
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #2 
Updated March 10, 2012 

1 

Verification 

Since timeliness is such an important characteristic of a 
real-time system: how do we verify that the timing 
constraints are met for a given system implementation? 

… so we don’t miss that 
hard deadline … … so we don’t miss too 

many soft deadlines … … while we at the same time 
avoid analyzing all possible 
software execution scenarios 

Verification 

What is needed for formal verification? 

•  A good timing model 
Enables expressing the timing properties of the application in a 
syntactically unambiguous way 

Enables timing constraints to be reflected at all design levels: from 
specification level (end-to-end constraints) to implementation level 

•  A good schedulability analysis 
Enables prediction of required processing capacity, e.g. # and  
speed of processors, of the hardware (when software is known) 

Enables prediction of required resource usage from the software 
(when hardware implementation is known) 

Verification 

What sources of uncertainty exist in formal verification? 
 

•  Non-determinism in tasks’ WCET (undisturbed execution) 
–  Input data and internal state controls execution paths   
–  Memory access patterns control delays in processor 

architecture (pipelines and cache memories) 

•  Non-determinism in tasks’ execution interference 
(pseudo-parallel execution)  
–  Run-time execution model controls interference pattern 

•  Conflicts in tasks’ demands for shared resources 
–  (Pseudo-)parallel task execution may give rise to uncontrolled 

blocking of shared hardware and software resources 

Verification 

How do we simplify formal verification? 
 

•  Concurrent and reactive programming paradigm 
–  Suitable schedulable unit of concurrency (task, thread, …)   
–  Language constructs for expressing application constraints  

for schedulable unit (priorities, delays, …) 
–  WCET must be derivable for schedulable unit (special caution 

with usage of dynamic language constructs) 

•  Deterministic task execution 
–  Time tables or static/dynamic task priorities 
–  Preemptive task execution 
–  Run-time protocols for access to shared resources (dynamic 

priority adjustment and non-preemptable code sections) 



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #2 
Updated March 10, 2012 

2 

Verification 

How do we perform schedulability analysis? 
 

•  Introduce abstract models of system components: 
–  Task model (computation requirements, timing constraints) 

–  Processor model (resource capacities) 

–  Run-time model (task states, dispatching) 

•  Predict whether task executions will meet constraints  
–  Use abstract system models 

–  Make sure that computation requirements never exceed 
resource capacities 

–  Generate (partly or completely) run-time schedule resulting 
from task executions and detect worst-case scenarios 

Task model 

void task1(Object *self, int p) { 
 Action1(); 
 SEND(Period1, Deadline1, self, task1, p); 

} 
 
void task2(Object *self, int p) { 

 Action2(); 
 SEND(Period2, Deadline2, self, task2, p); 

} 
 
void kickoff(Object *self, int p) { 

 AFTER(Offset1, &app1, p); 
 AFTER(Offset2, &app2, p); 

} 
 
main() { 

 TINYTIMBER(&app_main, kickoff, 0); 
} 
 

Implementation Abstract model 

1τ

2τ

{ }1 1 1 1 1, , ,C T D Oτ =

{ }2 2 2 2 2, , ,C T D Oτ =

Task model 

The task model expresses the timing behavior of a task:  
•  The static parameters describe characteristics of a task 

that apply independent of other tasks. 
–  Derived from the specification or implementation of the system 
–  For example: period, deadline, WCET 

•  The dynamic parameters describe effects that occur 
during the execution of the task. 
–  Is a function of the run-time system and the characteristics  

of other tasks 
–  For example: start time, completion time, response time 

Task model 

Static task parameters: 

  
τ i = Ci ,Ti , Di ,Oi{ }iτ

t 0 

 Di

 Ci

 Oi  Ti

   Ci :(undisturbed) WCET

:iT period

   Di :(relative) deadline

   Oi :(absolute) time offset



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #2 
Updated March 10, 2012 

3 

Task model 

Dynamic task parameters: 

  
τ i = Ci ,Ti , Di ,Oi{ }iτ

   
si,k : start time of kth  instance

   
fi,k : completion time of kth  instance

   
Ri,k : response time of kth  instance

   
ai,k : arrival time of kth  instance

   
τ i,k :  the kth  instance of τ i  

  
fi,k  

si,k

  
ai,k   

Ri,k

,1iτ ,2iτ ,3iτ

   
Ri = max

τ i ∈T,k≥1
Ri,k{ }

  
ai,k = Oi + (k −1) ⋅Ti   

Ri,k = fi,k − ai,k

(worst-case response time) 

0 t 

Task model 

Different types of tasks: 
 

•  Periodic tasks 
–  A periodic task arrives with a time interval Ti 

•  Sporadic tasks 
–  A sporadic task arrives with a time interval ≥ Ti 

•  Aperiodic tasks 
–  An aperiodic task has no guaranteed minimum time between  

two subsequent arrivals 

⇒  A priori schedulable real-time systems can only contain 
periodic and sporadic tasks. 

Processor model 

Homogeneous processors: 
 

•  Identical processors 
–  WCET is a constant 

Heterogeneous processors: 
 

•  Uniform processors 
–  WCET is the product of a basic execution time and a  

scaling factor 

•  Unrelated processors 
–  WCET is not related for different processors 

Run-time model 

Task states: 
•  Waiting 

–  Task has not yet arrived for the first time, or has finished 
executing but not re-arrived 

•  Ready 
–  Task has arrived and can potentially execute on the processor 

(kept waiting in a ready queue) 

•  Running 
–  Task is currently executing on the processor 

Dispatcher: 
•  A run-time mechanism that takes the first element (task) 

in the ready queue and executes it on the processor. 



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #2 
Updated March 10, 2012 

4 

Scheduling 

•  Application constraints can be met through scheduling. 

•  Scheduling used in many disciplines (”operations research”) 
–  Production pipelines 

–  Real-time systems 

–  Classroom scheduling 

–  Airline crew scheduling 

–  ... 

 Schedule = resources + operations on a time line  
•  An important part of real-time system design is to choose 

a scheduling technique that generates a good schedule 
(that fulfills the application constraints). 

Evaluating a real-time system 

How do we measure and compare performance? 

•  Quantify system performance 
–  Choose useful performance measures (metrics) 

•  Perform objective performance analysis 
–  Choose suitable evaluation methodology 

–  Examples: theoretical and/or experimental analysis 

•  Compare performance of different designs 
–  Make trade-off analysis using chosen performance measures 

•  Identify fundamental performance limitations 
–  Find “bottleneck” mechanisms that affect performance 

Performance measures 

Why do we need it? 

•  To objective evaluate different design solutions and  
choose the “best” one 

•  To rubberstamp a system with performance potential  
or quality guarantees (cf. “Intel inside”, “ISO 9000”) 

“Yardsticks” by which the performance of a  
system is expressed. 

Performance measures 

What is required by a performance measure? 

•  Must be concise to avoid ambiguity 
–  preferably a single number  

•  use a weighted sum of constituent local performance measures 

–  should reflect user-perceived utility 
•  no artificial measures should be used 

–  some measures are contradictory 
•  processing speed vs. power consumption in a handheld computer 

–  some measures are misleading 
•  MIPS (million instructions executed per second) 



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #2 
Updated March 10, 2012 

5 

Performance measures 

What is required by a performance measure? 

•  Must provide efficient coding of information  
–  determine relevance of individual pieces 

•  Must provide objective basis for ranking  
–  use same set of applications for evaluations 

•  Must provide objective optimization criteria for design 
–  identify application-sensitive criteria 

•  Must provide verifiable facts 
–  use measures that can be derived for a real system 

Performance measures 

Traditional performance measures: 
 

 Throughput 
 Average # of operations/data processed by system per time unit 

 Reliability  
 Probability that system will not fail in a given time interval  

 Availability  
 Fraction of time for which system is up (providing service) 

These measures do not take deadlines into account! 

Performance measures 

Suitable real-time performance measures: 

 Laxity 
 Amount of time that the start of a task can be delayed without  
it missing its deadline (calculated before scheduling) 

   
X = min

τ i ∈T Di − Ci{ }

 Lateness 
 Amount of time by which a task completes after its deadline  
(calculated after scheduling) 

   
L = max

τ i ∈T Ri − Di{ }

 Successful tasks 
 Number of tasks that complete on or before their deadline  
(calculated after scheduling) 

   
Nsuccess = τ i ∈T : Ri − Di ≤ 0{ }

 Jitter 
 Amount of deviation from expected periodicity of a task’s completion 
(calculated after scheduling) 

   
Joutput = max

τ i ∈T,k≥1 fi,k +1 − fi,k( ) − Ti{ }

Performance measures 

Cost function – a general real-time performance measure 

 Cumulative value: 

 Value associated with a task as a function of its completion time 

( )
i

iC v f
τ ∈

= ∑
T

Non real-time 

( )iv f

if



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012                 Lecture #2 
Updated March 10, 2012 

6 

Soft real-time 

iD

Performance measures 

Cost function – a general real-time performance measure 

 Cumulative value: 
 Value associated with a task as a function of its completion time 

( )
i

iC v f
τ ∈

= ∑
T

( )iv f

if

Hard real-time 

iD

Performance measures 

Cost function – a general real-time performance measure 

 Cumulative value: 
 Value associated with a task as a function of its completion time 

( )
i

iC v f
τ ∈

= ∑
T

( )iv f

if


