
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

1

Schedulability analysis

Schedulability analysis:
 The process of determining whether a task set can be
scheduled by a given run-time scheduler in such a manner
that all task instances will complete by their deadlines.

Schedulability analysis typically
involves a feasibility test that is
customized for the actual run-time
scheduler used.

Schedulability analysis

Complexity of schedulability analysis:
(Leung & Merrill, 1980)

The problem of deciding if a task set can be scheduled in
such a manner that all task instances will complete by their

deadlines is NP-hard for each fixed m ≥ 1 processors.

Complexity of multiprocessor schedulability analysis:
(Leung & Whitehead, 1982)

The problem of deciding if a task set can be scheduled on
m processors is NP-complete in the strong sense.

Schedulability analysis

Main aspects of schedulability analysis:

•  The priority assignment problem
–  Given a set of tasks, does there exist an assignment of priorities

to these tasks satisfying the property that the system can be
scheduled by a priority-based run-time system such that all task
instances will complete by their deadlines?

•  The feasibility testing problem
–  Given a set of tasks, and an assignment of priorities to these

tasks, can the system be scheduled by a priority-based run-time
system such that all task instances will complete by their
deadlines?

Schedulability analysis

Complexity of feasibility testing:
(Leung, 1989)

The problem of deciding the feasibility of a schedule
produced by a particular static or dynamic priority

assignment is NP-hard for m ≥ 1 processors.

Observation:
•  If an optimal priority assignment can be found in polynomial

time, the complexity of the priority assignment problem
reduces to that of the feasibility testing problem.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

2

Priority assignment

A priority assignment policy P is said to be optimal with respect
to a feasibility test S and a given task model, if and only if the
following holds: P is optimal if there are no task sets that are
compliant with the task model that are deemed schedulable by
test S using another priority assignment policy, that are not also
deemed schedulable by test S using policy P.

Observations:
•  The definition is applicable to both sufficient feasibility tests and

exact feasibility tests; optimal performance is still provided with
respect to the limitations of the test itself.

Priority assignment

Relaxing the zero offset assumption:

•  In order for the RM, DM and EDF priority-assignment
policies to be optimal for the single-processor case we
assume synchronous task sets where the offsets of tasks
are identical, that is:

 ∀i, j :Oi = Oj

In asynchronous task sets the offsets of at least one pair
of tasks are not identical, that is:

 ∃i, j : i≠ j, Oi ≠Oj

Asynchronous task sets are typically used to reduce jitter or to
remove the need for resource access protocols (e.g. PCP).

Priority assignment

Relaxing the zero offset assumption (cont’d):

•  In an asynchronous task set two tasks with identical
periods but different offsets could never be released
simultaneously during the lifetime of the system.

This means that the worst-case response times of the tasks will
be lower than if the offsets of the task were equal.

•  A priority-assignment policy that is shown to be optimal for
a synchronous system is not necessarily optimal for an
asynchronous system.

For example, it is known that RM and DM are not optimal for
asynchronous task systems. (Leung & Whitehead, 1982)

Priority assignment

Non-optimality of DM for asynchronous tasks:

t 0 5 10 15

 τ1

t 0 5 10 15

Missed deadline Missed deadline
 τ1 : (2,2,3,4)

 τ 2 : (0,3,4,8)

 τ i : (Oi ,Ci , Di ,Ti)

 τ 2

 τ1

 τ 2

DM

Inverse DM

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

3

Priority assignment

Non-optimality of RM for asynchronous tasks:

t 0 5 10 15

 τ 2

 τ1 : (10,1,12)

 τ 2 : (0,6,12)

 τ i : (Oi ,Ci ,Ti)

 τ 3

RM

RM
(alternate

tie-breaking
rule)

 τ1

 τ 3 : (0,3,8)

20

t 0 5 10 15

 τ 2

 τ 3

 τ1

20

Missed deadline

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Leung & Whitehead, 1982)

There exists a pseudo-polynomial time algorithm to decide if a
synchronous task set can be scheduled on one processor in

such a way that all task instances will complete by their deadlines.

Proof:
•  The deadline-monotonic priority assignment is optimal for

synchronous task sets, and can be obtained in polynomial time
•  An exact feasibility test for synchronous task sets on a single

processor can be performed in pseudo-polynomial time (using
critical instant analysis).

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Leung & Whitehead, 1982)

The problem of deciding if an asynchronous task set can be

scheduled on one processor in such a way that all task
instances will complete by their deadlines is NP-hard.

Observations:
•  If the tasks are ever simultaneously released (can be decided

in pseudo-polynomial time), the synchronous case applies and
schedulability can be decided in pseudo-polynomial time.

•  If the tasks are never simultaneously released it is necessary to
find an optimal priority assignment and an exact test for that
priority assignment.

Priority assignment

Optimal Priority Assignment (OPA) algorithm:
(Audsley, 1991)
1.  A priority ordering is partitioned into two parts: a sorted part,

consisting of the lower n priority tasks, and the remaining
unsorted higher priority tasks. Initially the priority ordering is an
arbitrary one, and all tasks are unsorted.

2.  All tasks in the unsorted partition are chosen in turn and placed
at the top of the sorted partition and tested for schedulability.

3.  If the chosen task is schedulable then the priority of the task is
left as it is, and the sorted partition extended by one position. If
the task is not schedulable it is returned to its former priority.

4.  This continues until either all tasks in the unsorted partition
have been checked and found to be unschedulable, or else the
sorted partition constitutes the final priority assignment.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

4

Priority assignment

Optimal Priority Assignment Algorithm

for each priority level k, lowest first
{
 for each unassigned task
 {
 if is schedulable at priority k
 according to schedulability test S
 with all unassigned tasks assumed to
 have higher priorities
 {
 assign to priority k
 break (continue outer loop)
 }
 }
 return unschedulable

}
return schedulable

Priority assignment

Properties of the OPA algorithm:

•  The time complexity of OPA is , for tasks.
This is significantly better than having to consider all possible
priority orderings.

 O(n2+ n) n
n!

•  Optimality of the OPA algorithm is provided with respect
to the limitations of the schedulability test used.
If a non-exact schedulability test is used the priority ordering
reflects the quality of the test.

•  The OPA algorithm holds for any scheduling test where a
task being assigned a higher priority cannot become
unschedulable according to the test, if it was previously
deemed schedulable at the lower priority.

Feasibility testing

•  A feasibility test is sufficient if it with a positive answer
shows that a set of tasks is definitely schedulable.
–  A negative answer says nothing! A set of tasks can still be

schedulable despite a negative answer.

Task set

Schedulable

Not schedulable

Positive test

Negative test

?

Feasibility testing

•  A feasibility test is necessary if it with a negative answer
shows that a set of tasks is definitely not schedulable.
–  A positive answer says nothing! A set of tasks can still be

impossible to schedule despite a positive answer.

Task set

Schedulable

Not schedulable

Positive test

Negative test

?

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

5

Feasibility testing

•  An exact feasibility test is both sufficient and necessary. If
the answer is positive the task set is definitely schedulable,
and if the answer is negative the task set is definitely not
schedulable.

Task set

Schedulable

Not schedulable

Negative test

Positive test

Feasibility testing

What techniques for feasibility testing exist?

•  Hyper-period analysis (for static and dynamic priorities)
–  In a simulated schedule no task execution may miss its deadline

•  Guarantee bound analysis (for static and dynamic priorities)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (for static priorities)
–  The worst-case response time for each task must not exceed the

deadline of the task

•  Processor demand analysis (for dynamic priorities)
–  The accumulated computation demand for the task set under a

given time interval must not exceed the length of the interval

Feasibility testing

What techniques for feasibility testing exist?

•  Hyper-period analysis (exponential time complexity)
–  In a simulated schedule no task execution may miss its deadline

•  Guarantee bound analysis (polynomial time complexity)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (pseudo-polynomial complexity)
–  The worst-case response time for each task must not exceed the

deadline of the task

•  Processor demand analysis (pseudo-polynomial complexity)
–  The accumulated computation demand for the task set under a

given time interval must not exceed the length of the interval

Hyper-period analysis

Motivation:

•  When it is not obvious which feasibility analysis should
be used for a particular task set it is always possible to
generate a schedule by simulating the execution of the
tasks, and then check schedulability for individual tasks.
For example, this is currently the only way to perform exact
feasibility test on asynchronous task sets where tasks will never
be released simultaneously.

•  The schedule interval that is sufficient to investigate is
related to the hyper-period of the task set, that is, the
least-common-multiple (LCM) of the task periods.
Thus, hyper-period analysis will in general have an exponential
time complexity.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

6

Hyper-period analysis

Feasibility intervals:

•  For synchronous systems it is sufficient to investigate the
interval , where is the hyper-period of the task set. 0,P[] P

•  For asynchronous systems with dynamic priorities it is
sufficient to investigate the interval , where
 is the hyper-period and is the largest offset in the
task set.

 0,Omax + 2P[]
P Omax

•  For asynchronous systems with static priorities it is
sufficient to investigate, for each task , the interval
 , where is the hyper-period of all tasks with
priority higher than .
 Oi ,Oi + Pi[] Pi

 τi

 τi
task utilization =

Ci

Ti

Guarantee bound analysis

 Basic principle:
–  If the accumulated utilization U of all tasks in the system does

not exceed a guarantee bound, all timing constraints will be met.

–  The guarantee bound UGB is expressed as a fraction of the
available processing capacity of the system.
 (= 100% multiplied by the number of processors)

–  The utilization Ui of a task is expressed as the fraction of
processing capacity used for executing the task.
Thus, guarantee bound analysis will have a polynomial time complexity

accumulated utilization =
Ci

Tii=1

n

∑

 A good guarantee bound …
… enables prediction of required processing capacity, e.g. # and
speed of processors, of the hardware (when software is known)
… enables derivation of timing parameters, e.g. periods of tasks, in
the software (when hardware implementation is known)

Guarantee bound analysis

 A good guarantee bound …
… enables prediction of how “strong” the hardware implementation
must be (when the software “load” is known)

… enables prediction of how high the software “load” is allowed to
be (when the “strength” of the hardware implementation is known)

=

 A good timing model …
… enables expressing the timing properties of the application in a
clear (syntactically unambiguous) way

… enables timing constraints to be reflected at all design levels:
from specification level (end-to-end constraints) to concrete
software implementation (task execution constraints)

 A good guarantee bound …
… enables prediction of how “strong” the hardware implementation
must be (when the software “load” is known)

… enables prediction of how high the software “load” is allowed to
be (when the “strength” of the hardware implementation is known)

Guarantee bound analysis

Honey, if you
don't know the
answer, just
SAY so!

Oh, I guess
I should
have known
that!

Dad? How do they know
how much weight a bridge
can handle?

They drive bigger and
bigger trucks over the
bridge until it
collapses!

Then they take the
weight of the last
truck and rebuild the
bridge

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated March 21, 2012

7

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)

•  The guarantee bound for RM scheduling is

UGB-RM = n 21/n−1()

•  A conservative lower limit on the guarantee bound can be
derived by letting n→∞

lim
n→∞

n 21/n −1() = ln2 ≈ 0.693

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)

•  A sufficient condition for RM scheduling is

()12 /1

1
−≤=∑

=

n
n

i i

i n
T
CU

•  The test is only valid if all of the following conditions apply:
1. Single-processor system
2. Synchronous task sets
3. Independent tasks
4. Periodic or sporadic tasks
5. Tasks have deadlines equal to period () ii TD =

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)

•  The proof of the condition uses the fact that the worst-
case response time for a task occurs at a critical instant
(where the task arrives at the same time as all higher-priority tasks)

•  The feasibility test is derived using an analysis of this
special case

•  The proof also shows that if the task set is schedulable for
the critical instant case, it is also schedulable for any other
case

•  The proof is given in Krishna and Shin (Section 3.2.1)
Highly recommended reading!

Guarantee bound analysis

Guarantee bound analysis for EDF: (Liu & Layland, 1973)

•  A sufficient and necessary condition for EDF scheduling is

1
1

≤=∑
=

n

i i

i

T
CU

•  The test is only valid if all of the following conditions apply:
1. Single-processor system
2. Synchronous task sets
3. Independent tasks
4. Periodic tasks
5. Tasks have deadlines equal to period () ii TD =

 UGB-EDF =1

