
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #5 
Updated March 21, 2012 

1 

Schedulability analysis 

Schedulability analysis: 
   The process of determining whether a task set can be 
scheduled by a given run-time scheduler in such a manner 
that all task instances will complete by their deadlines.  

Schedulability analysis typically 
involves a feasibility test that is 
customized for the actual run-time 
scheduler used. 

Schedulability analysis 

Complexity of schedulability analysis: 
(Leung & Merrill, 1980) 

The problem of deciding if a task set can be scheduled in 
such a manner that all task instances will complete by their 

deadlines is NP-hard for each fixed m ≥ 1 processors.  

Complexity of multiprocessor schedulability analysis: 
(Leung & Whitehead, 1982) 

The problem of deciding if a task set can be scheduled on  
m processors is NP-complete in the strong sense.  

Schedulability analysis 

Main aspects of schedulability analysis:  

•  The priority assignment problem 
–  Given a set of tasks, does there exist an assignment of priorities 

to these tasks satisfying the property that the system can be 
scheduled by a priority-based run-time system such that all task 
instances will complete by their deadlines? 

•  The feasibility testing problem 
–  Given a set of tasks, and an assignment of priorities to these 

tasks, can the system be scheduled by a priority-based run-time 
system such that all task instances will complete by their 
deadlines? 

Schedulability analysis 

Complexity of feasibility testing:  
(Leung, 1989) 

The problem of deciding the feasibility of a schedule 
produced by a particular static or dynamic priority 

assignment is NP-hard for m ≥ 1 processors.  

Observation:  
•  If an optimal priority assignment can be found in polynomial 

time, the complexity of the priority assignment problem 
reduces to that of the feasibility testing problem. 
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Priority assignment 

A priority assignment policy P is said to be optimal with respect  
to a feasibility test S and a given task model, if and only if the 
following holds: P is optimal if there are no task sets that are 
compliant with the task model that are deemed schedulable by 
test S using another priority assignment policy, that are not also 
deemed schedulable by test S using policy P. 

Observations: 
•  The definition is applicable to both sufficient feasibility tests and 

exact feasibility tests; optimal performance is still provided with 
respect to the limitations of the test itself. 

Priority assignment 

Relaxing the zero offset assumption: 

•  In order for the RM, DM and EDF priority-assignment 
policies to be optimal for the single-processor case we 
assume synchronous task sets where the offsets of tasks 
are identical, that is: 

 ∀i, j :Oi = Oj

In asynchronous task sets the offsets of at least one pair 
of tasks are not identical, that is:  

 ∃i, j : i≠ j, Oi ≠Oj

Asynchronous task sets are typically used to reduce jitter or to 
remove the need for resource access protocols (e.g. PCP).   

Priority assignment 

Relaxing the zero offset assumption (cont’d): 

•  In an asynchronous task set two tasks with identical 
periods but different offsets could never be released 
simultaneously during the lifetime of the system. 

This means that the worst-case response times of the tasks will  
be lower than if the offsets of the task were equal. 

•  A priority-assignment policy that is shown to be optimal for 
a synchronous system is not necessarily optimal for an 
asynchronous system. 

For example, it is known that RM and DM are not optimal for 
asynchronous task systems. (Leung & Whitehead, 1982) 

   

Priority assignment 

Non-optimality of DM for asynchronous tasks: 
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Priority assignment 

Non-optimality of RM for asynchronous tasks: 
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Priority assignment 

Complexity of uniprocessor schedulability analysis: 
(Leung & Whitehead, 1982) 

 
There exists a pseudo-polynomial time algorithm to decide if a 
synchronous task set can be scheduled on one processor in  

such a way that all task instances will complete by their deadlines.  

Proof: 
•  The deadline-monotonic priority assignment is optimal for 

synchronous task sets, and can be obtained in polynomial time 
•  An exact feasibility test for synchronous task sets on a single 

processor can be performed in pseudo-polynomial time (using  
critical instant analysis). 

Priority assignment 

Complexity of uniprocessor schedulability analysis: 
(Leung & Whitehead, 1982) 

 
The problem of deciding if an asynchronous task set can be 

scheduled on one processor in such a way that all task  
instances will complete by their deadlines is NP-hard.  

Observations: 
•  If the tasks are ever simultaneously released (can be decided  

in pseudo-polynomial time), the synchronous case applies and 
schedulability can be decided in pseudo-polynomial time. 

•  If the tasks are never simultaneously released it is necessary to 
find an optimal priority assignment and an exact test for that 
priority assignment.  

Priority assignment 

Optimal Priority Assignment (OPA) algorithm: 
(Audsley, 1991) 
1.  A priority ordering is partitioned into two parts: a sorted part, 

consisting of the lower n priority tasks, and the remaining 
unsorted higher priority tasks. Initially the priority ordering is an 
arbitrary one, and all tasks are unsorted.  

2.  All tasks in the unsorted partition are chosen in turn and placed 
at the top of the sorted partition and tested for schedulability. 

3.  If the chosen task is schedulable then the priority of the task is 
left as it is, and the sorted partition extended by one position. If 
the task is not schedulable it is returned to its former priority. 

4.  This continues until either all tasks in the unsorted partition 
have been checked and found to be unschedulable, or else the 
sorted partition constitutes the final priority assignment.   
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Priority assignment 

Optimal Priority Assignment Algorithm 
 
for each priority level k, lowest first 
{ 
 for each unassigned task  
 { 
  if  is schedulable at priority k 
  according to schedulability test S 
  with all unassigned tasks assumed to 
  have higher priorities 
  { 
  assign  to priority k 
  break (continue outer loop) 
  } 
 } 
 return unschedulable 

} 
return schedulable   

Priority assignment 

Properties of the OPA algorithm: 

•  The time complexity of OPA is                , for    tasks. 
This is significantly better than having to consider all      possible 
priority orderings. 

 O(n2+ n) n
n!

•  Optimality of the OPA algorithm is provided with respect 
to the limitations of the schedulability test used. 
If a non-exact schedulability test is used the priority ordering 
reflects the quality of the test. 

•  The OPA algorithm holds for any scheduling test where a 
task being assigned a higher priority cannot become 
unschedulable according to the test, if it was previously 
deemed schedulable at the lower priority. 

Feasibility testing 

•  A feasibility test is sufficient if it with a positive answer 
shows that a set of tasks is definitely schedulable. 
–  A negative answer says nothing! A set of tasks can still be 

schedulable despite a negative answer. 

Task set 

Schedulable 

Not schedulable 

Positive test 

Negative test 

? 

Feasibility testing 

•  A feasibility test is necessary if it with a negative answer 
shows that a set of tasks is definitely not schedulable. 
–  A positive answer says nothing! A set of tasks can still be 

impossible to schedule despite a positive answer. 

Task set 

Schedulable 

Not schedulable 

Positive test 

Negative test 

? 
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Feasibility testing 

•  An exact feasibility test is both sufficient and necessary. If 
the answer is positive the task set is definitely schedulable, 
and if the answer is negative the task set is definitely not 
schedulable. 

Task set 

Schedulable 

Not schedulable 

Negative test 

Positive test 

Feasibility testing 

What techniques for feasibility testing exist? 

•  Hyper-period analysis (for static and dynamic priorities) 
–  In a simulated schedule no task execution may miss its deadline  

•  Guarantee bound analysis (for static and dynamic priorities) 
–  The fraction of processor time that is used for executing the  

task set must not exceed a given bound 

•  Response time analysis (for static priorities) 
–  The worst-case response time for each task must not exceed the 

deadline of the task 

•  Processor demand analysis (for dynamic priorities) 
–  The accumulated computation demand for the task set under a 

given time interval must not exceed the length of the interval 

Feasibility testing 

What techniques for feasibility testing exist? 

•  Hyper-period analysis (exponential time complexity) 
–  In a simulated schedule no task execution may miss its deadline  

•  Guarantee bound analysis (polynomial time complexity) 
–  The fraction of processor time that is used for executing the  

task set must not exceed a given bound 

•  Response time analysis (pseudo-polynomial complexity) 
–  The worst-case response time for each task must not exceed the 

deadline of the task 

•  Processor demand analysis (pseudo-polynomial complexity) 
–  The accumulated computation demand for the task set under a 

given time interval must not exceed the length of the interval 

Hyper-period analysis 

Motivation: 

•  When it is not obvious which feasibility analysis should  
be used for a particular task set it is always possible to 
generate a schedule by simulating the execution of the 
tasks, and then check schedulability for individual tasks. 
For example, this is currently the only way to perform exact 
feasibility test on asynchronous task sets where tasks will never 
be released simultaneously. 

•  The schedule interval that is sufficient to investigate is 
related to the hyper-period of the task set, that is, the 
least-common-multiple (LCM) of the task periods. 
Thus, hyper-period analysis will in general have an exponential 
time complexity. 
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Hyper-period analysis 

Feasibility intervals: 

•  For synchronous systems it is sufficient to investigate the 
interval         , where    is the hyper-period of the task set.  0,P[ ] P

•  For asynchronous systems with dynamic priorities it is 
sufficient to investigate the interval                      , where 
   is the hyper-period and        is the largest offset in the 
task set.  

 0,Omax + 2P[ ]
P Omax

•  For asynchronous systems with static priorities it is 
sufficient to investigate, for each task    , the interval 
                 , where     is the hyper-period of all tasks with 
priority higher than    .  
 Oi ,Oi + Pi[ ] Pi

 τi

 τi
task utilization =

Ci

Ti

Guarantee bound analysis 

  Basic principle: 
–  If the accumulated utilization U of all tasks in the system does 

not exceed a guarantee bound, all timing constraints will be met. 

–  The guarantee bound UGB  is expressed as a fraction of the 
available processing capacity of the system.  
 (= 100% multiplied by the number of processors) 

–  The utilization Ui of a task is expressed as the fraction of 
processing capacity used for executing the task.  
Thus, guarantee bound analysis will have a polynomial time complexity 

accumulated utilization =
Ci

Tii=1

n

∑

  A good guarantee bound … 
… enables prediction of required processing capacity, e.g. # and 
speed of processors, of the hardware (when software is known) 
… enables derivation of timing parameters, e.g. periods of tasks, in 
the software (when hardware implementation is known) 

Guarantee bound analysis 

  A good guarantee bound … 
… enables prediction of how “strong” the hardware implementation 
must be (when the software “load” is known) 

… enables prediction of how high the software “load” is allowed to 
be (when the “strength” of the hardware implementation is known) 

= 

 A good timing model … 
… enables expressing the timing properties of the application in a 
clear (syntactically unambiguous) way  

… enables timing constraints to be reflected at all design levels: 
from specification level (end-to-end constraints) to concrete 
software implementation (task execution constraints) 

  A good guarantee bound … 
… enables prediction of how “strong” the hardware implementation 
must be (when the software “load” is known) 

… enables prediction of how high the software “load” is allowed to 
be (when the “strength” of the hardware implementation is known) 

Guarantee bound analysis 

Honey, if you 
don't know the 
answer, just 
SAY so! 

Oh, I guess 
I should 
have known 
that! 

Dad? How do they know 
how much weight a bridge 
can handle? 

They drive bigger and 
bigger trucks over the 
bridge until it 
collapses! 

Then they take the 
weight of the last 
truck and rebuild the 
bridge 
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Guarantee bound analysis 

Guarantee bound analysis for RM: (Liu & Layland, 1973) 

•  The guarantee bound for RM scheduling is 

 
UGB-RM = n 21/n−1( )

•  A conservative lower limit on the guarantee bound can be 
derived by letting   n→∞

lim
n→∞

n 21/n −1( ) = ln2 ≈ 0.693

Guarantee bound analysis 

Guarantee bound analysis for RM: (Liu & Layland, 1973) 

•  A sufficient condition for RM scheduling is 

( )12 /1

1
−≤=∑

=

n
n

i i

i n
T
CU

•  The test is only valid if all of the following conditions apply: 
1. Single-processor system 
2. Synchronous task sets 
3. Independent tasks 
4. Periodic or sporadic tasks 
5. Tasks have deadlines equal to period (            ) ii TD =

Guarantee bound analysis 

Guarantee bound analysis for RM: (Liu & Layland, 1973) 

•  The proof of the condition uses the fact that the worst-
case response time for a task occurs at a critical instant 
(where the task arrives at the same time as all higher-priority tasks) 

•  The feasibility test is derived using an analysis of this 
special case 

•  The proof also shows that if the task set is schedulable for 
the critical instant case, it is also schedulable for any other 
case 

•  The proof is given in Krishna and Shin (Section 3.2.1) 
Highly recommended reading!  

Guarantee bound analysis 

Guarantee bound analysis for EDF: (Liu & Layland, 1973) 

•  A sufficient and necessary condition for EDF scheduling is 

1
1

≤=∑
=

n

i i

i

T
CU

•  The test is only valid if all of the following conditions apply: 
1. Single-processor system 
2. Synchronous task sets 
3. Independent tasks 
4. Periodic tasks 
5. Tasks have deadlines equal to period (            ) ii TD =

 UGB-EDF =1


