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Abstract—Location-awareness is becoming increasingly impor-
tant in wireless networks. Indoor localization can be enal#d
through wideband or ultra-wide bandwidth (UWB) transmission,
due to its fine delay resolution and obstacle-penetration qabil-
ities. A major hurdle is the presence of obstacles that block
the line-of-sight (LOS) path between devices, affecting raging
performance and, in turn, localization accuracy. Many techiques

impeded by a number of technical challenges, includingadign
acquisition [22], multi-user interference [23], [24], [2426],
multipath effects [27]—-[29], and non-line-of-sight (NLS
propagation [29]-[31].This latter issue is critical forght
resolution localization systems [11], [12], [15], [20], 1R
since NLOS propagation results in positively biased range

have been proposed to address this issue, most of which makeestimates [31], which in turn degrade localization perfance.

modifications to the localization algorithm. Since many loaliza-

tion algorithms work with distance or angle estimates, ratter

than received waveforms, information inherent in the wideland

waveform is lost, leading to sub-optimal ranging error mitigation.

To avoid this information loss, we present a novel approacha
mitigate ranging errors directly in the physical layer. In contrast

to existing techniques, whichdetect the non-line-of-sight (NLOS)
condition, our approach directly mitigates the bias incurred in

both LOS and non-LOS conditions. In particular, we apply
two classes of non-parametric regressors to form an estimat
of the ranging error. Our work is based on, and validated by,
an extensive indoor measurement campaign with FCC-complig

UWB radios. The results show that the proposed regressors pr

vide significant performance improvements in various pracical

localization scenarios, compared to conventional appro&es.

Index Terms—Localization, UWB, Ranging Error Mitigation,
Support Vector Machine, Gaussian Processes, Bayesian Ledng.

I. INTRODUCTION

NLOS conditions occur frequently in many practical harsh
environments, including indoors, in urban canyons or under
tree canopies. Therefore, it is imperative to understard th
impact of NLOS conditions on localization systems, and to
develop techniques that mitigate their effects.

Different approaches to address the NLOS problem have
been proposed, which we classify coarsely\NdOS identifi-
cation [32]-[36] and NLOS mitigation[36]—[44]. In NLOS
identification, the goal is to detect when a range estimate
corresponds to a NLOS condition. This can be achieved by
analyzing received waveforms [32], [36], or a collection of
range estimates from a single source [33]-[35]. In NLOS
mitigation, the goal is to reduce the effect of the rangingrer
in NLOS conditions. NLOS mitigation can be combined with
explicit NLOS identification by assigning different weighto
LOS and NLOS signals [36], or by only using NLOS estimates
to constrain the set of possible location solutions [37}eAl
natively, NLOS identification can be omitted by performing a

HE ability to locate people and assets, to navigate beyosghaustive search over subsets of range measurements] to fin

GPS coverage, and to tag sensor data with geographset of consistent LOS ranges [38]-[40], or by considetieg t
ical information will enable a myriad of applications, INLOS/NLOS condition to be a random parameter to be averaged
both the commercial and the military sectors [1]-{4]. Ultraover [41], or by explicitly accounting for the geometry okth

wide bandwidth (UWB) transmission [5]-[8] represents

a@nvironment [42]-[44]. An overview of NLOS identification

promising technology for localization in harsh environit®enand mitigation techniques can be found in [45], [46], and

and accuracy-critical applications [9]-[15], due to itdust

references therein. In our recent contribution [47], weehav

signaling [16], [17], as well as through-wall propagation evaluated anon-parametricapproach to NLOS identification,
[18], [19], and high-resolution ranging capabilities [20], [21]followed by NLOS mitigation, based directly on measured
However, practical deployment of UWB systems has be&nwB waveforms. This approach performs identification and
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mitigation under a common framework, without requiring
a statistical characterization of waveforms under LOS and
NLOS conditions. We found that first classifying waveforms
as LOS or NLOS is a crude way to deal with ranging errors,
since the ranging bias introduced by obstacles dependseon th
materials and the physical environment. Our goal is to agvel
a more general approach, without relying on the distinction
between LOS and NLOS conditions.

In this paper, we consider the general problem of ranging
error mitigation without explicit NLOS identification. Bldk
ing on tools from machine learning, we propose two non-
parametric regression techniques to estimate the rangiog e
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Figure 1. Histogram of the ranging error for the LOS and NL@8dition. waveform) and NLOS (lower waveform) signals.

: . [I. PROBLEM STATEMENT
based solely on the received waveform and the estimated

distance. The first technique employs support vector machif}- Localization Setup

(SVM) regression to find a hyperplane that approximates theA location-aware network consists of two types of nodes:
ranging error as a function of the training data. The secomadchors(or beacons) are nodes with known positions, while
technique employs a Gaussian process (GP) to determine agentsare nodes with unknown positions. We focus on the
a posteriori distribution of the ranging error, based oimtrey  setting where a single agent with unknown positipnis
data. The estimated ranging error, in combination with surrounded byN, anchors with known positionsp;, i =
measure of certainty, can be passed to a localization &hgori 1,..., N,. We denote the distance between the agent and
Our regression techniques have the added benefit that they @achori by d;(p,p:;) = ||p — p:||, and the agent’s estimate
be applied even when training data is not labeled with LO& this distance byi;. We further introduce

or NLOS information. To the best of our knowledge, no other T
technique exists that performs ranging error mitigatioseaia d(p, p1x) = [d1(p, p1). d2(P, P2), - diy (P, Pvs)]

on features extracted directly from received waveformshwi andd = [cil, JQ, A cZNb]T, as well as the ranging errdy; =

out relying on multiple range estimates or side-informmatiod;, — di(p, Pi)-

regarding the environment. Our findings are validated usingin the absence of side-information regarding LOS or NLOS
a database of UWB waveforms, obtained from an extensigenditions and any statistical information regarding thg d
measurement campaign in a typical office environment usigghce estimates, a robust estimatorpois obtained by mini-
FCC-compliant UWB radios. mizing an appropriate norm:

The remainder of the paper is organized as follows. Section
Il describes the problem statement, and Section Il pravide
background information on the regression techniques UseSe ¢,-norm is known to be more robust against outliers
later in this paper. These regression techniques are eewlohan the/l,-norm, as those outliers incur only a linear cost
in Section IV to perform ranging error mitigation. The impacin ¢,, whereas their cost is quadratic i [48, Sec. 6.1.2].
of ranging error mitigation on localization performance igvhen statistical information regarding the distance estirs
evaluated in Section V. Finally, conclusions are given i available, a common estimator is the maximum likelihood
Section VI. (ML) estimator:

Notation:||x||, denotes thé,-norm of the vectox, defined L ;
p = argmaxp(d|p). )

p= argmgan(P,pLNb) - &Ha' @

as

Note that if the ranging errors are independent and iden-
1/a tically distributed with a zero-mean Gaussian distribatio
Ixl, = [Z |a:i|°‘] ; (resp. Laplacian distribution), the ML estimator (2) reseio
i £a-norm (resp./;-norm) minimization.

xT is the transpose of the vecter x = y meansy; > y;, Vi; B Ranging Errors
N(m, K) represents a real multi-variate Gaussian distribution In practice, range estimates are subject to different error
with meanm and covariance matrik. sources, due to the environment, signal blockage, thermal



noise, or algorithm artifacts. While there are many différe Based on these observations, we propose to not classify a
models with varying complexity, it is difficult to capturel al waveform as LOS or NLOS, but rather to quantify the ranging
of these effects with a simple model. Rather than workingrror based on features extracted directly from the redeive
with a complex theoretical model of these ranging errors, weaveform. This represents a departure from conventional
have performed an extensive ranging measurement campag@proaches and leads to (i) performance improvements; and
on the MIT campus, using FCC-compliant UWB radios [47]ii) reduction in complexity.

From this campaign, we created a database, including 1024
measurements: 512 in LOS and 512 in NLOS. Here, the
term LOS is used to denote the existence ofisual LOS.
Specifically, a measurement is labeled as LOS when thAe Introduction
straight line between the transmitting and receiving amaen

is unobstructed. Each wavefornit), which is affected by R), which depends on set of observed variables(R™). In

thermal noise, 1S sampled evelampie = 41.3 PS OVEr harticular, we assume a linear relationship of the form
an observation window of 190 ns. The range estimate was

obtained by a round-trip time-of-arrival (RTOA) protocol, y (x) = wlo(x) (3)
embedded on the radio. The actual position of the radio durin
each measurement was manually recorded, and the rangidgre o(-) is a predetermined functiochand w represents
error was calculated with the help of computer-aided desigine unknown parameter of the regressor. The parameter
(CAD) software. The collected waveforms were then alignezn be considered a deterministic unknown which is to be
in the delay domain using a simple threshold-based methestimated from a training se{bck_,yk}]kvzl. Alternatively, the
for leading edge detection. parameterw can be considered a random variable with a
From the measured data, we can gain more insight intertain a priori distribution, for which we can then detemmi
the effects of LOS and NLOS conditions on a receiveithe a posteriori distribution from the training set. Thes® t
waveform. Fig. 1 shows histograms of the ensemble of rangéferent viewpoints are taken by support vector machinmes a
measurements under LOS and NLOS conditions. Two typidahussian processes, respectively.
waveforms under LOS and NLOS conditions are depicted in

Fig. 2. Based on the measurement data and Figs. 1-2, we can . . :
make a number of observations: B. Regression with Support Vector Machines

1) The ranging error, considered over the entire ensemble® SVM is a supervised machine learning technique used
of measurements, does not exhibit a Gaussian disti¢r classification and regression [49]-{52]. The regressor
bution. The ranging errors we observed were all no@ functiony : R™ — R, written as in (3), which can
negative (i.e.d > d). This is due to the leading edgebe interpreted as a hyperplane. Suppose that there exists a
detection (LED) algorithm, which determines the tim&@yperplane such thay, —y (xx)| < e for somee > 0, for
of arrival of the first path. LED is based on a simpléll elements in the training set. Then the distance between t
threshold that is set so as to avoid false alarms (i.éwo bounding hyperplaneg(x) — e = 0 andy (x) +& =0
detecting noise spikes as a signal path). Hence, tRegiven byd = 2¢//|w|3 + 1. Hence, the hyperplane that
ranging errors are due to missed detection of the firgiaximizes the distance between the bounding hyperplames ca

IIl. REGRESSION MATHEMATICAL FRAMEWORK

In regression, the goal is to infer an unobserved scglar (

path, thus leading to a positive bias. be found as

2) The ranging errors in LOS and NLOS conditions have
different properties. We observed that, for LOS condi- minimize ||wl|3 4)
tions, 98% of the measurements have a ranging error sty —wlo(x) <e

IV IA

less than 1 meter, while for NLOS conditions, only 28%
have a ranging error less than 1 meter.

3) The received waveforms in LOS and NLOS conditiony general, where is too small, the optimization problem
tend to have different characteristics (as is apparent fraf@comes infeasible. To make the problem feasible, we penal-
Fig. 2). These characteristics can be exploited to identifye errors away from the hyperplane described in (3). The
NLOS waveforms and to compensate for the positiay in which errors are penalized impacts the computational
ranging bias. complexity of determiningw, as well as the sparseness of

4) The ranging error not only depends on the LOS or NLOge solution (see further). The optimization problem can be
condition, but also on material properties, as well as thgritten as
presence and positions of scatterers. This implies that the
distinction between LOS and NLOS conditions provided
NLOS identification techniques is rather coarse.

Yk — WTcp (xx) > —e¢.

N
minimize HW||§ +y Z Lyx — wh o (xk)), (5)
k=1

Lin an RTOA protocol, one radio (A) sends a request to a secatid (B). where~y controls the trade-off between minimizing training
Radio B responds to the request by sending back a packet ito Aadvhich ; _ ;
contains the processing time of radio B. Radio A then esémdhe arrival errors and mode compIeX|ty. The loss functll)('r) can take
time in its own time reference and determines the distantedsm A and B,
assuming a known signal propagation speed. ’E.g., ¢ (x) = [x 1]7 for a linear regressor.



Table |

a number of forms. Popular examples include: EXTRACTED FEATURES
Lsquared(€) = e? (6) ‘ Name Equation ‘
I (e) = 0 le] —e <0 @) Energy Er = [p|r(t)|* dt
ctubel€) = |€| — ¢ otherwise Maximum amplitude rmax = maxy |7 (t)]
In either case, the solution (called the SVM regressor) @n b Rise timé brise = ti — tL
expressed as Mean excess del8y ™ED = [ to(t)dt
N RMS delay spredd TRMs = [ (t — Tm )2 (t)dt
y(x) = Z ar® (x,x1) , (8) Kurtosig! k=== [ (Ir@®)] - p‘r‘)4dt
k=1 |
where Estimated distance d
P (x, X/) = (X)T ) (X/) 8¢y =min{¢: |[r(t)| > aon} and _
ty = min {¢ : [r(t)| > Brmax}, whereo,, is the standard
is the so-calledernelfunction. The values ofi;,, k =1... N, deviation of the thermal noise. The values ®f> 0 and
. _ 0 < B < 1 are chosen empirically; in our case, we used
can l:_Je found using well-developed toolboxes for convex o~ 6andB = 0.6 50 as to minimize the false alarm
optimization. Generally, for thé ..,. l0SS, couplesxy, yx) probability. )
within the tube incur no cost, leading to the corresponding brCy(t) = [r (t)]* /&r.
i i - ¢ =7 [pIr@)ldt ando? | = F [1(Ir(t)] = )2 dt
ar = 0 and thus to a sparse solution. Given a test prinf, el = 7 Jr lr| = T JT Hr| )™ at.

we can now predict the corresponding valuega@asy (Xest)-

. . —1
C. Regression with Gaussian Processes whereay, is thek™ entry in the vecto(K + o7 In)  y.
Note that (12) bears close resemblance to (8). However,

in the case of GP, the solution is generally not sparse, as
the cost function is not insensitive to small errors.
o A popular choice for the kernel is

Gaussian processes have recently gained interest from the
machine learning community, as they form an elegant frame-
work to perform regression [53]. For our situation, lgt
be a random variable such that, for a fixed inpytthe
output is given byy = wly(x) + n, wheren ~ N(0,02)
represents measurement noise amd~ AN(0, Y, ). Rather
than estimatingv, as in the previous section, here we average
over all possiblew. Given N training points{xhyk}szl, we
find that

0
d(x,x') = Oy exp (—31 lx — x/|§) +0:x"x/, (13)

where the hyperparametefs= [y, 01, 62] are usually

estimated from the training data. Note that the choice
9 6 = [1,0,1] corresponds to conventional linear regres-

y ~N(0.K +0,1y) ©) sion, with ¢ (x) = [x 1]7.

where K| = o(xx)TSwo(x;) = ®(xk,%;). The function  « The SVM with the squared loss function (6) can be shown

d(x,x’) is, similar to SVM, known as the kernel. Now, to be equivalent to the solution of a GP [54]. For that

suppose we have a test poiits;, and would like to determine reason, we will only consider SVM with loss function

the a posteriori distribution of the corresponding noigef (7) in Sections IV-V.

yest Under the stated assumptiong, and st are jointly

Gaussian, with [53] IV. RANGING ERRORMITIGATION

y vlo K+ 021y k In this section, we will describe how SVM and GP can
y ~ ’ K7 B (Xrest Xies) + 02 be applied to perform ranging error mitigation, based on fea
est test AHesy T T tures extracted from the received waveform, without rengir
where k], = ®(xwstxr). The a posteriori distribution knowledge of the ranging error distribution. The featurél$ w
P (Yrest]y ) O yrest is Gaussian with mean serve as the observed input while the ranging error will
T 9 -1 be the unobserved outpyt We first explain the features we
E{yestly} =k' (K+o3In) 'y (10)  onsider, and then provide implementation details of th&ISV
and variance and GP regression techniques.
E { (sest— E{yeestly })* Iy } (11)

A. Feature Selection

2 T 2 -1
= D (st Xies) + 0y — k' (K +0ylv) k. As in our related work on obstruction detection [47], we
We make the following comments: have selected features based on the following observations
« The a posteriori variance in (11) is smaller than the Rue to reflections or obstructions, NLOS signals are consid-
priori variance® (xest, Xtest), DECaUse of the training data.erably more attenuated and present smaller energy than LOS
Also, note that neither variance depends on the trainisignals. In the LOS case, the strongest path corresponds to
outputs. The a posteriori mean can be expressed as the first path and the received signal exhibits a short rige.ti
N In the NLOS case, some weak multipath components precede
E {yestly } = Z e ® (Xeest Xk ), (12) the strongest path, as a result the rise time is longer. Téte ro
—1 mean-square (RMS) delay spread, which captures the teinpora



Table Il
SUMMARY OF THE MITIGATION PROCEDURE

Name ‘ Features ‘ Output Parameters Software
SVM | x=log [5,.,rmax, trise; TMED s TRMS, n,ci] Tl oyoa ezo057210T00=1.0=1] [55]
GP x = log [gr, Fma, trise, TMED ; TRMS, s CZ] T oy=a maximum likelihood 53]
SVM-log | x = log [Er,rmax, trise,TMED,TRMs,H,CZ]T y=logA | e=01,v=10"7,6p=1,601 =1 [55]
GP-log | x = log [gr, Tmax, trises TMED > TRMS Ki» CZ] Tl y=1oga maximum likelihood (53]

dispersion of the signal energy due to the multipath chann * —— Unmitigated | ‘
is larger in NLOS signals. We also include features that ha || 7723VM-_i0g
been considered in the literature. Taking these considesat jgp_bg

into account, the features we extract from a received sigr °¢
r(t), observed for a duratiof, are as follows: (i) the energy ,
Er; (i) the maximum amplitudemay; (i) the rise timetjige;

(iv) the mean excess delayep; (v) the RMS delay spread °¢f
Trvs, (Vi) the kurtosisk; and (vii) the estimated distanck
We provide the analytical expression of each feature inélabl

CDF

05
0.41-

B. Mitigation Procedure 03f

The databaseS consists of 1024 training samples. Ever ,L
training sample is a vector consisting of 7 elements (tt
features), as described above in Section IV-A, along with tI %'
corresponding ranging error (the unobserved output). @atg
is to learn a function of the form (8), that maps the feature
to a ranging error. When determining the function-value for
a specific inputx;,, care must be taken to avoid training th&ligure 3. CDF of residual ranging error without mitigatiamd using SVM
SVM or the GP with that same input. For this reason, we uggd GP-based mitigation.
10-fold cross-validation [53], and divide up the databage i
ten disjoint parts:S = Sy U... U Sio, with S; N S; = 0, for
1 # 7. In thenth fold, we determine the functions (8) for SVM
or (10)—(11) for GP, based on the training $&t S,,. Then,
the resulting function is applied to the test $gt giving the
predicted outputs fof,,. For numerical reasons, the inpuis
are converted to the logarithmic domain prior to traininge W  In this section, we will evaluate the localization performa
will consider four cases, two for SVM and two for GP. Thdor a fixed number of anchorsV, = 5 and a varying
details are listed in Table II. In all cases we use the kerngiobability of NLOS condition) < Pyos < 1. We place an
described in (13), witl, = 0. The outputy of the mitigation agent at positionp = (0, 0). For every anchoi (1 < < Np),
procedure is either the ranging eretror its logarithmlog A.  we draw a measured waveform from the experimental database
In the latter case, the mitigation procedure will be denditgd (described in Section 11-B): with probabilitf’y.os we draw
GP-log or SVM-log. Note thalog A is well-defined, since from the NLOS database and with probability- Py os from
all ranging errors are non-negative (see Fig. 1). Moredies, the LOS database. Thi¢éh anchor is placed at position

approach will ensure that estimates of the ranging errolls Wlpi — dy(p, pi)(sin(2r(i — 1)/Ny), cos(2r(i — 1)/Ny)), (14)

also be non-negative.
where d;(p, p;) is the true distance corresponding to that
C. Mitigation Performance waveform. The estimate of the distance between the agent and

In Fig. 3 we show the CDF of the residual ranging error, i.et.helth anchor §;), is determined by the agent using the RTOA

, 3 . . ” .
the remaining error after mitigation. For the SVM (resp. SYM protocol._ Th_e agent th.e” estimates |ts_p03|t|0n using one of
. the localization strategies to be described below, yigidin
log), these residuals have a mean of -3 cm (resp. 12 cm), ... ! .
sition estimatep.

and a standard deviation of 1.09 m (resp. 1.07 m). For tRe I o
GP (resp. GP—log), the mean is 3 cm (resp. 17 cm), an ch_) capture the accuracy and ava|lab_|l_|ty of IocaI|za_t|on,
) y . ’ we introduce the notion obutage probability For a certain

the standard deviation 1.12 m (resp. 1.06 m). The fraction 0 nario (say, a fixedl, and P and a aiven localization
residual errors less than one meter have increased from 639 4 b NLOS: 9

(without mit?gation) to around 90% (with mitigation). NOte  3a5 our focus is on ranging error mitigation, rather than theegment of
that the residual ranging errors can be negative, as they @eeanchors, we assume sufficient angular separation amahprs.

,1; 2 -1 0. 1 2
Residual ranging erroA [m]

defined asi — A, whereA is the estimate of the ranging error
output by the regressor. For GP—log and SVM-Iag> 0.

V. LOCALIZATION: STRATEGIES AND PERFORMANCE
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Figure 4. Outage probability falN, = 5 anchors, withPxr,os = 0.2

Figure 5. OQutage probability foN, = 5 anchors, withPxi,0s = 0.8
strategy) and an allowable errey, (say, 1 meter), the agent

is said to be in outage when its position errop

Note that now we cannot perform constrained optimiza-
—p|l tion, sinced = d(

exceedsey,. The outage probability is then given by the
complementary CDF of the localization error

,P1:n,) Cannot be guaranteed (see
also Fig. 3).
o Log-domain mitigation followed by norm minimiza-
. . tion: Using either SVM—log or GP-log, we can obtain
Pout (eth) - PI‘Ob{”p - pHQ > eth} . (15) an estimate Oﬂz(P,Pz) _ log (Czl _ dz(papz)) Norm
The outage probability is determined through Monte Carlo minimization can be performed as follows
simulation, by generating 5000 networks for every scenario

argmgn (P, P1:n,) —
for o € {1, 2}, where
We consider four different localization strategies thando
require knowledge of the statistics of the ranging errotther
LOS/N[_OS condition. Given theéV, anchor’s positions and a

A. Localization Strategies

Y||av (19)

1(p,p1:v) = [1(P,P1), - (P Pa)]T (20)
) ; and
vectord of NV, distance estimates, the estimatepois found
by solving one of the following four optimization problems. v = [y1(x1), --7be(be)]T
o Norm minimization: A standard approach is to simply
minimize the norm of the residuals:

(21)
argm}in d(p, p1:v,) — d|,

is the vector of outputs from the regressor. Note that there
(16)

is an implicit constraint in (19), as the logarithm can only

be applied to positive arguments
for o € {1,2}.

. Constrained norm minimization: We can exploit the B- Localization Performance

positively biased, i.e.d; > d;(p, p:), through an addi- SVM perform similarly, with GP performing slightly better
tional constraint:

knowledge that the distance estimates (see Fig. 1) areOverall, based on our investigations, we found that GP and
argmgn Hd(pa pl:Nb) - &Ha

than SVM. In the remainder of this section, we will focus on
arn ©P .

We first consider the outage performance f@yos = 0.2
s.t. &_ d(p,plsz) =0, n Flg 4 andPNLos = 0.8 in Flg 5. In low PuLos, Flg 4
indicates that, except for very small allowable erreys, ¢1-
norm minimization outperformg,-norm minimization. This
is because thé;-norm is more robust against outliers, caused
either SVM or GP, we can obtain an estimate of the py NLOS conditions. Additionally, we observe that for any
ranging errorA;, which we can subtract from the esti-.,, constrained/;- or £,-norm minimization uniformly out-
mated range, leading to a mitigated range= d; — A,. performs unconstrained minimization, as we would expect
Using the vector of mitigated ranged, we can mmimize The performance difference is especially significant fer
the norm of the residuals:

arg mgn Hd(pa pl:Nb) - d||a

for a € {1, 2}.

o Mitigation followed by norm minimization: Using

norm minimization, as adding the constraints can counterac
(18 the effect of outliers. For very smadky,, ¢1-norm minimiza-

tion exhibits poor performance since it will attempt to find
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sparse solutions by driving some components of the rangingl drop, as observed in Fig. 7. Agaifi;-norm m|n|m|zat|on
error vectord — d(p, p1.y,) to zero, at the cost of largerhas the poorest performance, except wh&ios — 0,
errors in the remaining components. We see a performaniéeich case no outages were observed for 5000 network
improvement when using GP error mitigation with- or ¢,- realizations. Constrained-norm minimization achieves better
norm minimization (18), compared to when no mitigation igerformance, but is still consistently outperformed by
applied. For GP error mitigation with thig-norm, this gain is norm minimization (both constrained and unconstrained. G
particularly visible for smalk,y,, while for the/,-norm, order- error mitigation has good performance, with outages reimgin
of-magnitude gains are achievable fqr, > 50 cm. Overall, below 10% for all Pyios. Again, GP error mitigation with
GP error mitigation with¢;-norm minimization outperforms £1-norm minimization turns out to be better thdp-norm
GP error mitigatior/,-norm minimization. For all considered minimization. Finally, GP—log error mitigation again ekfts
values ofey,, GP—log (19) error mitigation achieves the beghe best performance for alfv os. In the highere;, regime,
performance for bottf;- and ¢,-norm minimization. In high GP-log error mitigation witl; norm minimization wins out
PuLos, We see from Fig. 5 that without mitigation, the situatiolue to its robustness.
is similar, with £;-norm minimization outperforming,-norm
minimization, and constrained minimization reducid; VI. CONCLUSION
compared to unconstrained minimization. When mitigat®n i Conventional approaches to deal with the challenge of
employed, significant performance gains are visible in thigcalization in cluttered environments typically involviest
high PyLos scenario. The strategy (19) again yields the bedetecting the NLOS condition, and then taking appropriate
performance, with thé;-norm outperforming thé;-norm for measures to account for the NLOS condition. However, the
all considered values afy,. wide variety of materials and diverse operating environisien
Let us now evaluate the outage probability as a function ofn impact ranging performance in unique ways, indicating
PyLos for a fixed ey,. Figs. 67 showP,,; for e;, = 50cm  that the coarse distinction between LOS and NLOS is not
and e, = 2m, respectively. Fory, = 50 cm, Fig. 6 shows always meaningful. Based on this observation, we have taken
how ¢;-norm minimization performs better th@s-norm min- a different approach in this paper. Our approach employs non
imization, except for very smalPy os. When Py os — 0, f2- parametric machine learning techniques (SVM and GP) to
norm minimization yields excellent performance, sincetlal estimate the ranging error directly from the received wave-
distance estimates have almost no error (see also Fig. liyén pform, without any a priori or a posteriori knowledge of the
LOS conditions. On the other hand,-norm minimization, NLOS condition. Based on an extensive indoor measurement
tries to find a sparse solution. This meaasorm minimiza- campaign with FCC-compliant UWB radios, we evaluated the
tion will try to set some errors to zero, while the other esrofocalization performance in terms of outage probability fo
remain large (i.e., a solutiofy that lies on the intersection of different localization strategies.
two or more circles, and far away from the remaining cirgles) Our results revealed that: (f}-norm minimization is more
thus leading to poorer outage performance. GP error mibigat robust in coping with outliers thaf,-norm minimization, for
with £1-norm minimization exhibits good performance, outpetocalization without mitigation; (ii) constraints can pide
forming /;-norm minimization for allPy_os. Finally, GP—log significant gains, especially when localization requiratae
error mitigation yields the best performance, with thenorm are not too stringent; (ii) SVM or GP regression techniques
slightly outperforming/;-norm. When relaxing the value of provide additional performance gains for all considereg- sc
eyn 10 2m, outage probabilities for all localization strateggienarios; (iv) SVM or GP regression techniques, combined with



knowledge of constraints on the ranging error, provide &t b [17]
performance for the scenarios under consideration.

The strategy of combining SVM or GP regression tecITIg]
niqgues with knowledge of constraints on the ranging error
provides orders of magnitude performance improvements com
pared to traditional approaches. This highlights the faet t
non-parametric ranging error mitigation has the poterttal
significantly improve localization performance. [20]
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