
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

1

Parallel & Distributed
Real-Time Systems

7.5 credit points

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Administrative issues

Lectures: (Jan Jonsson, Risat Pathan + special guests)
–  Fundamental methods and theory

•  Real-time systems, scheduling, complexity theory

–  16 classroom lectures

•  Mondays at 13:15 – 15:00 in lecture room EL43

•  Thursdays at 08:00 – 09:45 in lecture room EL43

•  Fridays at 15:15 – 17:00 in lecture room EL43 (week 1, 2 & 3 only)

Consultation sessions: (Behrooz Sangchoolie)

–  Questions and guidance regarding homework assignments

–  Five consultation sessions

•  Fridays at 15:15 – 17:00 in lecture room EL43 (week 4, 5, 6, 7, 8)

•  Starts week that first homework assignment is handed out

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

2

Administrative issues

Homework assignments: (HWAs)

–  Two assignments (handed out on Apr 16 and May 2)

–  Problem solving + paper reading (16-day deadlines)

–  Written report (computer generated, electronically submitted)

–  Presentation (summarize, and argue for, proposed solutions)

Examination:

–  Passed homework assignments (report + presentation)

–  Passed final written exam (May 23 at 14:00, in the V building)

–  Grading policy: homework (60%) + final exam (40%)

–  Grades: Failed, 3, 4, 5

–  Successful examination 7.5 credit points

Course literature

Lecture notes:

–  Copies of PowerPoint presentations

–  Blackboard scribble

Complementary reading:

–  Selected research articles from archival journals and

conference proceedings

–  Selected chapters from C. M. Krishna and K. G. Shin,

“Real-Time Systems”, McGraw-Hill, 1997 (+ errata list!)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

3

Resources

Consultation sessions:
–  Fridays at 15:15 – 17:00 in room EL43

Student portal:
–  Administration of HWAs (form groups, submit documents, etc)
–  Results from the grading of HWAs and written exam

Information board:
http://www.cse.chalmers.se/edu/course/EDA421

Course aim

After the course, the student should be able to:
•  Formulate requirements for computer systems used in time-

and safety critical applications.

•  Master the terminology of scheduling and complexity theory.

•  Describe the principles and mechanisms used for scheduling
of task execution and data communication in real-time
systems.

•  Derive performance for, and be familiar with the theoretical
performance limitations of, a given real-time system.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

4

Course contents

What this course is all about:
–  real-time systems modeling
–  real-time application constraints
–  real-time performance measures
–  real-time task assignment and scheduling algorithms
–  real-time inter-processor communication techniques
–  complexity theory and NP-completeness

–  distributed clock synchronization
–  fault-tolerance techniques for real-time systems
–  estimation of program run times

Course contents

What this course is not about:
–  programming of parallel and distributed real-time systems
–  implementation issues in real-time operating systems
–  verification of program correctness
–  high-performance parallel computing
–  ...

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

5

What is a real-time system?

J. Stankovic, “Misconceptions of Real-Time Computing”, 1988

C. M. Krishna and K. G. Shin, “Real-Time Systems”, 1997

What is a real-time system?

It is not only about high-performance computing!

Real-time systems must meet timing constraints
High-performance computing maximizes average throughput

Average performance says nothing about correctness!
Real-time systems are often optimized with respect to perceived

”robustness” (control systems) or ”comfort” (multimedia)

Willie Dixon, “Built for Comfort”, 1965

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

6

What is a real-time system?

Characteristics of real-time systems:

•  Strict timing constraints
–  Responsiveness (= deadlines) and periodicity
–  Failure to meet timing constraints will cause system failure

(hard deadlines) or will negatively affect quality of the user-
perceived utility (soft deadlines)

•  Application-specific design
–  Embedded systems (e.g., computer is part

of a larger mechanical system)
–  Well-known operating environment
–  High reliability (fault tolerance)

RUAG satellite control system

What is a real-time system?

Examples of real-time systems:

 Control systems
–  Industrial robots
–  Cars, aircrafts, submarines, satellites
–  Failure to meet timing constraints may cause major

physical/economical damage or even loss of life

 Multimedia systems
–  Portable music players, streaming music
–  Computer games; video-on-demand, virtual reality
–  Failure to meet timing constraints will degrade

user-perceived quality

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

7

Real-time system components

Target
environment

Architecture

 Application is organized as
concurrent tasks

Application software

1τ
2τ

3τ 4τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1μ

2μ 3μ

 On-line task scheduler
and dispatcher

One or more processors
and communication links

Why multiple processors?

The attractive price-performance ratios has enabled:

•  Low-cost nodes in distributed real-time systems

•  Powerful telecommunication/multimedia servers

•  Multi-core processors in mobile phones and cars/aircrafts

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

8

Why multiple processors?

Distributed data processing:
•  Locality constraints

–  data processing must take place close to sensor or actuator
(e.g., robots, cars, aircraft)

•  Reliability constraints
–  replication of computing resources provides fault-tolerance

Push-pull effect:
•  New applications push future computer performance
•  New computer platforms pull new applications

Why multiple processors?

New intriguing possibilities:
•  High throughput

–  parallel execution of tasks
–  parallelization of algorithms (e.g., graphic algorithms)

•  High schedulability
–  advanced scheduling algorithms (e.g., bidding, parallel B&B)
–  advanced dispatchers (e.g., affinity-based)

•  High reliability
–  advanced fault-detection techniques (for high coverage)
–  massive redundancy (in time or space)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

9

Designing a real-time system

Verification

Implementation

Specification

 How should it be done?

 What should be done &
 When should it be done?

 Can it be done with the
given implementation?

New design!

Specification

Reliability

Sampling rate

Response time

Resources

Requirements: Constraints:

Replication

Periodicity

Deadline

Locality

Specification Implementation

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

10

Specification

Examples of application constraints:

•  Timing constraints

–  A task must complete its execution within given time frames

(example: task periodicity or deadline)

•  Exclusion constraints

–  A task must execute a code region without being interrupted
(example: a task needs exclusive access to a shared resource)

•  Precedence constraints

–  A task must complete its execution before another task can start

(example: a data exchange must take place between the tasks)

Specification

Examples of application constraints:

•  Locality constraints

–  A task must execute on a specific processor because of the

vicinity to some resource (DSP chip, sensor, actuator)

•  Anti-clustering constraints

–  Identical copies of a task must execute on different processors for

reliability reasons (a.k.a. spatial replication)
(example: fault tolerance)

–  A group of tasks must execute on different processors for
performance reasons
(example: parallelization)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

11

Specification

Examples of application constraints:

•  Clustering constraints
–  A group of tasks must execute on the same processor for

functional reasons
(example: only one processor is used in low-power mode)

–  A group of tasks must execute on the same processor for
performance reasons
(example: intensive communication within the group)

–  A group of tasks must execute on the same processor for
security reasons
(example: risk for eavesdropping of network bus)

Specification

Where do the timing constraints come from?

•  Laws of nature
–  Bodies in motion: arm movements in a robotic system
–  Inertia of the eye: minimal frame rate in film

•  Mathematical theory
–  Control theory: recommended sampling rate

•  Component limitations
–  Sensors and actuators: minimal time between operations

•  Artificial derivation
–  Observable events: certain (global) timing constraints are

given, but individual (local) timing constraints are needed

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

12

Specification

How critical are the constraints?
 Hard constraints:

 If the system fails to fulfill a timing constraint,
the computational results is useless.

 Correctness must be verified before system is put in mission!

 Soft constraints:

 Single failures to fulfill a timing constraint are
acceptable, but the usefulness of the result
decreases the more failures there are.

 Statistical guarantees often suffice for these systems!

Implementation

Critical choices to be made at design time:
•  Application software:

–  Programming language
•  Determines run-time performance and code size
•  Determines productivity, maintainability and reliability
•  Determines degree of timing verification that is possible

–  Concurrent programming
•  Program is structured as multiple sequential tasks
•  Models the execution of multiple sequential task simultaneously
 single-processor system: only pseudo-parallel execution possible
 multiprocessor system: true parallel execution possible

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #1
Updated March 10, 2012

13

Implementation

Critical choices to be made at design time:

•  Hardware architecture:

–  Single or multiprocessor architecture

•  Determines degree of true parallelism that can be exploited

–  Microprocessor family

•  RISC processor (pipelines, caches, support for multiprocessors)

•  Micro-controller (no, or very simple, pipelines/caches)

•  Determines cost and run-time performance

•  Determines difficulty in worst-case execution time (WCET) analysis

–  Communication network technology and topology

•  Determines cost, performance and reliability

Implementation

Critical choices to be made at design time:

•  Run-time system:

–  System services

•  Operating system (real-time kernel with system calls)

•  Stand-alone system (linked library with subroutine calls)

•  Determines run-time performance and code size

•  Determines cost, flexibility and portability

–  Task and message dispatching model

•  Time vs. priority driven dispatching

•  Preemptive vs. non-preemptive dispatching

•  Determines potential of meeting timing constraints

•  Determines processor and network utilization

