60 pEsLTIME sysTEMS

i

098 — -
09 — —
094 — -
LU —
0 — =
0EE — —
08s —
0Egs — —

£

FIGURE 3.11
Processor wilization when the processor is fully wilized.

From this, we find the minimum value of 7 under full otilization to be E{-.-"'_l — 1.
This is the least upper bound. Q.E.D.

Example 3.12. Consider a two-task set with P, = 5. and P, = 7. In Figure 3.11.
we plot the wtilization as a function of e; when the processor is fully utilized (s is
chosen for fll utilization).

Let us now extend this to more than two tasks. We do so in two steps.

First we will consider the case P, < 2P,. In this case, the longest period, P,,
contains only two releases of each higher-priority task; this will greatly simplify
our analysis. We will show that the least upper bound for schedulability in this case
is given by n(2"/" —1). Then we will consider the P, > 2P, case. For each set § of
n tasks for which P, > 2P, we will construct a set §' of n tasks for which P, <
2P (where P! is the period of the ith task in set §”) with the property that if § fully
utilizes the processor, sodoes 5'. We will show that the utilization of the processor
under 5 is no greater than the utilization under §. As a result, the least upper bound
of the utilization for the P, > 2P case cannot be less than that for the P, < 2P,
case. The overall least upper bound for schedulability is therefore n(2'/" — 1).

Lemma 3.2, Given n tasks in the rask set § with execution times ¢; for task T;, if
g =Pog—Pfori=1,....n—1,and e, = 2F; — P,. with P, < 2P, then under
the RM algorithm

» the task set fully utilizes the processor,

« there does not exist any other task set that also fully ulilizes the processor and
that has a lower processor utilization, and

» the processor utilization is at least I = m(21"" — 1),

Progf. As before, assume that the fasks are numbered sothat Py < P, < < P,
Let L' denote the processor wiilizztion under this task set. The task set fully wilizes
the processor.

TASK ASSIGNMENT AND SCHEDULING 61

We will show that the wilization is minimized when e, = P, — P; by checking
out the cases when ¢; > Py — P, and ¢; < P> — Py. A similar argument vields the
best values for the execution time of the other tasks.

Consider the case where e; > P, — Py, that is,

e=PB-P+A A0 (3.20)

Figure 3.12a illustrates this sitzation for the tasks T;, T, The first release of task T»
must complete before time Py (since the interval [Py, P;] will be fully occupied by
the second release of task T,).

MNow, define another task set 8" with task execution times

E’"; = &) -4
E; = e+ 4
E‘;:E_q
€y = £q

Task set §' will also fully utilize the processor. The additional slack created in the
interval [0, Pi] by reducing the T} execution time is cancelled out by increasing the
execution tme of task T». See Figure 3.12a

If U denotes the processor ufilization under task set §°, we have

MNow, suppose that instead of Equation (3.20), we have
e =P—P—-A A =0 (3.22)

In such a case, w fully utilize the processor, tasks Ty, Ti. must fill the intervals
I_P|..P]i H.I'Id [.P| "E'E'|. P!]

t’i= ID:—P|

FIGURE 3.12a

3.2; the shaded portion indicates when T is executing.

AL-TIME 5Y — -
62 re [E 5YSTEMS l TASK ASSIGNMENT AND SCHEDULING 63

To obtain the minimuam possible U so that § completely wiilizes the ;
OCESS0T, W
must therefore choose Py, Pa. ..., P. to minimize -

0 - Py Py PP R 2P
ey=Pr-Py- A R TERTTTEL TR (3.26)
subject to the constraint that P, < 2P;.
‘ . ll?nrrs:rained minimization is quite easy. bul unconstrained minimization is
] | even gfnp]er. Let us canry out the unconstrained minimization (i.e., by ignoring the
0 P, P, ::I[tﬁll.’;l;‘t that P, < 2P}, and see if the result thar we obtain satisfies the constraint
| e = P'|— P - = I- ~
| 1=F-F To find the unconstrained minimum of u, we must solve the equations
i FIGURE 3.12b
. Lemma 3.2; the shaded portion indicates whea T is executing. Bu _dw o dw _
aP, ap: T (3.27)
i Define another task set 5 with task execution times This results in the following equations:
e =€ +4 pli-1)
& = er—24 B=_gx if3sisa (3.28)
E;: = &3 2)
’ Fe =2IPF., (3.29)
These equations yield
.5:' = £p i
- . _ P=2"10R (3.30)
Task set 5 will also fully utilize the processor. Task T will consume an extra &
time units in the interval [0, P;), and an additional A time units in [Py, Py + €] In particular, if we set i = n in Equation (3.30), we have P, =2"-1"p = P, <
To make up for this, we reduce the execution time of task T; by 24; otherwise T3 2P,, which satisfies the constraint.
cannot meet its deadline. See Figure 3.12b. After a litile algebra, the comesponding utilization can be shown to be equal 1o
If U' denotes the processor utilization under task set §'. we have
A (24) U=n2'" -1 (3.31)
Uv-r=-—+—n=>10 (since Py < 2Py (3.23) Q.ED,
P P
From Equations (3.21) and (3.23), we have that if task set § minimizes the utilizatron
factor, In fact, We can do better than Lemma 3.2. We can prove the same result without
ey =Py — P (3.24) the constraint that P, <2P.
: Consider a task set § that satisfies all the conditions in the statement of
Teir o an identi) . - _ =1 -1 i
%sm,,au identical argument, v-e-::an show that e; = Py Pifori=2....n—1 Lemma 3.2, except the one that P, < 2P,. Then, there exist tasks T; such that
o ensure that the set fully vtilizes the processor, we must also have e, = 2P, — F. P.> 2P, Let (0 C 5§ denote th f ,
To see why, prepare a diagram showing the schedule that results when the execution 1 T e set of such tasks. Construct another task set §
. " owiang LELE Starting with T and
times are as chosen here. You will see that the only place left for the first iteration
of T, in the schedule is the interval between when the first iteration of T,_; finishes
_ and the second iteration of T, begins. * replacing every task T; € @ with a task T that has P/ = [P, /P] P; and
The processor utilization under task set § is given by € =g and i i /
I SR — P —_ > - - -] - - .
U = P P’__P3 P ...+P" P““+'PL P ® replacing task T, with T,. which has its execution time increased over
| Py P Fu Fy s El:l of T, by the amount required to fully wtilize the processor. Let N
' P P P, ap ’ the amount of the increase that o nsates]
ol By o 2B (3.25) by T ompe for the replacement of T;

FI P'.'_ - Pﬂ—l PI

G4 pEAL-TIME SYSTEMS

It is easy to see that A; < ([P /F;] —1)e:. Therefore, if U denotes the wtilization
of task set T, we have

-, . FLY R GH
(L =L'+E1E+E—FI

| A
o
|
mm— =
[
|
|
-~
o
“u|m
|
|
=

L-‘+E|

(2] [@)-@) e

But, P, > P!. We therefore have from Equation (3.32) that
Uv=u (3.33)

S0, task set §', which satisfies the condition that P, < 2P| in Lemma 3.2, has a
lower utilization than §, which has the condition P, > 2P;. However, we know
from Lemma 3.2 that U > (2" — 1). It therefore follows that L > a2V — 1)
for any periodic task set § that fully utilizes the processor. Hence, we have proved
the following theorem.

Theorem 3.3. Any set of n periodic tasks that fully utilizes the processor under RM
must have a processor utilization of at least n (2" —1).

The necessary and sufficient conditions for schedulability are proved below.

Theorem 3.4. Given a set of n periodic tasks (with Py € P, < ... < F). task T;
can be feasibly scheduled using RM iff L; < 1.

Proaf. If L; < 1, then there exists 1 € [0, Pi]. such that Wi(t)/r < 1, that is,
Witd <r Since [, =0foralli =1,-.., n (recall that we have shown that we
only need 1o check the case Iy = ... = I, = 0). Wilr) < ¢ implies that by time r.
the computational needs of tasks Ty to T; have been met. As ¢ < P; task T; meels

its deadline.
Conversely, if W;(t) > t forall 1 € [0, P;], there is insufficient time 1o execule
task 7; before its deadline, Pi. Q.E.D.

WHEN A TASK DEADLINE IS NOT EQUAL TO ITS PERIOD." We have so far
assumed that the relative deadline of a task is equal to its period. Let us relax
this assumption. If we do so, the RM algorithm is no longer an optimum static-
priority scheduling algorithm. Consider first the case where the relative deadline
is less than the period. Then, a moment’s reflection shows that the necessary and
sufficient condition for task T; to be RM-schedulable is

for some 1 € [0, dj] (3.34)

The case d; > P is much harder. Let us begin by considering again our result
that the worst-case response time of a task occurs when the task phasings are all

Wilt) =t

TASK ASSIGNMENT AND SCHEDULDNG 65

zero. When d; = P;, at most one initiation of the same task can be alive at any
one time. As a result, to check for schedulability it is sufficient to set the phasings
of all members of the task set to zero and to check that the first initiation of each
task meets its deadline. That is, in fact, the origin of RM-scheduling conditions
RM1 and RM2. When d; > P;, however, it is possible for multiple initiations of
the same task to be alive simultaneously, and we might have to check a number
of initiations to obtain the worst-case response time. To clarify this, consider the
Example 3.13.

Example 3.13. Consider a case where m = 1, &y = 28, &2 = 71, P; = 80, and
P, = 110, Set all task deadlines 1o infinity. The following table shows the response
times of task Tz.

Initiation Completion time Response time
1] 127 127

1o 2% 116

2m 353 133

330 452 122

4440 351 111

550 LR 128

G50 77 117

T 876 106

As we can see, the worst response time is not for the first initiation, but for the
third. This indicates that it is not sufficient just to consider the first initiztion of all
the tasks.

We must do some additional work before we can write down the schedu-
lability condition for the d; > P; case. In this case, more than one iteration of
a task can be alive at any one time. As before, we assume that T; has priority
ﬂ‘-‘t_r T; iff P; < P;: indeed, we number the tasks in the ascending order of their
periods (and thus in the descending order of their priorities).

Let §; = {T;..... T;}. We define the level-i busy period as the interval [a, b]
such that

* h>a

» only tasks in §; are mun in [a. B],

» the processor is busy throughout [a. b], and

» the processor is not executing any task from S; just prior to @ or just after b.

Example 3.14. Define 5 = [Th..... T;) for i = 1,..., 5. In the schedule in Fig-
ure 3.13 shows the five busy-period levels.

Theorem 3.5. Task T; expericnces its greatest response time during a level-i busy
period, initiated with phasings [} =...= =0,

66 EEAL-TIME SYSTEMS

ENENEN NS E ENEN

Level 1 basy period

2 Level 2 busy period

Level 3 busy pernod

Lewel 4 busy period

Lewel 5 busy period
FIGURE 3.13
Busy periods.

Proof. The proof is immediate for the highest-priority task, task T;. So, consider
tasks T, fori > 1 and, without loss of generality, assume that f; = 0. Suppose [0, &)
is a level-i busy period and I; > 0. By the definition of busy period, only tasks of
higher priority than T; execute in the interval [0, I;). Decreasing [; will not change
the times at which these higher-priority tasks finish: all it will do is 1o increase the
response time of T;. Similarly, if f; > O for some k < i, reducing [; will either
increase or leave unchanged the processing demands of T, over the imterval [0, B).
That is, reducing Iz will either increase or leave unchanged the finishing time of Te.
This completes the: proof. QED.

Thus, to determine RM-schedulability, we can continue to concentrate on
the case where all phasings are zero. However, to ensure that task T; meets its
deadline, we must check that all its initiations in a level-i busy period beginning
at time {0 meet their deadlines.

Let t(k,i) be when the kth initiation (within the busy period) of task T;
completes execution. We leave for the reader to show that r(k, i) is the minimum
t for which the following expression holds:

i—1
' |
F= i| = |+ ke 3.35)
2 [P,.-] “ ‘
This kth initiation will meet its deadline if
HE) < (k= 1P + d; (3.36)

To what value of k& should we check that the above condition holds 1o ensure that
all iterations of T: meet their deadline? We leave for the reader to show that it is
sufficient to check that iterations 1 to £; meet their deadlines, where

£; = min{m|mP; > t(m,i)] (3.37)
Task T;: is thus RM-schedulable iff
ki) <(k—=1DP+d;. VE<§ (3.38)

and the entire task set is RM-schedulable iff all the tasks in it are RM-schedulable.
Can we obtain a results similar to Theorem 3.3 for the case o; £ F7 It 1s
surprisingly difficult to do this and few results are known. We will state some of

TASK ASSIGNMENT AND SCHEDULING BT

these without proof. Suppose we have a task set for which there exists a y such
that d; = ¥ Fi. for all the tasks. Then it is possible to show the following result.

Theorem 3.6. Any set of n periodic tasks that fully uiilizes the processor under RM
must have a processor utilization of at least

n 2V —1) if y =1
1/im =0}
r+1y
po Nyl =1 | — -1 if yp =23,...
¥ if0=<y =05
log (2y)+1—y if0s<y<l1

HANDLING CRITICAL SECTIONS. In our discussions so far, we have assumed
that all tasks can be preempted at any point of their execution. However, some-
times tasks may need to access resources that cannot be shared. For example, a
task may be writing to a block in memorv. Until this is completed, no other task
can access that block, either for reading or for writing. A task that is currently
holding the unsharable resource is said to be in the critical section associated with
the resource.

One way of ensuring exclusive acoess is to guard the critical sections with
binary semaphores. These are like locks. When the semaphore is locked (e.g., by
setting it to 1), it indicates that there is a task currently in the critical section. When
a task seeks to enter a critical section, it checks if the corresponding semaphore is
locked. If it is, the task is stopped and cannot proceed further until that semaphore
is unlocked. If it is not, the task locks the semaphore and enters the critical section.
When a task exits the critical section, it unlocks the corresponding semaphore.
For convenience, we shall say that a critical section § is locked (unlocked) when
we mean that the semaphore associated with 5 is locked {unlocked).

~ We will assume that critical sections are properly nested. That is, if we have
sectrons 5y, 5» on a single processor, the following sequence is allowed: Lock 5.
Lock 83 . Unlock 3. Unlock §), while the following is not: Lock §). Lock 8.
Unlock §;. Unlock Sa.

Everything in this section refers to tasks sharing a single processor. We
assume that once a task starts, it continues until it (a) finishes, (b) is preempted
by some higher-priority task, or (c) is blocked by some lower-priority task that
hﬂllds the lock on a critical section that it needs. We do not, for example, consider
@ Sitwation where a task suspends itself when executing /0 operations or when it
Encounters a page fault. The results of this section can easily be extended for this
case, however (see Exercise 3.12).

It is possible for a lower-priority task Ty to block® a higher-priority task,
Ty. This can happen when Ty needs to access a critical section that is currently

lwhﬂl a lower-priority task is in the way of a higher-prionity task, the fommer is said to block the

68 EEALTIME SYSTEMS

7 [] B

I f Fr Iy Iy I Ig,] fg

FIGURE 3.14
Priority imversion.

being accessed by T. Although Ty has higher priority than T, to ensure cormrect
functioning. T; must be allowed to complete its critical section access before Ty
Can acoess it.

Such blocking of a higher-prionity task by a lower-priority task can have the
unpleasant side effect of priority inversion. This is illustrated in Example 3.15.

Example 3.15. Consider tasks Ty, T2, T, listed in descending onder of priority,
which share a processor. There is one critical section § that both T; and T use.
See Figure 3.14. T begins execution at time fo. Al ime . it emers its critical
section, §. T; is released at time & and preempts Tj. It runs until r5, when it
trics to enter the critical section §. However, § is still locked by the suspended
task T:. So, T is suspended and T; resumes execution. At time fs, task T is re-
leased. Ty has higher priority than T:, and so it preempts T:. T: does not need §
and runs w completion at ts. After T» completes execution at rs. T; resumes and
exits critical section § av 4s. Ty can now preempt T3 and enter the critical sec-
bom.

Notice that although T is of lower priority than T;. it was able to delay
Ty indirectly (by preempting T3, which was blocking Tj). This phenomenon is
known as priority inversion. Ideally, the system should have noted that T, was
waiting for access, and so Ty should not have been allowed to start executing
at .

The use of prierity inkeritance allows us to avoid the problem of prior-
ity inversion. Under this scheme, if a higher-priority task Ty is blocked by a
lower-priority task Ty (because T is currently executing a critical section needed
by Ty), the lower-priority task temporarily inherits the priority of Ty. When
the blocking ceases, Ty resumes its original priority. The protocol is described
in Figure 3.15. Example 3.16 shows how this prevents priority inversion from
happening.

Example 3.16. Let us return to Example 3.15 to see how priority inheritance pre-
Vents priofity inversion. At time 13, when T; blocks Ty, T; inherits the higher priority
of Ti. S0, when T: is released at 1y, it cannot intermapt T3, As a result, T} is pod
indirectly blocked by T

TASK ASSIGNMENT AND SCHEDULNG 69

1. The highest-prionity task T is assigned the processor. T relinguishes the pro-
cessor whenever it seeks to lock the semaphore guarding a critical section that
is already locked by some other job.

2. If a task T; is blocked by T2 (due to contention for a critical section) and
I > T task T inhenits the priority of T, as long as it blocks 7;. When
T, exits the critical section that caused the block, it reverts to the priority it
had when it entered that section. The operations of priority inheritance and the
resumption of previous priority are indivisible.

3, Prionty inheritance is transitive. If T3 blocks T;, which blocks T (with T =
T: > T3), then T inherits the priority of T through T3.

4. A task T can preempt another task Ty if T} is not blocked and if the cumrent
priority of Ty is greater than that of the current priority of T.

FIGURE 3.15
The prioity inheritance protoool.

Unfortunately, priority inheritance can lead to deadlock. This is illustrated
by Example 3.17.

Example 3.17. Consider two tasks T, and T:. which use two critical sections 5
and §:. These tasks require the critical sections in the following sequence:;

Ti: Lock 5. Lock 5. Unlock 5. Unlock 5.
T>: Lock § . Lock 5. Unlock 5. Unlock .

Let Ty > T, and suppose T starts execution at f,. At time #y, it locks 5., At
time ¢;. Ty is initiated and it preempts T, owing to its higher priodty. At time s,
T| bocks 5|- Al time Iy, T| altempts bo lock 5], but is blocked because I] has mot
fimished with it. T2, which now inherits the priority of T;, stans executing. However,
when at time &5 it tries to lock 5, it cannot do so since T} has a lock on it. Both T
and Ty are now deadlocked.

_ There is another drawback of priority inheritance. Tt is possible for the
hlEhﬁ-l-priﬂrit}r task to be blocked once by every other task executing on the
;ﬁ processor. (The reader is invited in Exercise 3.8 to construct an example of

 To get around both problems, we define the priority ceiling protocol. The
Briority ceiling of a semaphore is the highest priority of any task that may lock
L Let P(T) denote the priority of task T, and P(S) the priority ceiling of the
*emaphore of critical section $.

Example 3.18. Consider a three-task system Ty, Ta. Ty, with Ty = Ti = Ts. There
are four critical sections, and the following table indicates which tasks may lock
which sections, and the resultant priority ceilings.

Critical section Accessed by Priority ceiling

5 Ty, T " P
5 Ty, . T P
53 T P(T5)
5 T, T P(Ta)

The priority ceiling protocol is the same as the priority inheritance protocol,
except that a task can also be blocked from entering a critical section if there
exists any semaphore currently held by some other task whose priority ceiling is
greater than or equal to the priority of T.

Example 3.19. Consider the tasks and critical sections mentioned in Example 3.18.
Suppose that T currently holds a lock on 5, and task that T, is initiated. T; will be
blocked from entering 5, because its priority is not greater than the priority ceiling
of 3;-

The priority ceiling protocol is specified in Figure 3.16. The key properties
of the priority ceiling protocol are as follows:

P1. The priority ceiling protocol prevents deadlocks.

P2. Let B; be the set of all critical sections that can cause the blocking of task
T:and t(x) be the time taken for section x t0 be executed. Then, T will be
blocked for at most max,-g, H{x).

1. The highest-priority task, T, is assigned the processor. T relinquishes the pro-
cessor (i.e., it is blocked) whenever it seeks to lock the semaphore guarding a
critical section which is already locked by some other task (@ (in which case it
is said to be blocked by task @), or when there exists a semaphore 5 locked
by some other task, whose priority ceiling is greater than or equal to the pri-
ority of T In the latter case, let §* be the semaphore with the highest priority
among those locked by some other tasks, We say that T is blocked on £*, and
by the task currently holding the lock on §°.

2. Suppose T blocks one or more tasks. Then, it inherits the priority of the highest-
priority task that it is currently blocking. The operations of priority inheritance
and resumption of previous priority are indivisible.

3. Priority inheritance is transitive.

4. A task T can preempt another task T> if T does not hold a critical section
which T, currently needs, and if the current priority of Ty is greater than that
of the current priority of Ta.

FIGURE 3.16
The: priomty ceiling protocol.

TASE ASSIGNMENT AND SCHEDALDNG 71

Priority ceiling property P2 allows us to conduct a schedulability analysis on
systems using the priority ceiling protocol. Take, for example, the rate-monotonic
scheduling algorithm that we discussed earlier in this section. We can revise
Theorem 3.6 as follows (here we use T; to denote both the task and its period—
which one it represents is obvious from the context):

Theorem 3.7. Any set of n periodic processes that fully wilizes the processor under
BM mst have, for each i = 1. ..., n}
€ B2 e b
+=+-+=+—=<i2V -1

P oT: AT

where b; = max g 1(x).
Proaf. The proof is left 1o the reader as an exercise,

As a result of Theorem 3.7, we know that task T; can be scheduled under
the RM algorithm to meet its deadline if

€1 €2 Ej b,'

—+—=+%-+=+=—=<i2ZV - 1)

PAy pdy P T [;
The necessary and sufficient conditions for RM-schedulability can be similarly
written.

MATHEMATICAL UNDERPINNINGS OF THE PRIORITY CEILING ALGO-
RITHM.* To prove that priority ceiling properties P1 and P2 hold, we will need
the following series of results.

Lemma 3.3. Task T; can omnly be blocked by a lower-priority task T if T is ima
critical saction at the time that T, arrives.

Pi_'aq,r: If T: is not in a critical section when T; armmives, it will be preempied and
will never regain the processor until afler Ty leaves. Q.E.D.

[ma 34, Task T; can only be blocked by a lower-prority task T if the prioaty
of Ty is no greater than the greatest priority of all the semaphores currently locked
by all lower-priority tasks,

Proof. This follows immediately from the definition of the priority ceiling protocol.
Q.ED.

Lemmals Suppose that task Ts is currently executing critical section 5z, and that
I 15 preempied by a higher-priority task T; that then executes critical section §;. It
15 impossible for T; to inherit a priority greater than or equal to that of T;, until T;
finishes execution.

Proof. T, can only execute 5, if

P(Ty) = ceil(S2) (3.40)

72 REAL-TIME SYSTEMS TASK ASSIGNMENT AND SCHEDULING T3
T, can only inherit the priority of some task T if T is being blocked on 5. But Theorem 3.9. Task T; can be blocked by at most one lower-priority
then, duration of &t most b;.) Wer-peiority task., and for 2
. ceil(5:) = PI(T) (3:41) o .
)) Progf. We prove this result by contradiction. Suppose task T; can be bloc
3. : S f ked by
It follows from Equations (3.40) and (3.41) that more than b;. This can only happen if it is blocked by n > 1 distinct P :3';
P{T;) > P(T) (3.42) know from Lemma 3.7 that T; can be blocked at most once by any one [;}“'E-:-_]H-]D]-i_“-
QED. task).)

Suppose that T; is blocked by T; and T:. Assume, without -
by T in $x. (If either or both of these tasks is in a nested set of semaphores, focus
Proof. Again, we prove the result by contradiction. Let the lemma be false. Then on the outermost one). Then, Ty and 7> must have been in 5, and 5-]—.gspa‘;n'.,..gl !
there must exist tasks Ty, To. Ts such that Ty > T3 > Ts and where T3 blocks T, when T; arrived. Furthermore, T> must have been in 5 when T; arrived o
which blocks T,. But this would mean that T would inherit the priority of T;. This Since Ty enters §; with Tz in 5>, we must have ‘ '
comtradicts Lemma 3.5. Q.E.D. .

Lemma 3.6. The priority ceiling protocol prevents tramsitive blocking.

We now have the means to prove property P1. Since T; is blocked by T; on 5, we must have

P(T;) < ceil(5,) (3.44)

Theorem 3.8. The priority ceiling protocol prevents deadlocks.
Similarly, since T; is blocked by 15 on 8,1,

Proof. Deadlock can only occar if we have a cycle of n 1asks each blocking on

| the one in front of it; see the example in Figure 3.17. (We are assuming that a task P(T:) < ceil(5:) (3.45)
never deadlocks with itself)) Since we hawve shown in Lemma 3.6 that transitive But, this implies that
blocking is impossible, the largest cycle we can have consists of just two tasks (1., ;
n=2) Ammﬂni?;_lspmemp:ed by T when T; isinas..etﬂfn:ritical gcttmn? P(Ti) > P(T) (3.46)
;. Suppose that then T, enters some critical section 5,. This can only happen 1 which is a s ction.

no member 5) € o is ever required by Tp itself (otherwise 5: would have priority
equal to that of T, and T; would not be allowed 1o enter any critical section as long
as T, was holding 5»). Thus there is no possibility of a deadlock. {QL.E.In 122 Preemptive Earliest Deadline First

_ o (EDF) Algori
In the following, let Ty > T2, and By 2 be the set of critical sections of T2 o im
I hat can block T, Let by 2 be the critical section in B2 that takes the longest A processor following the EDF algorithm always executes the task whose ab-
;;Iute dtac!hn—e_ is the earliest. EDF is a dynamic-prioviry scheduling algorithm;
task priorities are not fixed but change depending on the closeness of their

Lemma 3.7. T, can be blocked by T> by at most b . - absolute deadline. EDF is also called the deadline-monotonic scheduling algo-
 rithm &

time to execule.

Proaf. Since Ty » T2, Ty can only be blocked by T3 if T: is executing a critical
section in B 2. deadlock is not possible (by Theorem 3.8). T> (which will inherit the
priority of T;) will exit that critical gsection within at most by » unless it is preemped
by some task T > Ty. If such a preemption happens, T; will no longer be blocked
by T». If no such preemption OCCurs, T» will exit T> within &t most By > and ool
resume execution until Ty has completed XSO, Q.E.D.

Example 3.20. Consider the following set of (aperiodic) task arrivals to a system.

Arrival Execution Absolute

e
g

time deadline
We are now ready to prove that property P2 holds. To facilitate this, define f; as T 0 0 -
| the set of all critical sections used by tasks T; such that T; > Tj. Define b; as the _ T 4 3 0
| greatest execution time of any critical section im ;. =) T3 5 10 25
FIGURE 3.17
' | Six-task deadlocked system: the ammows = When T, arrives, it is the only task waiting 10 run, and so starts executing im-

T T Ts T, Ts — Ts indicate a “waiting-for™ relationship. : mediately. T: amives at time 4; since da < dj, it has higher priority than T; and

Td REAL-TIME SYSTEMS

preempts it. T; arrives at time 5; however, since o3 > db, it has lower prionty than
T> and must wait for T3 to fAnish. When T finishes (at time 7), T; starts (sinoe it
has higher priority than T;). T; runs until ¥5. at which point T; can resume and run
to completion. . i

In our treatment of the EDF algonthm, we will make all the assumptions we made
for the BM algorithm, except that the tasks do not have to be periodic.

EDF is an optimal uniprocessor scheduling algorithm. That is, if EDF can-
not feasibly schedule a task set on a uniprocessor, there is no other scheduling
algonthm that can.

If all the tasks are periodic and have relative deadlines equal to their periods,
the test for task-set schedulability is particularly simple:

If the total utilization of the task set is no greater than 1, the task set can be
feasibly scheduled on a single processor by the EDF algorithm.

There is no simple schedulability test corresponding to the case where the rela-
tive deadlines do not all equal the periods; in such a case, we actually have to
develop a schedule using the EDF algorithm to see if all deadlines are met over
a given interval of time. The following is a schedulabality test for EDF under this
case.

Define u = Ef"zl[e,-_.fﬂj, Aoay = MEX| <i<pld;} and P = lem(Py, ... Fy).
{Here “lem™ stands fior least common multiple.) Define hr(t) to be the sum of
the execution times of all tasks in set T whose absolute deadlines are less than r.
A task set of o tasks is not EDF-feasible iff

o > 1or

o there exists

t {min'P + IL max | P; — di}

— i l=i=n

such that fir(r) > r.
MATHEMATICAL UNDERPINNINGS.* As we said earlier, EDF is an optimal
uniprocessor scheduling algorithm (i.e., if a set of tasks cannot be feasibly sched-

uled under EDF, there is no other uniprocessor algorithm that can feasibly schedule
them).

Theorem 3.10. EDF is optimal for uniprocessors.

Proof. The proof is by contradiction. Assume that the theorem is not true and that
there is some other algosithm I that is opiimal. Then, there maust exist some set of
tasks 5 such that 5 is IT-schedulzble but not EDF-schedulable. Let us focus on this
set .

Suppose that t; is the earliest absolute deadline that is missed by the EDF
algorithm. Define r; as the last instant, prior o f2, af which EDF had the processor

TASK ASSIGNMENT AND SCHEDULING 19

working on @ task whose absolute deadline excseded ry. If no such instant exists,
get 1, = . Since only tasks with absolute deadlines < 1y are scheduled by EDF in
the interval [f;. 2], any task executing in that interval must have been released at or
after . The reason is that at 1. the processor was executing a task with an absolute
deadline > #:, which would only have been possible under EDF if thers was no
pending task at 1, with an absolute deadline < 1,.

Define

A = {F|T; is releasad in [1y, 1] and D; < 5}
B = |T|T; is released in [#;, #:] and Dy = i)

By the definition of &, B is nonemply. Also by the definition of the r, all the
deadlines of the tasks in 4 are met by both EDF and . We have two cases.

Case 1. Under EDF, the processor is continuously busy over [1, 1z].
Let E¥¥F(A). E¥¥(B), E*(A). E*(B) be the execution time over
(ty. 2] allocated by EDF and E 1o the tasks in A and B, respectively. Then,

E (A 4+ E"F(B)=1 —1, (3.47)
Since all the deadlines of the tasks in A are met by both EDF and T,
EEE[4y = ET(A) (3.48)

However, since at least one task in B misses its deadline under EDF. we must

have
E(B) < E¥(B) (3.49)
Hence, in the interval (1. f2], under E, the processor is used for
EZ(A) + EX(B) > E™F(A)+ E™F(B) [from (3.48) and (3.49)]
=1-0 [from (3.47)] (3500

Bt that is plainly impossible, and we have a contradiction.
Case 2. Under EDF, the processor is idle over some part of (r;, 2]
Let #; be the last instant in (fy,] at which the processor is idle under
the EDF discipline. Since EDF canses a deadline 1o be missed at >, 3 < f2.
The processor can only be idle at ¢ if there are no pending requests for
execution, that is, if every task released prior to f; has been executed. The
argument we made in Case 1 over the imterval (ry, &) now applies over the
interval (i, r2]. and so bere too we have a contradiction. This completes the
proof. QLE.D.

Let us now tum to periodic task sets. We will first consider the case where
for every task the relative deadline equals the task period, and show that the nec-
essary and sufficient condition for a task set to be schedulable is 37, e;/P: < L.
To begin with, as with the RM algorithm, it is sufficient to consider the case
Where all the task phasings are zero. We then proceed in two steps. First, we
show that if a deadline is indeed missed under EDF, the processor will be

continpously busy from time O to when it missed the deadline. This tells us

T6 REAL-TIME SYSTEMS

deed
ZEro.

the amount of work that the processor has completed up to that time. We can
then vse this information to show that if ¥7_, e;/P; < 1. all deadlines will in-

be satisfied. In what follows, we will assume that all task phasings are

Lemma 3.8, If a deadline is missed for the first time at ry, the processor is contin-
wously busy throughout the interval [0, #¢].

Proof, We proceed by contradiction. Suppose this lemma is not true and that the
processor was idle at some time within the interval [0, 7] when all the task phas-
ings are 0 (e, the first iteration of each task is released at time 0). Let 1 be
the last such time; that is, the processor was idle at ry, but busy in the interval
[ty i;r]

If the processor was idle at f;, it must be that all the tasks released prior to
f; have been completed by ry. Therefore, all vasks executing in the interval (i,]
must have been releasad in that interval and no task released prior to 1 will affect
the scheduling in (1. #y] {since all such tasks have completed and left the system).
Now, construct a new task phasing so that every task has one iteration released at
f;. (See Figure 3.18). Under this case, also, a deadline will be missed; in particalar,

| _ .

| t b+ ¢ B TS SR S SR
A t } ! : t } I

t ! } ! } i

t d t $ t |

{2l _

: o+ 4 R S S S
' t 4 1 t : TS

t ! t ' t i

t ! t t }
_ﬁ ‘:-'
E (b}
FIGURE .18

Lesnmsa 3.8 (a) schedule with zero phasing: (b) schedule with mew phasing. The processor is idle
over the shaded portions.

TASK ASSIGNMENT AND SCHEDULING 77

it will be missed a1 time " < ry. Also, the SS0T Cann i ; time i
(1. 1] under this new task phasing. ﬂﬁ-'hg,-?jpm o b e sy e o
E'-m'i compare the situation under the new task phasing over the interval
{11, 1y] with the simation under the zero task phasing ower the interval (0, 1;]. The
load presented to the processor at time is the same under the new task ph:aging
as it was at time 0 under the zero task phasing. But, we have argued that under
the new phasing. the processor will be busy throughout (f;, 1], and miss a deadline
at r". Therefore, under the zero task phasing the processor cannot have besn idle
before the deadline was missed. We therefore have a contradiction and the lemma
is proved.).E.D.

Mow, we are ready to prove Theorem 3.11, which contains the necessary
sufficient condition: sary and

Theorem 3.11. Suppose we have a set of n periodic tasks, each of whose relati
- - - Eah‘.
deadline equals its period. They can be feasibly scheduled by EDF iff ‘

Z-:[f'r‘.-"ﬂ} <1
=1

Proof. Proving that scheduling is impossible if } 7_ (e;/P} > 1 is the easy pari—
we simply show that the processor wilization would have to exceed 1. which is
impossible. Suppose that Yo le/P) > 1. Let P be the least common multi-
ple (lcm) of {Py, ..., Py} and §; = P/P.. Then, over the interval [kP, (k + 137],
k=10,1,..., the processor will receive requests for a todal of

g-::e;}'[3 ;7] > P

(3.51)

units of work. Requests for processor time thus arrive at a higher rate than they can
be met and the unfinished work will pile up without limit as time goes on. Hence.
the task set cannot be feasibly scheduled if Y7 (e;/P) > 1.

Next we must prove that if 3 " (e;/P;) < 1. EDF will indeed schedule
successfully. This is a linle harder and we proceed by contradiction. Suppose that
this thearem is not true and that there exists some task set § of n tasks that are not
EDF-schedulable, despite J7_,(e;/P:) < 1. Let t; be the earliest time at which 2
deadline is missed. Since the set of tasks is finite, such an earliest time does exist
::T{r > . Let §; denote the set of tasks in § with an absolute deadline equal
_ From Lemma 3.8, we know that the processor must be busy throughout the
imterval [0, re]. There are now two cases to consider:) B

Case 1. None of the tasks executed in [0, #;] have absolute deadlines beyond
Iy. The number of iterations of task T; that have to be completed in [0, #r]
is |rs/F; |, since all other iterations have absolute deadlines expiring after 7.
But the processor is busy throughout the interval [0, r;]. Hence, it must be
that the tasks whose absolute deadlines were less than 1y imposed a demand
of an execution time of more than fy on the processor. In other words, we

T8 REAL-TIME SYSTEMS

must hawve:

- E o (3.52)

which contradicts the assumption that ¥ ©_, (e;/P;) < 1

Case 2. Some tasks executed in the interval [0, 1e] heave absolute deadlines
beyond ty. We handle this much as we handled Lemma 3.8. Let T be the last
time before 1y that a task with absolute deadline greater than 1y was executed.
Since we are using the EDF algorithm, if such a task was being executed
a1 1. there must be, at time T, no tasks awaiting service that have absolute
deadlines expiring at or before ry. Thus, all the tasks that are executed in
the interval [T, f;] must be released in that interval. But since a deadline was
missed. we must have that the total demand upon the processor during that
interval was greater than the length of that interval. In other words, we mist

have:
(ty — 1) g = 1) - (ty — 1) P
. T e = Iy —
Py o Py - Pa !
e, [0, |2 -1
P . P : Pa ' !

[e -
ézlﬁ}l (3.53)

which is a contradiction.

This completes the proof. 2ED-

Theorem 3.11 allows us to quickly check the feasibility of any allocation
when the relative task deadlines equal their periods. Unforwunately, there is no
efficient way to check feasibility if the relative deadlines do not all equal their
periods or if there are sporadic tasks. In order to verify schedulability, we have
to actually schedule the task set using EDF and then check if all the deadlines
have been satisfied. Since we can't check schedulability for an infinite mumber
of cases, we must obtain a finiteness result, which says that if deadlines are eveT
missed the time of the earliest missed deadline will have a known upper bound.
Then we only need to check feasibility up 1o that point.

Just as with the RM algorithm, it is easy to show that the worst-case exeé-
cution time of a task occurs when all the task phasings are zero. So, if we verify
schedulability for this case, it will hold for all task phasings.

TASK ASSIGNMENT AND SCHEDULING 79

For the finiteness result, we define u = ¥ ,_, (€;/P;), dmay = Max) < <qfd;]

and P = lmlujP,. voo Py). Define iy (1) to be the sum of the execution times of
all the tasks in set T whose absolute deadlines are less than or equal to .

Theorem 312, A task set of n tasks is not EDF-feasible iff

e u>1or
o there exists

rcm.ian o7 max [F; — d;}

— N l<i<n

such that hp(r) > r.

Under this _ﬂmrem. we only need to check for feasibility up o some finite time.
We can build the proof of Theorem 3.12 using the following series of lemmas.

Lemma 3.9. A given set T of periodic tasks is not EDF-sc ;
some £ hedulak! -
time ¢ such that hy(t) > r. le iff there exists

Proof. This has been left to the reader.

Lemma 3.10. Given a set T of n periodic tasks, if u < 1,

hrlt + P>t + P=helt)>1¢ for all ¢ > dpay

Proaf
B p . | —d:
M +P =3 al|——|+1)+P
=l — PI
= f“'ﬁl‘.‘ - [
- h — .
= (|5) e n s
[} - i=l
_ —~ (|li-d+P
2 &] 2 +1 since P is a multiple of P,
= hylt + P)
Hence,
hrir+ Pl =1+ P = heit) =1t 13.54)

Q.E.D.

Lemma 3.11. If task set T is i
. A1 not EDF-feasible and o < 1 i
P+ d . such that hy(r) > 1. e Saleralarsid

Progf. Follows immediately from Lemma 3.10.

Q.ED.

