80 REAL-TIME SYSTEMS

Lemma 3.12. Suppose T is not feasible and u < 1. Then a7 (1) > ¢ implies

1<i<n

u
t < dmax or t < max{P; — d,-}l——
: —u

Proof. Suppose that t > dmac. We have

n

t—di+ P
() £) ea——p—
i=1 !

e ~ P —d;
3 [% (z + max (P, - di}ﬂ (3.55)

i=1 !

(1%

IA

If hr(r) > t, we will have from (3.55),

n
€;
t < ZI: 7 (r + max (P, —dl-}>
u
=t < max{P; — d;}—— (3.56)
I<i<n 1—u
Q.E.D.

3.2.3 Allowing for Precedence and Exclusion
Conditions™

We have assumed in the above sections that tasks are independent and are always
preemptible by other tasks. We will now relax both these assumptions and present
several scheduling heuristics.

Consider a set of tasks with a precedence graph, which are released at time 0.
A deadline is specified for each task. It is assumed that the deadlines are chosen
so that even if a task completes at its deadline, there will be enough time to
execute its children in the task graph by their deadlines. If all the tasks that form
a task graph are assigned to the same processor, then we can use the algorithm
in Figure 3.19.

Example 3.21. Consider the task graph shown in Figure 3.20a, where the task
execution times and deadlines are as follows:

Task T; e d; Task T; e; D;

1 3 6 2 3 7
3 2 20 4 5 21
5 6 27 6 6 28

TASK ASSIGNMENT AND SCHEDULING 81

Tasks are numbered so that D; < Dy < ... < Dy.
1. Schedule task 7, in the interval [D, — e,, Dy].
2. while all the tasks have not been scheduled do
Let A be the set of as-yet-unscheduled tasks all of whose successors,
if any, have been scheduled.
Schedule task Ty, k = max{m|m € A} as late as possible.
end do
3. Move the tasks forward to the extent possible, keeping
their order of execution as specified in step 2.

FIGURE 3.19
Algorithm PRECL.

The schedule as generated upon the completion of step 2 is shown in Figure 3.20b,
and after moving the tasks forward in step 3 is shown in Figure 3.20c.

An interesting variation on the standard problem is scheduling with AND/OR
constraints. In the standard problem, all the precedents of a task must be com-
pleted before that task can begin. In the AND/OR system, there are two types of
tasks, AND tasks and OR tasks. AND tasks cannot commence computing before
all their precedents have completed. OR tasks can commence after any one of
their precedents has completed.

I I | | | | I | | | ! [
0 10 20 30
FIGURE 3.20

EXarnple of algorithm PRECI: (a) task graph; (b) schedule after step 2 applies; (c) schedule after
Step 3 applies. ‘

82 REAL-TIME SYSTEMS

while A = set of all OR tasks is nonempty do:
Choose task 7; € A none of whose precedents is an OR task.
Find k such that £.(k) < L(j) for all j € P;.
In G, remove all edges terminating in 7;, except for the one from 7.
Relabel T; as an AND task.
end do

FIGURE 3.21
Algorithm MINPATH.

Before presenting the scheduling heuristic for this problem, we first introduce
some notation. Let P; denote the set of all the immediate predecessors of task T;
according to the precedence graph, G. That is, if Ty € P;, there is an edge from
node Ty to node 7; in G. Define

e; if T; has no precedents

L= {e,- +max{L(0)|T; € P} otherwise (3:57)

The minimum path algorithm, MINPATH, shown in Figure 3.21, reduces the
AND/OR problem to the standard problem (consisting only of AND tasks) by
suitably pruning the precedence graph. Scheduling can then be completed by
using, for example, PREC1 or some other algorithm.

Example 3.22. Consider a set of eight tasks with execution times 5, 6, 8, 1, 2, 4, [,
2, respectively. Tasks Ts, T4, Tz are OR tasks. The precedence graph and the graph
as pruned by MINPATH are shown in Figure 3.22.

Let us now consider a more powerful and complex heuristic to handle prece-
dence conditions. This algorithm enumerates the schedules that are possible under
preemption or precedence limitations until we arrive at a feasible schedule. In the
worst case, we might have to enumerate every possible schedule before finding a
feasible schedule. However, simulation experiments have indicated that most of
the time this algorithm finds a feasible schedule (assuming one exists) well before
it has enumerated all the possible schedules.

Our task model is as follows. We have a set of tasks, T = {T1, T», . . ., T}
For each task T; we are given the worst-case execution time e;, the deadline d;.
and the release time r;. In addition, we are given the following relations between
every pair of tasks:

e T; PRECEDES T; is TRUE if T; is in the precedence set of Tj, that is, if T;
needs the output of 7; and we cannot start executing 7; until 7; has finished
executing.

e 7; EXCLUDES 7 is TRUE if Tj.is not allowed to preempt Tj\'s

e T; PREEMPTS I; is TRUE if, when 7; is ready to run and 7; is currently
running, 7; is always preempted by T;.

TASK ASSIGNMENT AND SCHEDULING 83

/ \ X
Ty T, [7, Ty 7,8 7y

Ts

%8 TS
(a) (®)

FIGURE 3.22
Task graph transformation by MINPATH: (a) original graph; (b) pruned graph. The node numbers
are the task numbers.

Initially, we start with a set of PRECEDES and EXCLUDES relations as given by the
set of tasks to be scheduled. The PREEMPT relation is initially empty. Clearly, some
relations between a given pair of tasks are inconsistent with some other relations.
For example, we cannot have both (7; PRECEDES 7;) and (7; PRECEDES T;). We
cannot have both (7; PRECEDES T;) and (7; PREEMPTS T;). The reader is invited
to generate a few more examples of inconsistent relations.

A task is said to be eligible to tun if it has been released and if all its
precedent tasks have completed execution. We also define the modified release
time of each task as follows.

4 { T if no task PRECEDES T; (3.58)

max{r;, rJ’. + ¢;|T;PRECEDEST; } otherwise

Example 3.23. Figure 3.23 shows the task graph for a four-task set, where the
execution and modified release times are:

Task ¢ ri r!

0 5 0 0
1 4 1 5
2 9 10 10
3 3 11 19

This algorithm proceeds by first generating a valid initial schedule. If this
solution meets all deadlines, we are done. If not, then we try to modify the
schedule in order to minimize the extent to which deadlines are missed.

84 REAL-TIME SYSTEMS

° " FIGURE 3.23
Example of modified release times.

A task T; is said to be eligible to run at time ? if the following properties
are satisfied:

e all tasks 7; such that 7; PRECEDES T; have completed by time 7,

e T; has not yet been completed by time 7, and

e there is no as-yet-unfinished task Tj that was started before ¢, and such that
Ty EXCLUDES T;.

A schedule is said to be valid if it satisfies the following properties:

V1. The processor is not idle if there are one or more tasks that are ready to run.

V2. Exclusion, precedence, and preemption constraints are all satisfied throughout
the schedule.

Within the context of these constraints, the EDF algorithm is used. If two tasks
are both eligible to run (under the constraints) and have identical deadlines, the
tie is broken on the basis of which one has the greater execution time. That is,
an eligible task 7; will not run if there is a task 7; that is as yet unfinished but
eligible to run, such that:

e T; PREEMPTS T},
e [d; < d;] and — [T PREEMPTS 7;1,> and
e [d; = d;] and — [Tj PREEMPTS T;] and ¢; > e;.

Example 3.24. It is important to realize that validity property V1 may not be op-
timal when there are tasks that cannot be preempted. To see this, consider the
task set T = {T}, T»}, such that 7, EXCLUDES T, and T; EXCLUDES 73. Suppose
D, =10,D, =20, =1, = 0,e; = 5, and e; = 10. Assume that there arc
no precedence constraints. Then, when T, arrives at time O, it starts executing. T
arrives at time 1, but cannot preempt T5; it has to wait until 7, finishes at time 5. By
then, it is too late: 7} simply does not have enough time to finish executing before
its deadline. By contrast, if the processor is kept idle over the interval [0, 1], it can
execute first T; and then T, and meet the deadlines of both tasks. See Figure 3.24.

3— stands for logical NOT.

TASK ASSIGNMENT AND SCHEDULING 85

E__- T
(@
T ‘ 7 I
(b)
FIGURE 3.24
| R Example of a scheduling anomaly: (a) an
infeasible schedule; (b) a reordered, and feasible
0 5 10 15 schedule. ,

The algoﬁthm for generating a valid initial schedule is outlined in Fig-
ure 3.25. f (i) is defined as the finishing time of task 7; in the schedule.

Example 3.25. Consider a four-task system with the following parameters:

T; T T3 T4

Ti 1 0 14 13
e 1 10 2 3
D; 5 30 18 25

Suppose no precedence conditions exist, and that the only EXCLUDE relation is
T].SXCLUDES T,. Then, the valid initial schedule will be generated as follows. Task
T2.1s released at time 0, and is scheduled to start running at that point. The next
point to be examined is time 1 7} arrives and is prevented from preempting 75 due to
the E?{CITUDES relation. The third point to be examined is time 10, when 7, finishes.
At thlg time, task 7; is started and runs until 11. The processor is then idle until 13,
when it starts executing 7. T5 arrives at 14 and, because it has an earlier deadline, it

t=0
while (there are still unfinished tasks) do
f@it=rVi=fQ)) then
select for execution the highest-priority eligible task with the minimum
deadline.
If more than one eligible task has the same minimum deadline,
break ties according to their execution times, giving priority
to the one with the greatest execution time.
end if
t=rtr+1
end while

iIGURE 325
Igorithm for generating a valid initial schedule.

86 REAL-TIME SYSTEMS

[T, |1 | A | .|

0 10 11 14 16 18

FIGURE 3.26
Valid initial schedule example.

preempts 7; and executes (o completion at time 16. Ty then resumes and completes
at 18. As currently scheduled, 77 misses its deadline because it must wait for 7 to
finish. See Figure 3.26. A processor busy period is a time interval during which the
processor is continuously busy. In the above example, the processor busy periods
for the valid initial schedule are [0, 11] and [13, 18].

Our next step is to check if any tasks have missed their deadlines. If none of
them has done so, we are done. If some deadlines have been missed, then we try
to rectify this situation by reordering the tasks in the schedule. In this example, we
can obviously make the processor idle until time 1, and then start executing 1. T

can start executing after T; has finished.
Note that it is only useful to reorder the tasks in the same busy period as the

one that missed its deadline. It is no use tinkering with the order of T, T, to try to
affect Ty, T, these tasks arrive after both 7y and T, have finished executing.

Denote by Z(i) the set containing the tasks that are in the same busy period
as T;, the tasks that are scheduled before T}, and 7; itself. We can obtain Z ()
recursively as follows (s(i) is the start time of 7; in the schedule):

o T, € Z(i)
e T, € Z(i) if 3T, € Z(i) such that

([f) =sOIAB € Z(D) 1y < FEN) VIs) < fk) < f(D)]

Example 3.26. In the valid initial schedule in Figure 3.26, Z(1) = {1, 2}, Z(2) =

{2} Z3) = (3.4}, and Z(4) = {#}.
Note that f(i) is also the earliest possible time by which all the tasks in Z (i) will
finish execution.

Define the lateness of task T; as L(i) = f(i) — D;. If a task has a positive
lateness in a schedule, it has missed its deadline according to that schedule. The
lateness of a schedule is the maximum task lateness.

We now introduce two sets, G1(i) and G2(i). G1(?) is a set of tasks that
cannot be preempted by 7; (because of EXCLUDES relations), but that, if moved
in the schedule to execute after T;, may reduce the maximum lateness of the
system. G, (i) is a set of tasks that, if preempted by T;, may reduce the maximum
lateness. We obtain G (i) by listing all tasks Tp satisfying all of the following
properties:

o Ty € Z(i),
° Di < D]na

TASK ASSIGNMENT AND SCHEDULING 87
e — (T, PREEMPTS T;),
e — (T, PRECEDES T;), and

o T,, EXCLUDES T;.

G,(i) is obtained by listing all tasks T7;, satisfying all of the following proper-
ties:

o T, €Z(i),

e D; < D,,

e —(7,, EXCLUDES T;),

o — (7}, PRECEDES T;),

e — (7, PREEMPTS T;), and

o There is no third task 7, scheduled to run between T; T,,, such that (7}, PRE-
CEDES Tp) V (T, PREEMPTS T;).

Let us now cqmpute a lower bound on the lateness of a valid initial schedule.
Define set K (i) as follows. T; € K (i) iff each of the following is true:

Ty € Z(i),
ki,
Di < Dk,

—(T} PRECEDES T}),

= (T PREEMPTS T;).

;flTi 1s a task wiFh the maximum lateness of any task in the system and K (i) = ¥,
Ca?lI;eV\;etcannot. improve the lateness of 7; by moving other tasks—doing so will
e 1ata eness in one or more of the moved tasks that is at least equal to the cur-
. eness of TZ-: If K .(z) #+ 0, j[hen we can improve on the maximum lateness
Yy moving a task in K(i). We will see examples of this shortly.
o aAblower bgund on the lateness can be determined as follows. Suppose we
- us;(/:1 _perlod of the processor ogcupying the interval [a, b]. Note that we
i Caneg a. just t}}e tasks to rpove .the.: rlght.endpoint of this interval back; all that
oo }:) is to elther' leave it as it is (which is what will happen if we simply
N e ﬁask.s Wlthlll.the b}lsy period, without leaving any gaps), or move it
. oft e right (Whlch will happen if we move a task in such a way that
= Exare ormed). For instance, consider the busy period [0,11] that was formed
Creatiirgnglza;%? llfl Xf.m‘?}i{elt}flte p?c?sskcl)r 'idle until the arrival of 77, we are
it in the i i
R S 61:2.611 of the interval [0,11] and moving the right

88 REAL-TIME SYSTEMS

Define the function GAP(k, i) as follows.

0 if = (T, EXCLUDES
. Ty)
max{0, —s (k) + min{r; | [£ € Z(@)]
A [k #£ 2]
A slk)y <€) <s@)]
A [—(T;PRECEDES T})]}} otherwise
(3.59)

GAP(k, i) =

GAP(k,i) is the gap that would be left in the busy period if we moved T out
to the right of T;.
Define the function LB(i) as follows.

f@)—D; if K(i)=10

LBG) = { F() + mingex (GAP(k.i) — D} otherwise (3.60)

If K(i) = ¥, then there are no tasks that can be moved to reduce the maximum

lateness of the schedule. As a result, the lateness of task 7; remains f (i) — D;. If

K (i) # @, then the right endpoint of Z(i) moves right by GAP (k, i), (i.e., it is

now f(i) +GAP(k,1i)). The lower bound of the lateness with respect to the busy

period up to and including T; is thus given by F(i)+mingeg i) {GAP (k,i)— Dy}
Now, define:

LB,(i) = min{LB(i), f(i) — D;} (3.61)
LBQ(Z) = rl-’ + e — Dl‘ (362)

LB (i) provides a lower bound on the lateness of the schedule under the con-
straints of the PREEMPT, EXCLUDE, and PRECEDE relations. L B, (i) is a lower bound
defined by the task parameters and cannot be reduced. rl + e; is the earliest that
we can execute task 7;, by definition.

It follows that a lower bound of the lateness of the schedule is given by

£ = max{LB, (i), LB2(i)} (3.63)

The schedule is obtained by first running the algorithm in Figure 3.25 to obtain a
valid initial schedule. If this schedule either is feasible or achieves the lower bound
on the lateness in the root node schedule, we are done. If not, some modifications
need to be made to this schedule (i.e., some tasks have to be moved around in
it), in order to reduce the lateness. Treat the valid initial schedule as the root
node.

We identify a task 7; with the maximum lateness and strive to reduce it.
Recall that G| () consists of all the tasks in the schedule that, if scheduled to run
after 7, can reduce the lateness of 7. There are [|G1(j)l such tasks.* Associate

4||A|l means the number of elements in set A.

TASK ASSIGNMENT AND SCHEDULING 89

a child node with each such task; there will thus be |G (/)| such nodes. In the
child node that corresponds to T; being run after 7; to reduce the lateness, we
can force this to happen by adding the relation 7; PRECEDES T.

Recall also that G (/) consists of tasks that, if preempted by 7}, may reduce
the maximum lateness; so we want to make 7; preempt such tasks where possible.
We generate [[G2(j)| additional child nodes to the root node, with one child
node corresponding to each element in G2(j). Consider Tx € G»(j). If we have
some other task T; sandwiched between Ty and 7 in the schedule and if Ty is
prohibited from preempting T;, we want to interchange 7; and T} by adding the
relation T PRECEDES Tj. If we have tasks T, such that —(7; EXCLUDES and
T,), and T, executes between 7y and Tj, add the relation 7, PREEMPTS T} and
T; PREEMPTS Tx.

We proceed by developing the node (i.e., the schedule) that has the minimum
lateness. The scheduling algorithm is shown in Figure 3.27, and Examples 3.27
and 3.28 illustrate how it works.

Example 3.27. Consider a two-task system whose parameters are:

T T,
¥i 0 5
D; 30 15
é; 10 10

Note: T{ EXCLUDES T».

The valid initial schedule is:

L n ‘ T,

0 10 20

Task T, misses its deadline and its lateness is 20—15 = 5. K (2) = {1}. GAP(1,2) =
10 The lower bound of the lateness is therefore

Li(g)e Sy + min {fA2) D) — —0-5
_0(g): FLy kE}é{éﬁf@W GAP(K2) — Dy} =0-5

e We develop Fhis node further. G;(2) = {1}, so we add the relation 7, PRECEDES 7.
en the scheduling algorithm is run under this condition, we have the schedule
shown below, which meets all the deadlines.

J T2 T 1

0 10 20 30

The algorithm puts out this schedule and stops.

90 REAL-TIME SYSTEMS

. Run the algorithm in Figure 3.25 to obtain a valid initial schedule. Compute the

lower bound of the lateness of this schedule. If a feasible schedule results or
the lateness equals the lower bound, output the schedule and stop. Otherwise,
let the task with the maximum lateness be T;. Define ml as the lateness of this
schedule. Go to the next step.

. Treat the valid initial schedule obtained above as the root node of a graph

generated as follows. Find sets G1(J) and G,(j) with respect to the root node

and create |G1(j)|| +11G2(j) |l child nodes. For each node that corresponds to

some task Ty € G1(j), introduce a new relation 7; PRECEDES Tk.

For each node corresponding to some task 7 € G>(j), do the following.

a. For all tasks 7; with the properties that T EXCLUDES T; and T, executes be-
tween the execution of T} and T}, introduce a new relation 7y PRECEDES T}.

b. For all tasks 7, with the properties that the relation T EXCLUDES 7, does
NOT hold and T, executes between T; and Ty, introduce the new relations
T, PREEMPTS T} and T; PREEMPTS Tj.

A child node also inherits all relations of its parent node.

Recompute a valid initial schedule for each of the child nodes.

. If steps 4 and 5 have been completed for all the child nodes, close the parent

node and go to step 5. Otherwise, pick the child node 7, that has minimum
lateness under the valid initial schedule and go to step 4.

. Set ml < min{ml, lateness(child node n)}. If ml is no greater than the least

lower bound of the lateness of all the open nodes, we have achieved the best
schedule possible—output the schedule and stop. Otherwise,-this-nede- can
n@vef»be—devefdp‘etﬁﬂtouawfaﬁon"’b'etter‘thaﬁ‘fh&emenﬁy“a‘éh'reve'dm-lv; close
this-node-and-go-to-step-3. See ©ryela

. Pick from among all the open nodes the one with the least lower bound for

the lateness. If more than one open node has the least lower bound, pick the
one with the smallest lateness. Define this node as the root node and go to
step 2.

FIGURE 3.27
Scheduling algorithm.

Example 3.28. Consider now a four-task system whose parameters are:

T; T T3 Ty

ri 0 25 40 80
e; 50 20 20 20
D; 148 145 125 100

Note: Ty EXCLUDES Tj.

TASK ASSIGNMENT AND SCHEDULING 97

The valid initial schedule at the root node is:

0 20 40 60 80 100 110
2

T, misses its deadline and the lateness of the schedule is 5’: Let us calculate the
lower bound of the lateness under the constraints specified here. We have the fol-
lowing:

K#) = {1,2,3} (3.64)
GAP(1,4) = —s(1) + min{r'(2), ¥’ (3)}

=25 (3.65)

GAP22,4) =0 (because —(75 EXCLUDES 13)) (3.66)

GAP3,4) =0 (because — (75 EXCLUDES Ty)) (3.67)

LB@#) = f(4)+ min [GAP (ki) = Dy)

= 105 + min{25 — 148, 0 — 145, 0 — 125}

= 105 — 145 = —407 35 (3.68)

LB (4) = min{—%?,%} =40 (3.69)
LB>(4) = 80+20—100=0 (3.70)
L(4) = max{LB,(4), LB,#)} =0 3.71)

' Since L£(4) is less than the lateness of the schedule, there could be room for
improvement. We write out G;(4) and G,(4):

G4 = {1} (3.72)
G2(4) = {2, 3} (3.73)

We-n'ow create three child nodes of the root node. The first of these represents an
ad§1t10nal constraint we shall place with respect to 7} (connected with G (4) = {1}).
This additional constraint is 74 PRECEDES 7). The schedule that results is:

n] =z

0 20 40 60 80 100 120 140 160

D

rljhe latgness of this schedule is 2, which is equal to the lower bound of the lateness
(in particular, it is equal to LB»(1)). This lower bound is worse than that of the
root node. No further improvement is possible along this path and we close this
node.

'Let us now turn to the second child node of the root. This corresponds to
T, (since 2 € G,(4)). We add the relations: 7} PREEMPTS 7>, T3 PREEMPTS 75, and

92 REAL-TIME SYSTEMS

T, PREEMPTS T». With these added relations, we run the scheduling algorithm in
Figure 3.25 to obtain the following schedule:

[(r [%] ©n [v6Eelf nlls
0 20 40 60 10 80 100 120

The lateness of this schedule is 5 (Fr-again-misses-itsdeadline-by S5-units; all the
_other tasks meet their deadlines). This node is not closed because, as before, we can
make the following calculations:

K@) = {1,2,3} (3.74)
GAP(1,4) = —s(1) + min{r'(2), ' (3)}

=25 (3.75)

GAP2,4) =0 (because —(T, EXCLUDES 1)) (3.76)

GAP3,4) =0 (because —(T5 EXCLUDES Ty)) (3.77)

LB(@4) = f(4)+ min {(GAP(k,i) — Dy}
L keK@

— 105 +min{25 — 148,0 — 145,0 — 125}

= 105 145 = —4045 (378)

LB, (4) = min{—40, 5} = 405 (3.79)
LBy(4) = 80420100 =0 (3.80)
L£(4) = max{LB;(4), LB,(4)} =0 (3.81)

Let us, however, turn to the third child node. This corresponds to using 3e
G,(4). We add the relations 7; PREEMPTS T3, T> PREEMPTS Ts, and T, PREEMPTS T3.
Under these additional relations, the algorithm in Figure 3.25 returns the following
schedule:

T \ T ‘ T, |T3| Ty {Ts}
0 20 40 60 80 100 120

This is feasible, and so the algorithm puts out this schedule and stops.

There is an interesting multiprocessor extension of this algorithm. See Sec-
tion 3.7 for a pointer to the literature.

3.2.4 Using Primary and Alternative Tasks

Throughout this chapter, we have assumed that there must always be sufficient
time for the critical tasks to execute. In order to ensure that critical tasks will
complete before their deadline, we carry out a scheduling that assumes that each
critical task will run to its worst-case time. Quite often, the worst-case execution

TASK ASSIGNMENT AND SCHEDULING 93

time of such tasks is much greater than the average-case execution time. This
results in much more time being scheduled for the tasks than is really needed.
One way of retaining a high utilization of the hardware is to reclaim for less
critical functions the time left unused when the critical tasks do not need all their
scheduled time.

In this section, we shall consider a second approach to the problem. Suppose
that for each critical task, we have two versions, a primary and an alternative.
Completing either the primary or alternative version successfully results in the
critical task being executed. However, the alternative is a “bare-bones” version
that provides service that is just acceptable, while the primary may be capable
of providing better-quality service. The alternative version has a much smaller
worst-case execution time than the primary. Since only one of these versions has
to execute in time to ensure acceptable service, we can avoid having to preallocate
the primary for its worst-case time.>

Example 3.29. To illustrate, let us consider the very simple example of a one-task
set, consisting of a primary and an alternative. The relative deadline is equal to the
task period. The parameters are shown in the following table:

Primary Alternative

Worst-case run time 20 5
Average run time 7 4
Period 15 15

If only the primary version were available, this task set would be impossible to
schedule; there simply wouldn’t be time to complete executing the primary if it ran
to its worst-case time. However, since we now have an alterative, we can set up the
schedule shown in Figure 3.28. We allow 10 time units for the primary version to
run in each period of 15 units; we call this the run-time limit of the primary version.
Much of the time (since the average run time is only 7) the primary version will
have completed by that time, and we can reclaim the time beyond the completion
time for other activities. However, if the primary runs for more than 10, we abort it
and start up the alternative task. While it does not provide results that are as good as

i: Primary Alternative

L I |] 1 | |] !
0 5 10 15
FIGURE 3.28

E : . . .
Xample of using primary and alternative versions.

S ;
In Section 3.3, this concept will be taken one step further.

94 REAL-TIME SYSTEMS

the primary does, the alternative at least is guaranteed to generate acceptable output

within a worst-case execution time of 5. Thus, we are assured of at least one of the

two versions executing by the deadline (given that there are no failures, of course).

Assume that the set of tasks is periodic, and that the periods are in the set
{Py, 2Py, 22P,,...,2!P,}. Clearly, P, is the smallest period of any task in the
set. A task is said to be of level-i if its period is 2iP,, i =0,1,2,.... Assume
that r is the highest level (i.e., there is no task whose period exceeds 2" P,,). With
each primary version 7r; of task 7}, associate a run-time limit £;. If the primary
runs beyond this run-time limit, we will abort it and turn to the corresponding
alternative version.

We now present two uniprocessor scheduling algorithms, one for generat-
ing the initial schedule and another for reclaiming unused time from the initial
schedule.

The initial schedule is generated as follows. First, we schedule all level-0
tasks over an interval P, ensuring that all alternative versions of such tasks are
scheduled, and then schedule the maximum number of primary versions that will
fit in the remaining time. The alternative version of a task is never scheduled to
run before its primary. Call this schedule So.

Next, concatenate two So schedules to form one schedule of length 2P,.
Schedule all level-1 tasks in the following manner. First, schedule the alternative
versions. If there is insufficient space in the schedule to fit all the alternatives,
drop some of the primary versions of the level-0 tasks, as necessary. If primary
versions have to be dropped, drop the ones that have the longest run-time limits
(the idea is to drop as few of them as possible). Once all the level-1 alternatives
have been scheduled, see if any of the level-1 primaries can be scheduled in the
space available. If they fit, do so. Primaries are checked for inclusion in ascending
order of their run-time limits. Then, check to see if any as-yet-unscheduled level-
1 primaries have a lower run-time than any primary already scheduled. If so,
drop the already-scheduled primary with the longest run-time limit and replace
it with the level-1 primary. When this has been done, concatenate two copies
of the resultant schedule together to form a schedule of length 22P,,. Schedule
level-2 tasks in the same way—drop level-1 or level-0 primaries as necessary to
schedule level-2 alternatives, dropping the ones with the longest run-time limit
first. Continue in this way until all tasks have at least their alternative versions
scheduled to run in each task period.

Example 3.30. Consider the following task set of five tasks. Denote by (i) th.e
worst-case run time of the alternative version of 7;, and by £(i) the run-time limit
of the corresponding primary version.

T T; T3 T4 Ts

110) 10 10 15 10 5
a(i) 3 2 1 7 4
B i 205000 2080 AQpsi A0

TASK ASSIGNMENT AND SCHEDULING 95

A(I3)
B o | am Jao)]']
LJ—J——L-‘J N T I T T N SO T
0 5 10 15 20

(@

A(|3) A(3)
[| a0 o]] Pr(D) [40 ao)] |
(1 TR T N Lo v v e b v b e v v b b |
0 5 10 15 20 25 30 35 40

(b)
AQ) X AB)
t |
Pr(1) [am] T 4w | 4o [| a0 [a)] o)

Lo v v v e bv v v bvr o v br e e v e ey |
0 5 10 15 20 25 30 35 40
(©

FIGURE 3.29

Example of primary and alternative-version scheduling: (a) schedule So; (b) two copies of schedule
So concatenated; (c) incorporating level-1 tasks. Pr(i) = primary of 7;; A(i) = alternative of T;.

M
The level-0 tasks are T, T, Ts, and the level-1 tasks are Ty, T5. Generate schedule
So. After scheduling the three alternative versions, we have only 15 time units left.
We pick a primary with the least run-time limit (of task 77) and schedule it. The
alternative versions are scheduled to run after this primary. See Figure 3.29a.

. Next, we concatenate two copies of Sy (see Figure 3.29b). Our first order of
business is to ensure that the alternative versions of T, and Ts are scheduled. This
requires a total of 11 time units. We do not have 11 units free in this schedule,
so we drop one of the iterations of the 7 primary version (say the second one),
and add the alternatives of Ty and T5. We also have enough space to add Pr(5)—it

is executed in two parts over the intervals [27, 30] and [36, 38]. See Figure 3.29c.
Here the algorithm ends.

) How do we choose the run-time .limit. of the primary? The simplest option is
0 set it equal to the worst-case execution time. However, this might result in only
a Smgll number of primaries being scheduled. Another option is to pick a time
Sufficiently large so that with some large probability, the primary can be expected
{0 complete within the run-time limit.

Ex.{ample 3.31. Suppose the probability density function of the execution time of a
primary is as shown in Figure 3.30. The density function has a long “tail.” However,
most of the probability is concentrated in the interval [0, #,]. Hence, we might choose
to set the run-time limit at #; rather than at the worst-case execution time.

B

96 REAL-TIME SYSTEMS

Probability density

i 53
Time

FIGURE 3.30
Probability density function of the execution time of a primary.

If a primary version completes successfully, we do not need its corresponding
alternative for that period. This time can then be reclaimed. Such reclamation can
result in time becoming available for other primaries, which were not part of
the original schedule, to be executed. The algorithm for doing this is a simple
modification of the above and is left to the reader as an exercise.

3.3 UNIPROCESSOR SCHEDULING
OF IRIS TASKS

Thus far in this chapter, we have assumed that to obtain an acceptable output
a task has to be run to completion. Put another way, if the task is not run (o
completion, we get zero reward from it (i.e., it may as well not have been run).
However, there is a large number of tasks for which this is not true. These are
iterative algorithms. The longer they run, the higher the quality of their output
(up to some maximum run time).

Example 3.32. Figure 3.31 contains an algorithm for computing the value of 7.
The more times step 2 is executed, the more accurate P is as an approximation of
7 (subject, of course, to limitations due to finite numerical precision).

The difference between the calculated value and the actual value of 7 (the
“error”) as a function of the iteration number is provided in Table 3.1. The error is
greatest for the first iteration; it diminishes rapidly after that.

Search algorithms for finding the minimum of some complicated function
are also examples of iterative tasks. The longer we search the parameter space,
the greater is the chance that we will obtain the optimum value or something close
to it.

TASK ASSIGNMENT AND SCHEDULING 97

1. Set A=+2,B=2, P=2+4+2.

Repeat step 2 as many times as necessary.

2. Compute
o YATUVA
' 2
A+1
P .=p A+l
B+1
5. BYA+1IVA
B +1
B is an approximation of x.
FIGURE 3.31
Algorithm for calculating 7.
TABLE 3.1
Errors in calculating
Iteration Error
1 0.001014100351829362328076440339
2 0.000000007376250992035108851841
3 0.000000000000000000183130608478

Example 3.33. Chess-playing algorithms evaluate the goodness of moves by looking

ahead several moves. The more time they have, the further they can look and the
more accurate will be the evaluation.

T . .

taziks ¥f this type are known as increased reward with increased service (IRIS)

. . .he rgward fqnctlon associated with an IRIS task increases with the amount
Service given to it. Typically, the reward function is of the form

0 if x <m
R(x) = r(x) ifm<x<o+m (3.82)
r(o+m) ifx>o0+m

:Z},l?;et }’1’ é);) Ili monotonically nondecreasing in x. The reward is 0 up to some time
With this ri:s 1Sd Ilfot ex.ecuted up to that point, it produces no useful output. Tasks
. W{“i}rl unction can be .regard'ed as having a mandatory and an optional
¥ the do ci]' e mandaror).z po‘rt.lon (with ex'ecution time m) must be completed
. a ine if the task is critical; the optional portion is done if time permits.
- onal portion requires a total of o time to complete. In each case, the
ution of a task must be'stopped by its deadline d.

98 REAL-TIME SYSTEMS

The scheduling task can be described as the following optimization problem:

Schedule the tasks so that the reward is maximized, subject to the require-
ment that the mandatory portions of all the tasks are completed.

It can be shown that this optimization problem is NP-complete when there is no
restriction on the release times, deadlines, and reward functions. However, for
some special cases, we do have scheduling algorithms. We now turn to these. In
what follows, m; and o; denote the execution time of the mandatory and optional
parts, respectively, of T;.

3.3.1 Identical Linear Reward Functions

For task 7;, the reward function is given by

0 if x < m;
R;(x) = {x —m; ifm <x <o +m (3.83)
0; if x >m; +o0;

That is, the reward from executing a unit of optional work is one unit. A schedule
is said to be optimal if the reward is maximized subject to all tasks completing at
least their mandatory portions by the task deadline.

Theorem 3.13. The EDF algorithm is optimal if the mandatory parts of all tasks
are 0.

Proof. If the mandatory portions are Zero, then we can execute as little of any task
as we please. It is easy to see that the reward is maximized if the processor is kept
busy for as much time as possible. But this is exactly what the EDF algorithm does:
if the processor is idle at some time £, this is because (a) all the previously released
tasks have either completed or their deadlines have expired by time ¢, and (b) 10
other tasks have been released. Q.E.D.

We can use this result to develop an optimal scheduling algorithm for the
case when the mandatory portions are not all zero. The tasks T, ..., T, have
mandatory portions My, ..., M, and optional portions O1, ..., O Define

T=({T,....Ta}

The optimal algorithm, IRISI, is shown in Figure 3.32. Although it looks a little
forbidding, the idea behind it is quite simple. First, since we receive one unit of
reward for each unit of the optional portion completed for any task, the highest
reward, subject to the constraint that all the mandatory portions are completed, is
obtained when the processor carries out as much execution as possible.

TASK ASSIGNMENT AND SCHEDULING 99

1. Run the EDF algorithm on the task set T to generate a schedule S
If this is feasible, :
An optimal schedule has been found: sTop.
FElse,
go to step 2.
end if

2. Run the EDF algorithm on the task set M, to generate a schedule S,
If this set is not feasible, "
T cannot be feasibly scheduled: sTop.
Else,
Define a; as the ith instant in S, when either the scheduled task
changes, or the processor becomes idle, i = 1,2,
Let k be the total number of these instants.
Define ay as when the first task begins executing in S,,.
Define 7(j) as the task that executes in Sy, in [a;, a; 1],
Define L;(j) and L, (j) as the total execution time given to

task 7(j) in S;(j) and S,,(j) respectively, after time a;.
Go to step 3. !

end if

3. j=k—1
dowhile 0 <j<k-—1)
if (L (j) > L¢(j)) then
Modify S; by
(a) assigning L,,(j) — L(j) of processor time in [a;, aj4+1]
to 7(j), and
(b) reducing the processor time assigned to other tasks in
laj, aj+1]1 BY L (j) — L:(j)-
Update L,(1), ..., L;(j) appropriately.

end if
j=ji-1
end do
end
FIGURE 3.32
Algorithm TRIS1.

ol t;lZi 6E)e%l.n by running the EDF a}ggrithm for the total run time of each task.
5 sulting schedule S;. S; maximizes the total processor busy time. If S; is
e neeg schedqle, we are clearly QOne—We have given each task as much time
il $ to finish executing both its mandatory and optional portions, and have
. each task deadhr}e. Sgppose we do not obtain a feasible schedule; that

> S0me task cannot be given its full execution time and still meet its deadline.

