100 REAL-TIME SYSTEMS

In this case, we run the EDF algorithm on the mandatory portions of each task
to yield schedule S,,. If this results in an infeasible schedule, then we must stop
since we can’t execute even the mandatory portions of each task. Suppose that
S, is feasible. Then we adjust S, to ensure that each task receives at least its

mandatory portion of service.

Example 3.34. Consider the set of four tasks with parameters shown in the fol-
lowing table.

Task number m; 0; ¥ D;
1 1 4 0 10
2 1 2 1 12
3 3 3 1 15
4 6 2 2 19

In step 1 of the IRIS1 algorithm, we run the EDF algorithm with task execution
times 5, 3, 6, and 8, respectively (for tasks 1 to 4), to produce Sy in Figure 3.33. It
is impossible to meet the deadline of task 4. Hence, we go to step 2.

Running the EDF algorithm on the task set M produces the feasible schedule
S,, shown in Figure 3.33. All the deadlines are met, sO we can proceed to step 3.
We have ap = 0,01 =1,a0 =2, a3 =5, a4 = 11. Also, k = 4.

Now we move to step 3 of the algorithm. Let us start with a3. We have task
T, scheduled in S, over the interval [as3, as4] and given 6 units of time. In schedule
S;0, Tu is given only 5 units of time. Hence, we modify S by adding 6 —5 = 1 unit
of time to Ty in the interval [as, a4) and taking away 1 unit from the task originally
scheduled at a3 in Sy, namely T». This results in task T, being scheduled for a total
of 6 units beyond as. The resulting schedule is ;1. Let us now move to the interval
[as, a3). T3 is scheduled beyond that time in Sy, for a total of 3 units. In S;1, T3
has been scheduled for a total of 6 units beyond as. Therefore, no modifications
are needed; T; has enough time to meet its mandatory portion. Next, we consider
[a1, a2). T» is scheduled for that interval in S,,. Let us consider the time given to T,
beyond a; in Sy It is 2 units, which is greater than the mandatory requirement, SO

[R B B [R B N | [R
. . 0 - 20
FIGURE 3.33

Schedules produced by algorithm IRIS1 for Example 3.34.

TASK ASSIGNMENT AND SCHEDULING 101

no modiﬁcatiops are needed. Finally, consider [ag, a;). T} is given 1 unit in schedule
1S I'n Sﬂ. » T1 1s scheduled for 5 units, which exceeds the time given in S,,. So, no
modifications are needed, and the optimal schedule is S,;. ,

Theorem 3.14. For IRIS tasks with reward function i i
;) . s of the t b
in this section, algorithm IRIS1 is optimal. pe being considered

f’roof We leave the formal proof to the reader. Here, we will merely sketch th
ideas behind the proof. If a feasible schedule is generated in step 1, then each tasli
has been run to completion and we are done. If not, then from Theorem 3.13, we
knoW thgt the EDF algorithm is optimal when none of the tasks has any maﬁda’tor
portion; in Fhat case, the schedule we would obtain would be S, in step 1. But, ch
transformations .that 1we do in step 3 do not change the total time for \;vhich’ the
processor runs; it only ensures that i i
B oo o root 5(o all the mandatory portions are completedé ll;hll)s

3.3.2 Nonidentical Linear Reward Functions

The reward function for task 7; is given by

0 if x <m;
Ri(x) =13 wi(x —my) ifm; <x <m; +o; (3.84)
w;0; if x > m; +o;
Each te.lsk has.a weight w; associated with it. Assume that the tasks are numbered
in nonincreasing Qrder of weights, w; > wy > ... > w,. The procedure for
:)}Ftlmaﬂy scheduhng suph tasks is obvious: Always run the available task with
th: tgrei?test \x}/lellght, subject to the need to execute the mandatory portions of all
asks by their respective deadlines. This is done b ' ich i
B oy ne by algorithm IRIS2, which is
A kThe 1dee.1 behind the IRIS2 algorithm is the following. As with IRISI, we
stoec to see if we can feasibly schedule all the mandatory portions. If not, we
tasE right away. If we succeed, we proceed by running IRIS1 with a mandatory
- set equal to the manfiatory portions of the tasks, and the set of optional
Othelons equal only to optional portion of task 7} (the optional portions of the
timer at;%lsks a.r;:l considered not to exist). IRISI is executed. It provides as much
possible to T i i i
o -, 0 11, consistent with the need to meet the mandatory portions
portiowe fnow take this schedule and label as mandatory the part of the optional
N of 77 that was scheduled by IRIS1. Next, we run the IRISI algorithm

With thj i i
i th'thls revised mandatory portion and the optional portion of 75, and continue
18 way for the remaining tasks. _

heOrem 3 15 I the re ard f i =]
. . S d i i .() a OOII.thHl
l ; . - AV cl10; are as eﬁned m thlS secti 1,

P féloﬁ ane again, we will leave the formal proof as an exercise and merely pro-
Vide a brief sketch. We know from Theorem 3.14 that O/, is the maximum amount of

102 REAL-TIME SYSTEMS

1. Set M to be the set of mandatory portions of all the tasks, and O" = ¥.
Run the EDF algorithm, and let S,, be the resulting schedule.

2. If S, is not feasible,
the task set T is not schedulable: STOP.
else
i=1
do while (1 <i <n)
Set O' = O’ U {0;}, and use IRIS1 to find an optimal schedule
Define O] to be the part of O; scheduled by IRIS1.
Set M' =M U {0/}
i=i+1
end do
end if
end

FIGURE 3.34
Algorithm IRIS2. (After Shih, Liu, and Kung [24].)

service that can be given to O, (which is the task with the greatest weight) if all
the mandatory tasks are to meet their deadlines. Similarly, we have that O; _, is the
maximum amount of service that can be given to O,_1, subject to the constraint that
all mandatory tasks must meet their deadlines and that as much of O, as possible
should be executed. In general, for i < n, we have that O] is the maximum amount
of service that can be given to O;, subject to the constraint that all mandatory tasks
must meet their deadlines and that as much of Oy, ..., Oy as possible should be
executed. The result follows from this observation. Q.E.D.

3.3.3 0/1 Reward Functions

We assume here that for any task i the reward function is given by
0 if x <m;+o0;
Rix) = { 1 ifx >mi+o (3.85)
That is, we get no reward for executing the optional portion partially. If we runl
the optional portion to completion, we obtain one unit of reward; otherwise we
get nothing.

The optimal strategy would therefore be to complete as many optional por-
tions as possible, subject to the constraint that the deadlines of all the mandatory
portions must be met. Unfortunately, when the execution times are arbitrary, the
problem of obtaining an optimal schedule can be shown to be NP-complete.

Finding an efficient optimal scheduling algorithm under the 0/1 case is there-
fore a hopeless task. We must therefore make do with heuristics. One rather ob-
vious heuristic is shown in Figure 3.35. The IRIS3 algorithm is based on the
following reasoning. Since we get the same reward for completing the optioné11

TASK ASSIGNMENT AND SCHEDULNG 103

1. Run the EDF algorithm on the set M of mandatory tasks.
If M is not EDF-schedulable, then
Task set T cannot be feasibly scheduled: sTOP.
else
Go to step 2.
end if

2. O is the set of optional portions.
Assign w; = 1/0; fori =1,...,n.
Renumber the tasks so that their weights are in a non-ascending sequence, i.e
wp = W2 = ... > Wy, T

3. Run algorithm IRIS2 on a task set composed of
the mandatory set M and optional set O to obtain schedule S,.

4. 1If all the optional tasks in O are executed to completion in S
Return S, and stop. "
else
Let iy, be the smallest index i such that
o0; is not run to completion in S,,.
Redefine O = O — {o;,, }.
Go to step 3.
end if

end

FIGURE 3.35
Algorithm IRIS3: a simple heuristic for the 0/1 case.

%igig? of any tas}(, it is.best to run ‘the tasks with the shorter optional portions.

o O(I;ié'we ass(;gn weights accordmg. to the inv‘erse of the duration of the op-

e I}: 1(;1118;i a? run IRIS2. If an optlonal part is not run to completion in the

) %v schedule, we remove its optloqal portion from consideration and rerun

- ¢ continue in this manner until each optional portion has been either
eduled to completion or dropped altogether.

3.3.4 Identical Concave Reward Functions
(No Mandatory Portions)

In . :
portthls section, we consider tasks with identical release times and with mandatory
lons of zero. We assume that the reward function of 7; is given by

oty e 00 0= i
R (x) = { P o (3.86)

104 REAL-TIME SYSTEMS

where the function f is one-to-one and concave. Recall that a function f(x) is
concave iff for all x;,x0, and 0 < o <1,

Flax + 11— alry) = af) + (1 —a) f(x) (3.87)

Geometrically, this condition can be expressed by saying that, for any two points
on a concave curve, the straight line joining them must never be above the curve.
An example of a concave function is 1 —e™.

We will also assume that the functions f(x) are differentiable, and define
g(x) = df (x)/dx. We will assume that the inverse function g~! of g exists for
alli = 1,...,n. This will happen if the functions g are monotonically decreasing
and we assume that they are. The tasks are numbered in nondecreasing order of
their absolute deadlines (i.e., D1 < Dy < ... < Dy). For notational convenience,
define Dy = 0.

Since f is a concave function, we have nonincreasing marginal returns,
and so the optimum is obtained by balancing the execution times as much as
possible. If all the deadlines are equal (i.e., if Dy = ... = D, = 8), then the
algorithm is trivial—just allocate to each task a total of §/n of execution time
before its deadline. If the deadlines are not all equal, the algorithm is a little more
complicated. We will leave to the reader the problem of writing out this algorithm,
IRIS4, formally. Here is an informal description.

The basic idea behind this algorithm is to equalize, as much as possible,
the execution times of the tasks. The algorithm starts at the latest deadline and
works backwards. In the interval [D,—1, D,], only task T, can be executed and it
is allocated up to a, = max{D, — D,_1, ¢;} units of time in that interval. Next,
we move to the interval [D,_», D,_1]; over this interval, tasks 7,,—; and T, can
| be executed. In this interval, we also allocate time to 7, and T, so that, in the
interval [D,—», D,], the execution time these tasks receive is equalized as much
as possible (subject to the obvious constraints). We then go on to the interval
[D,_3, Dy_], over which tasks T;,_2, Tp—1, T are available, and so on until the
beginning.

Example 3.35. We have a five-task aperiodic system with deadlines D; =2, Dy =

6, Dy =8, Dy =10, and D5 = 20; each task has an execution time of 8.

Let us begin with the interval (10, 20]. Only task Ts can be scheduled in that
interval, and we can give to it its entire execution time of 8. So, the allocation of
execution times so far is:

T; T, T3 T4 Ts

Next, move to the interval (8, 10]. Tasks Ty, T5 can be scheduled in that
‘ interval, but we have already given a full execution-time to 75, so we don’t consider
that task here. We devote this entire interval to T4. The execution time allocations

are now:

TASK ASSIGNMENT AND SCHEDULING 105

Ty 1 T3 Ty Ts

Now, consider (6, 8]. T3, T, Ts are eligible to run in that interval. As before, we
don’t have to consider 75. We give the 2 units to T3 so that it is equalized with
T,. (This is the best possible balancing of the execution times.) The execution-time
allocations are now:

T Iy T3 T4 Ts

0 0 2 2 8

Move on to (2,6]. Tz, T3, T, Ts are eligible to run in this interval. Give 2 units
to 7> so that T, T3, T, are each allocated 2 units. This leaves 2 units which we
can allocate equally to each of these tasks over that interval. The execution-time
allocations are now:

T; T, T3 Ty Ts

0 266 266 2066 8

Finally, consider (0, 2]. Here, we must clearly allocate 2 units to 7}, and the final
allocations are:

TI T2 T3 T. 4 T5

2 266 2.66 2.66 8

It is easy to check that the execution times have been balanced as much as

stsible, under deadline and execution time constraints. The schedule is shown in
Figure 3.36.

Ehe%rgrg 3.16. Algorithm IRIS4 is optimal under the conditions listed in Sec-
ion 3.3.4.

5T 7 Rl o [=]

I\l\l__L I |] | | I I ! I | I

5 10 15 20

FIGURE 3 36 :
Xample of the TRIS4 algorithm.

106 REAL-TIME SYSTEMS

Proof. This has been left as an exercise for the reader. Q.E.D.

3.3.5 Nonidentical Conca&e Reward Functions*

As in the previous section, we consider tasks with identical release times and with
mandatory portions of zero. There are n tasks in all. We assume that for any task
T; the reward function is given by

fi (x) if 0 <x <o

Rix) = { filon ifx o (3.88)

where the functions f; are one-to-one and concave.
Let x;;(S) denote the service that task 7; receives in the interval [D;_1, D;]

under schedule S.° The total amount of service that task 7; receives is given by
sg(i) = Z}:l X; j(S).7 The optimization problem therefore reduces to maximizing

P=Y () (3.89)
i=1
subject to the constraints that
Xn:xij =D;—Dj_y 1=<j=<n (3.90)
i=1
x; =0 l<j=<i<n (3.91)

This is a standard constrained-maximization problem, which can be solved using
Lagrange multipliers.8 The solution to this optimization problem can be obtained
by solving the following set of equations, where y; and v;; are Lagrange multi-
pliers.

—&i(s@) +pj+vi; =0 l<j=<i=<n (3.92)
inj__(Dj—Djkl)zo j=1,....n (3.93)
i=

x; >0, wyx;=0, v; <0 1<j<i<n (3.99)

6Tn this discussion, we will frequently omit S where this is convenient and write simply x;;, where
S can be understood from the context.

7 As with x; ;, we will drop the S from ss(i), where this can be done without confusion.

8Readers unaware of this approach should consult any book on mathematical optimization, such
as D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Reading, MA: Addison-
Wesley, 1973. If you haven’t heard of Lagrange multipliers before, simply consider them to be
constants and assume (3.92) to (3.94) to be true.

TASK ASSIGNMENT AND SCHEDULING 107

If xij = 0, from (3.94), v;; < 0, and so from Equation (3.92),

gis@) =pu; l=j=i=n (3.95)
If x;j > 0, we have v;; = 0, and so from Equation (3.92),

gis@)=p; 1=j=i=n (3.96)
Let s*(i) and x; denote values for s(i) and x;; (i, j = 1,---,n) that satisfy

Equations (3.92) to (3.94). Then an examination of these equations yields the
following conclusions.

Lemma 3.13. For any i, j, if there is some k (1 <k <4, j < n) such that x};, > 0
and xj; > 0, then

gi(s* (1) = g;(s*()) (3.97)

Proof. This follows immediately from Equation (3.96). Q.E.D.

Proof. An alternative proof that argues from first principles is as follows. Suppose
that the lemma is false, and that we have some i, j such that g;(s*(@)) # g; (s*(j))
for optimal schedule S*. Consider the case g;(s*(i)) < g;(s*(j)). Since x7,, x, > 0
and the g; are continuous functions, there exists some § > 0 such that !

e § < min{x},, xJ’.‘k}, and
o 8i(s7(0) —9) < g (s7(j) +9).
Construct another schedule S’ that is identical to S* except that task 7; receives ¢

less service and task T; receives § more service. It is clearly possible to do this

without any deadlines being missed. Denote the rewards under $* and S’ by R(S*)
and R(S"), respectively. Then,

R(S) = R(SM) = fi(s*() = 8) — fis"(D) + fi(s" () +8) — £;(s" (1))

-5 max i(x)) +6 min (x
(xe[s*(i)—a,s*ungl()> xels*(j), % ()+6] 8 ()

= —&(s"(0) —)8 + g (s"(j) +8)8
>0 (3.98)

A similar result holds for the case where g; (s*(i)) > & (™ ()).
: The total reward for S” will be thus greater than that for $*, contradicting the
Optimality of S*. Q.E.D.

[\

Lemma 3.14. For any i, j € {1, ..., n}, if there is some k (1 <k < i, j <n) such
that x5 > 0 and x;.*k =0, then

g (s (@) = g (s*(j) (3.99)

Proof. This follows immédiately from Equations (3.95) and (3.96). Q.E.D.

108 REAL-TIME SYSTEMS

Lemma 3.15. If s*(j) =0 for any j € {1,...,n}, then forall i € {1,...7 =1},
gi(s* (1) = & (0) (3.100)

Proof. s*(j) = 0 means that x} = 0 for all k. This, together with Lemma 3.14,
proves the result. Q.E.D.

Lemma 3.16. If there is some task T; such that xp; > 0 and x,j'j > 0, then

Wi = W foralll<i,j<k=n (3.101)
Proof. The proof is an immediate consequence of Equation (3.96). Q.E.D.
Lemma 3.17. ; > i1 for 1 <i < n.

Proof. We prove this by contradiction. Suppose that this lemma is false, and there
exists some i such that u; < fi41. Then, from Lemma 3.16, we know that there

is some task T}, such that x% ., > 0 butx, ; = 0. But, x; ; = 0 implies from
Equation (3.95) that gn (s*(m)) < i, and x3, ;>0 implies from Equation (3.96)
that g, (s*(m)) = 1. That is, i = fivi, 2 contradiction. Q.E.D.

Lemma 3.18. There exists an optimal schedule S under which for all i such that
ss(@) > 0,

gilss(i) = gi(ss(j)) foralll=i<j=<n (3.102)

Proof. We prove this result by construction. That is, we show that any optimal
schedule can be transformed into another optimal schedule for which Equation
(3.102) holds.

Suppose we are given an optimal schedule U and wish to transform it to
another schedule Y for which Equation (3.102) holds. Take tasks T; and T;, with
i < j such that sy(i),sv(j) > 0. Define v = max{k|x;(U) > 0} and w =
max{k|x;x(U) > O} In words this means that tasks 7; and T; do not, under U,
receive any service after time Dyt and D, 1, respectively. There are three cases.

Case 1. v = w. From Lemma 3.13, we know that g (su() = g vl
Define x;x(Y) = x;(U) and xj(Y) = xjp(U) for all k € {1,...,n}
Case 2. v < w. From Equation (3.96) and Lemma 3.17, we have g; (sy (i) =
gj(su(j)). Define x; (Y) = xi(U) and xj (V) = x;;(U), for allk e {1,...,n}
Case 3. v > w. By shifting the execution of the tasks in time (while keeping
the total time allocated to each task the same in both schedules U and Y), we
can reduce Case 3 to either Case 1 or Case 2. In particular, in Schedule Y we
have:

x,(Y) = X (U) — min(x,-U(U), xjw(U))

ij(Y> = xjv(U) + min(xiv(U)s ij(U))

xiw(Y) = xiw(U> + m'm(xiu(U), xjw(U))

xjw(Y) == xjw(U) e min(xl-U(U), xjw(U))

TASK ASSIGNMENT AND SCHEDULING 109

We are shifting some of the 7; execution from (’
i Dv—l’ Du] to (Dy,— s D
some of the 7; execution from (D,,_1, D>] to (Dy_1, D,]. (Du-t: Dl and
If x;,(Y) > 0, then we have

max{k|x;(Y) > 0} = max{k|x;;(¥Y) > 0} = v

and Case 1 can now be applied. On the other hand, if x;,(Y) = 0, then
max{k|x; (Y) > 0} < max{k|x;;(¥Y) > 0} = v

and Case 2 can be applied to tasks 7; and 7;.

Thus, by repeatedly applying this construction i
. . i procedure to every pair of task
T;, T; for which sy (i) > 0, sy (j) > 0, we obtain the schedule Y. Q.E DS

Assuming that the tasks are all released at time 0 and have deadlines D; <
Dy < ... 5 D,, we can define n scheduling problems, g1, ¢2, ..., ¢,, where ¢, 1_s
the following problem (for notational convenience, assume Dy = 0): l

Assuming that tasks 7;, ..., T, all arrive at time D;_, schedule them in the
interval [D;_1, D,] so that the reward is maximized.

The overall scheduling problem is therefore g;. Solving g, is trivial; as only task

n can be scheduled in the interval (D D i
. _1, D,]. We will show no
g; as a function of the solution of qi+T. ’ W how to solve

Th i i i

- lez)jr)elér(; t1251.811(7.T .L(eit—:lrll gpgilal solution of g;,; involve aHocating service time
$it10) i < j < n). Let K be the set of tasks that receives a nonzero
allocation of' service time in the interval [D;_;, D;] in the optimal solution to g;
Then, an optimal solution to ¢; satisfies the equatioh "

—1 i *
Y g W™ =50 + D - Dy (3.103)
kekK keK
where @ = 1\ for all k € K.

P f'
roo, Ihe Server dOeS not ldle Whlle the]e are taSkS wait g

(Si*(k) - Si*+l(k)) = D;— D,
keK

=Y sk =Y si () + Dy — Dy (3.104)
. keK keK
(Dut frogn]lzlemrriis 3.13 and 3.14 we know that all tasks served in the interval
i-1, D;] have the same marginal reward rate, and that other tasks in ¢; have lower
marginal reward rates. That is, there exists some u such that g, (s.*(lg) = u® for
all k € K. Thus, we have from Equation (3.104), I

D oat (W) =D st + Dy = Doy (3.105)

kekK ! keK

Q.E.D.

110 REAL-TIME SYSTEMS

We now hold all the keys to an optimal scheduling algorithm. As men-
tioned earlier, the solution of g, is trivial and we will work backwards through
Gn-1s---»q1. Suppose we have solved problem g;4;. In the solution of g;, we
consider the set of tasks Tl ={T;, ..., T,}. For notational convenience, define

o 55 ,(j) =0 for all j <1, and
e 7(j) = {x]gx(sf,(x)) is the jth largest of the set

{gx(s7y (D), v gx (s (M)}

From the foregoing results, we know that tasks Tr(1ys - - -» In(y) will be served in
(D;_1, D;] if it is possible to find some [i > 0 such that

Y y
3 gily (@) = Di = Dy +) st () (3.106)
j=1 j=1

This leaves us with the problem of obtaining y and .. The brute-force way of
doing this is to try every value of i from 1 to'y, where Equation (3.106) no longer
allows [t > 0. The clever(er) way of doing this is to observe that if task k is served
in (Dj, Diy1], then s¥(k) > s, (k). In any event, for all tasks T} such that D; >
D; we must have s/ (j) > s7,(j), since only such tasks can be served beyond
D;. The complete algorithm is shown in Figure 3.37. Concave reward functions
are probably the most realistic since they exhibit the property of nonincreasing
marginal returns. The greatest gains in the accuracy of most numerical iterative
algorithms, for example, come in the first few moments of execution.

1. L=0,x=0,i=1,....,n.Dg=0.m=n.

2. while (m > 0) do
Insert task 7, into L.
Define 7(i) = {&|ga () is the ith largest among ge(xp), £ € L.
Use binary search to find ¢ such that

i=1
Solve for u in the equation

L -1 L
Dzt gﬂ@(//«) = i1 %n@) + Dm — Dm-1

We have x;;) = g;(ll.)(y,), i=1,...¢
m=m-—1
end while
end
FIGURE 3.37

Algorithm IRISS.

el - ¢ -1 Cli
h [gn(li)(gul(xeﬂ) - Xn(i)] > Dy — D1 = 2iy [gn(i)(gz(xe)) — Xx(

TASK ASSIGNMENT AND SCHEDULING 111

3.4 TASK ASSIGNMENT

The optimal assignment of tasks to processors is, in almost all practical cases
an NP.—complete problem. We must therefore make do with heuristics. Thesé
heurlstlcs.cannot guarantee that an allocation will be found that permits all tasks
to be feasibly scheduled. All that we can hope to do is to allocate the tasks, check
their feasibility, and, if the allocation is not feasible, modify the allocatior,l to tr
to render its schedules feasible. g
Heuristics typically allocate according to some simple criterion and hope that
feasibility will follow as a side effect of that criterion. For example, if we kee
the utilization below n(2!/" — 1) for all processors in a system runn,ing periodilz
tasks whose deadlines equal the respective periods, we know that the resultin
task allocation is RM-feasible. ¢
'When checking an allocation for feasibility, we must account for commu-
nicapqn costs. For example, suppose that 77 < T5. Task 7> cannot start before
receiving the task 77 output. That is, if f; denotes the completion time of task 7}
and c;; is the time to communicate from 7; to 7}, l

r > fit+cn (3.107)

If tasks 77 and 7> are allocated to the same processor, then cjp = 0. If they are

allocated to separate processors, cio | iti i
) ; , €12 18 positive and must be taken into accou
while checking for feasibility. "

Example 3.36. Consider the situation discussed
scussed above where < (2) = {1}. Then, i
D, < fi 4+ c12 + e, the allocation is not feasible. @ =t ot

S : _ . o
Or_netlm.es an allocation algorithm uses communication costs as part of its allo-
cation criterion.

34.1 Utilization-Balancing Algorithm

Thi : o
inlgst }?lgtorllihm attempts to balance processor utilization, and proceeds by allocat-
¢ tasks one by one and selecting the least utilized i
! sks ¢ rocessor. Th
1S shown in Figure 3.38. ’ ° sleonm
. 'lihls algorithm takes into account the possibility that we might wish to run
3 assjp e copies .of the same task simultaneously for fault-tolerance. In particular,
gL gns r; copies of task 7; to separate processors. Let u} and u? denote the uti-
Squarzns (Ef processor p; uqdpr an optimal algorithm that minimizes the sum of the
: j of the processor utilizations and under the best-fit algorithm, respectively.
1=...=r, =r, and there are p processors in all, it is possible to show that

> by’
P

9
S— -
o2 8p—r+1

(3.108)

112 REAL-TIME SYSTEMS

1. For each task T3, do
Allocate one copy of the task to each of the r; least utilized processors.
Update the processor allocation to account for the allocation of task T;.
end do
end

(where 7; is the redundancy, i.e., the number of copies of task i that must be
scheduled.)

FIGURE 3.38
Utilization-balancing algorithm.

3.4.2 A Next-Fit Algorithm for RM Scheduling

There is a utilization-based allocation heuristic that is meant specifically to be used
in conjunction with the rate-monotonic scheduling algorithm. The task set has the
properties that we assumed in Section 3.2.1 on RM scheduling (i.e., indepen-
dence, preemptibility, and periodicity). The multiprocessor is assumed to consist
of identical processors and tasks are assumed to require no resources other than
processor time. Define M > 3 classes as follows, where M is picked by the user.
Task 7; is in class j < M if

QUGHD _ | < /P, <2 — 1 (3.109)

and in class M otherwise. Corresponding to each task class is a set of processors
that is only allocated the tasks of that class.

We allocate tasks one by one to the appropriate processor class until all
the tasks have been scheduled, adding processors to classes if that is needed for
RM-schedulability. Example 3.37 clarifies this process.

Example 3.37. Suppose we have M = 4 classes. Then the following table lists the
utilization bounds corresponding to each class.

Class Bound

C (0.41,1]
C, (0.26,0.41]
Cs (0.19,0.26]
Cs (0.00,0.19]

Consider the following periodic task set.

TASK ASSIGNMENT AND SCHEDULING 113

T T, T3 T4 Ts T¢ T; Ty Ty Tio

¢ 5 7 3 1 10 16 1 3 9 17
P 10 21 22 24 30 40 50 55 70 90
u(@) 0.50 0.33 0.14 0.04 0.33 0.40 0.02 0.05 0.13 0.19
Class Ci C2 Cy Cy C> G Cy Cy Cy Cy

e

Note: u(i) = ei/P;

Since we have at least one task in each of the four classes, let us begin by earmarking
one processor for each class. In particular, let processor p; be reserved for tasks in
class C;, 1 <i < 4. T is assigned to py, T» to py, and T3 to ps. Ty € Cy, and since
(T3, Ta} is RM-schedulable on the same processor, we assign 7 also to ps. T5 € C,
and since {T», T5} is RM-schedulable on the same processor, we assign 75 also to
2. Ts € Cy. However, {12, T5, T} is not RM-schedulable on the same processor,
so we assign an additional processor ps to C, tasks and assign Tg to ps. T € Cy
and {T3, Ty, T7} is RM-schedulable on the same processor, SO we assign it to pj.
We proceed similarly for Ty, Ty, Tyo. Finally, assign T1; to ps. The assignments are
summarized below.

Processor Tasks

p1 T

123 1, Ts

D3 Ty

D4 T3, Ty, T7, Tg, T, Tio
Ds T

With this assignment, we can run the RM scheduling algorithm on each processor.

L It is possible to show that this approach uses no more than N times the
minimum possible number of processors, where

A { 1.911 if there is no task with utilization in (+/2 — 1, 0.5] (3.110)
2.340 otherwise .

343 A Bin-Packing Assignment Algorithm
for EDF

gi‘;ilé?ise we hav§ a set of perigd?c indePendgnt preemptible tasks to be as-
I to a mplt1pr9cessor consisting of 1dent1§a1 processors. The task dead-
. eﬁ:]ual their periods. Other than processor time, tasks require no other re-
. We kn‘ow that so long as the sum of the utilizations of the tasks assigned to

Processor is no greater than 1, the task set is EDF-schedulable on that processor.
3 G), the proble.n.l re.duces to making task assignments with the property that the

m of the utilizations of the tasks assigned to a processor does not exceed 1.

‘ ‘ 114 REAL-TIME SYSTEMS TASK ASSIGNMENT AND SCHEDULING 115

It is possible to show that when the number of processors required is large,
the ratio
Number of processors used by the first-fit decreasing algorithm

Initializeitol. Set U(j) =0, forall ;.
while i <ny do
Let j =min{k|U &)=+ u@) < 1}.

Assign the ith task in L to p;. Number of processors used by optimal algorithm
i Pe—i+ 1 approaches 11/9 = 1.22, when a.large task set is used. In fact, this limit is
end while approached quickly, so that 1.22 is a good measure even for relatively small
systems.
FIGURE 3.39

First-fit decreasing algorithm.

3.4.4 A Myopic Offline Scheduling
(MOS) Algorithm

Thus far, we have assumed that tasks can be preempted. The myopic offfine
scheduling (MOS) heuristic is an assignment/scheduling algorithm meant for non-
preemptive tasks. This algorithm takes account not only of processing needs but
also of any requirements that tasks may have for additional resources. For in-
stance, a task may need to have exclusive access to a block of memory or may
need to have control over a printer. MOS is an offline algorithm in that we are
given in advance the entire set of tasks, their arrival times, execution times, and
Example 3.38. Consider the following task set: deadlines. o

MOS proceeds by building up a schedule tree. Each node in this tree rep-
resents an assignment and scheduling of a subset of the tasks. The root of the
schedule tree is an empty schedule. Each child of a node consists of the schedule
of its parent node, extended by one task. A leaf of this tree consists of a schedule
e; 5 7 3 1 10 16 1 3 9 17 21 (feasible or infeasible) of the entire task set.
F N 21 22 24 30 40 50 55 70 90 95 The schedule tree for an n7-task system consists of ny + 1 levels (including
u@ 050 033 014 004 033 040 002 005 013 019 02 the root). Level i of the tree (counting the root as being of level 0) consists of
Note: u(i) = e;/P; nodes representing schedules including exactly i of the tasks. . ‘

Generating the complete tree is tantamount to an exhaustive enumeration
of all possible allocations. For any but the smallest systems, it is therefore not

We would like to minimize the number of processors needed. This is the famous
bin-packing problem and many algorithms exist for solving it.

The algorithm we present here is the first fit decreasing algorithm. Suppose
there are ny tasks to be assigned. Prepare a sorted list L of the tasks so that their
utilizations (i.e., u(i) = ¢;/P;) are in nonincreasing order. Figure 3.39 shows the
algorithm.

Ty T T3 Ty Ts Ts T7 Ty Ty T T

The ordered list is L = (Ty, Ts, T>, Ts, Th1, Tho, T3, Ty, Ty, T4, Ty). The assignment practical to generate the complete tree; instead, we try to get to a feasible schedule
process is summarized in the following table. The vector U = (Uy, U, Us, ..) as quickly as we can.
contains the total utilizations of processor p; in U;. The algorithm can be informally described as follows. We start at the root

‘ node, which is an empty schedule; that is, it corresponds to no task having been

: scheduled. We then proceed to build the tree from that point by developing nodes.
Step Task T, u() Assigned to Post-assignment U vector A node 7 is developed as follows. Given a node n, we try to extend the schedule

Hi represented by that node by one more task. That is, we pick up one of the as-yet-

1 I 050 pi (0.50) unscheduled tasks and try to add it to the schedule represented by node n. The
| § % 8;’2 p1 Eggg)o 33 augmented schedule is a child node of n. .
‘ 4 Ts 033 Zi (0.90.0.66) ; There are two questions that must be answered. First, which task do we pick
‘ 5 Ti1 022 p (0.90,0.88) 9 or extending an incomplete schedule? Second, when do we decide that a node 18
I 6 Tho 018 p3 (0.90,0.88,0.18) ot worth developing further and turn to another node?
e 7 T 0.14 p3 (0.90,0.88,0.32)
I S ;z 232 ij Eg:ggﬁ:gi:gjﬁ; L. The task that we chose to extend an incomplete schedule is one that minimizes
10 75 0.04 p (1.00,0.88,0.45) a heuristic function H. H may be any of the following functions:
11 T7 0.02 D2 (1.00,0.90,0.45)

® task execution time,

116 REAL-TIME SYSTEMS

e deadline,
e carliest start time (i.e., earliest time at which the resources for that task will
become available after it has been released),
o laxity,” or)
e weighted sum of any of the above.
For instance, if H(i) = D;, then the next task to be chosen for scheduling will
be the as-yet-unscheduled task with the earliest deadline.

2. We only develop a node if it is strongly feasible. A node is strongly feasible if
a feasible schedule can be generated by extending the current partial schedule
with any one of the as-yet-unscheduled tasks. If a node is not strongly feasible,
it means that none of its descendants that are leaves can represent a feasible
schedule. If we encounter a node that is not strongly feasible, we backtrack.
That is, we mark that node as hopeless, and then go back to its parent, resuming
the schedule-building from that point.

One difficulty with the MOS algorithm is that, if the number of tasks is very
large, it can take a long time to check if a node is strongly feasible. In particular,
at level i, we will need to check feasibility of extending the schedule by each
of the np — i as-yet-unscheduled tasks. As a result, the number of comparisons
needed to generate one root-to-leaf path is

nr(nt +1)
2

To reduce the number of comparisons, we can replace the strong feasibility check
at each node by means of a myopic procedure as follows. For each nonleaf level-i
node n, this procedure picks the first min{k, ny —i} as-yet-unscheduled tasks and
checks to see if the schedule represented by n can be feasibly extended by each
of these tasks. (The parameter k is used by the algorithm to limit the scope of the
search.) If not, we mark the node as hopeless and backtrack as before. Otherwise,
we develop children for that node.

np+mr—D+mr—=2)+--+0=

Example 3.39. We have a five-task set to be scheduled on a two-processor systenw.
The tasks are nonpreemptive. The parameters of these tasks are as follows:

T; T; T; Ty Ts

e 15 s 16 9 10
D 15 20 18 25 50

9The laxity of task 7; is given by D; — ¢;. It is the latest time at which 7; may be started and be
guaranteed to meet its deadline.

TASK ASSIGNMENT AND SCHEDULING 117

There are no other resource requirements. Suppose we use H(i) = r;. We set

k = 5 for the myopic procedure. The tree generated by the algorithm is shown in
Figure 3.40.

The root node is the empty schedule. There are three tasks with release times
of 0; we pick T; first. A level-1 node is generated, that contains a schedule for 77.
This node is strongly feasible—any of the other tasks can be feasibly scheduled
given the position that T, occupies in the schedule.

Next, we pick 73 and schedule it to form a level-2 node. This, too, is strongly
feasible. Then, we generate a level-3 node, which involves augmenting the previous
schedule with Ts. Unfortunately, this is not strongly feasible; in particular, it would
be impossible to augment this schedule with 75. So, we backtrack to the level-2
(i.e., the parent) node. We pick 75 rather than 75 (the next task in order of release
time) and schedule it. This results in a strongly feasible schedule.

Next, we form a level-5 node by adding 75 to the schedule. This is not strongly
feasible—1, cannot be added to it. So, we abandon this node, return to the parent
(level-4) node, and generate a schedule by adding 7. This is strongly feasible, and
its child, formed by adding the final task to it, is a leaf node that represents a feasible
scheduling of all the tasks.

The reader should run the algorithm on this set of tasks with H (i) = D; and
see if it runs any faster for that function.

The running time of the algorithm depends on k and H. No definitive state-
ments can be made about how to choose these quantities. Let us examine k. This
bounds the number of tasks that the algorithm considers in determining the strong
feasibility of a node. If k is too small, it is possible for us to declare a node to be
§trongly feasible and develop it further, only to find that none of its descendants
is strongly feasible. If k is too large, we will spend a great deal of time (especially
in the levels of the tree close to the root) checking the strong feasibility of nodes.
In general, the tighter the constraints, the greater must be the value of k. In other
words, if the task laxities are low or if many tasks use resources in addition to
the processor, k must be large. It has been suggested, from extensive simulations,
that k &~ 13 is the largest value ever required.

: .As far as H is concerned, a weighted sum of the deadline and earliest start
time is perhaps the most promising function. Recall that the earliest start time of
a task is the earliest time after the task has been released that all the nonprocessor
resources needed by that task become available.

EI}llleiniocused addressing and bidding (FAB) algor.it}}m is simple enough to be an
. 1proceslure and is u.s.ed for task sets consisting of both critical and non-
- that real-time Fasks. Critical tasks must have sufﬁment time reserved for them
e at . they continue to exc?c.ute successfully, even if they need their worst-case
e Su ion t’lmes.. .The noncritical tasks are either processed or not, depending on
ystem’s ability to do so.

i .The underlying system mo@el is as follows. The noncritical tasks arrive at

vidual processors in the multiprocessor system. If a noncritical task arrives at

Po

P1
(- L | [[
0 10 20 30
Po i |
P
[! | | |
0 10 20 30
2o ' n |
12 l T I
[| Lo L1
0 10 20 30
. L T { Ts 2o L T ‘ T,)
1 ‘ T ‘)21 i 5 ‘
Lo [J L1 [AT ST N AN O B A B
0 10 20 30 0 10 20 30
L T N
P1 ' T ’ Ts P1 ' 5 I 7 J_/
| | [| [[B R N RN N MR AR A
0 10 20 30 0 10 20 30
Wl n Il © |
141 | T3 | T4 j_/
FE
3

FIGURE 3.40

Example of the MOS algorithm; boxed nodes are not strongly feasible.

TASK ASSIGNMENT AND SCHEDULING 119

{0CESSOL Di» that processor checks to see if it expects to have the resources and
fime to execute it by the specified deadline'” without missing any of the deadlines
of the critical tasks or of the previously guaranteed noncritical tasks. If it does, p;

parantees the successful execution of that task, adds that task to its list of tasks
to be executed, and reserves time on its schedule to execute that task. Since this is
a noncritical task, the guarantee can be based on the expected run time of the task
rather than on the worst-case run time. In other words, we can accept that some
soncritical tasks might turn out to be not executable in a timely fashion because
their actual run times turn out to be much greater than anticipated.

The FAB algorithm is used when p; determines that it does not have the
resources or time to execute the task. In that case, it tries to ship that task out to
some other processor in the system.

The problem of load-sharing by moving tasks from one processor to another
has long been studied in general-purpose distributed systems. Many solutions have
been suggested. Perhaps the simplest is a random-threshold algorithm. In this algo-
rithm, a processor that finds its load exceeding a threshold simply sends an incom-
ing task out to another processor, chosen at random. Another algorithm has lightly
loaded processors touting for business by announcing they are lightly loaded and
are willing to process excess tasks from other processors. We shall see a variant
of this (adapted for real-time purposes) when we study the buddy algorithm.

The FAB algorithm is as follows. Each processor maintains a status table
that indicates which tasks it has already committed to run. These include the set
of critical tasks (which were preassigned statically), and any additional noncritical
tasks that it may have accepted. In addition, it maintains a table of the surplus
computational capacity at every other processor in the system. The time axis is
divided into windows, which are intervals of fixed duration, and each processor
regularly sends to its colleagues the fraction of the next window that is currently
free (i.c., is not already spoken for by tasks). Since the system is distributed, this
information may never be completely up to date.

When shopping for a processor on which to offload a task, an overloaded
processor checks its surplus information and selects a processor (called the focused
Processor) p, that it believes to be the most likely to be able to successfully
execute that task by its deadline. Tt ships the task out to that processor. However,
as we pointed out, the surplus information may have been out of date and it is
Possible that the selected processor will not have the free time to execute the task.
AS insurance against this, and in parallel with sending out the task to the focused
Processor py, the originating processor decides whether to send out requests for
bids (REB) to other lightly loaded processors. The RFB contains the vital statistics
of the task (its expected execution time, any other resource requirements, its
deadline, etc.), and asks any processor that can successfully execute the task to
Send a bid to the focused processor py stating how quickly it can process the task.

10
. Recall that in a real-time system, the resource and execution-time requirements of all the tasks are
00wn in advance.

