p(o_0|s_0 = j) = m_{s_{-1}}(s_0)m_{o_0}(j).$$
(4)

For t > 0, assume $\alpha_{t-1}(i) = m_{t-1,t}(i)m_{o_{t-1}}(i)$ for all i. Then

$$\alpha_t(j) = p(o_t|s_t = j) \sum_i p(s_t = j|s_{t-1} = i) \alpha_{t-1}(i)$$
(5)

$$= m_{o_t}(j) \sum_{i} p(s_t = j | s_{t-1} = i) m_{t-1,t}(i)$$
(6)

$$= m_{o_t}(j)m_{t-1,t}(j), (7)$$

which completes the proof.

Similarly, it can be shown by induction that $\beta_t(i) = m_{t+1,t}(i)$. We assume that $m_{T+1,T}$ is uniformly 1, so that for all i

$$\beta_T(i) = p(o_T | s_T = i) = m_{o_T}(i)m_{T+1,T}(i).$$
(8)

Inductively, assume that $\beta_{t+1}(i)=m_{t+2,t+1}(i).$ Then

$$\beta_t(i) = \sum_j p(s_{t+1} = j | s_t = i) p(o_{t+1} | s_{t+1} = j) \beta_{t+1}(j)$$
(9)

$$=\sum_{j} p(s_{t+1} = j | s_t = i) m_{o_{t+1}}(j) m_{t+2,t+1}(j)$$
(10)

$$j = m_{t+1,t}(i),$$
 (11)

which completes the proof.