EDA122/DIT061 Fault-Tolerant Computer Systems

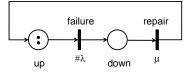
Welcome to Lecture 7

Generalized Stochastic Petri-Nets (GSPNs)

Design Diversity in the Airbus A330/A340 Fly-by-wire system

Outline

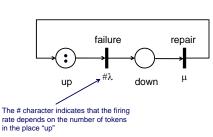
- · Generalized Stochastic Petri Nets (GSPNs)
 - Availability GSPN model of hot standby systems
 - Reachability graph
 - Elements of GSPN:s
 - Examples: construction of GSPN models for various systems
- Design diversity in Airbus A330/A340 fly-by-wire system


ture 7 EDA122/DITDS1 Fault-Tolerant Computer Syste

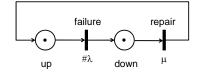
Generalized Stochastic Petri Nets (GSPN)

- A GSPN provides a graphical syntax for specifying state space models (Markov models)
- It provides a more compact way of describing a state space model than a state diagram
- · A Petri net consists of
 - Places (circles)
 - Transitions (vertical bars)
 - Arcs (arrows)
 - Tokens (dots)

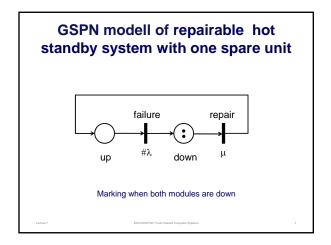
EDA122/DIT061 Fault-Tolerant Computer Systems

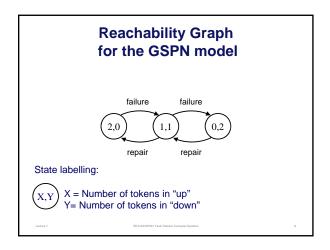

GSPN modell of repairable hot standby system with one spare units

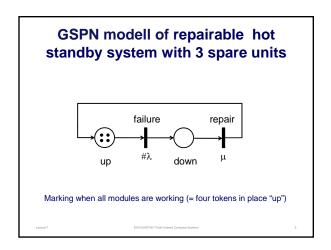
Marking shows the case when both modules are working: there are two tokens in the place "up"

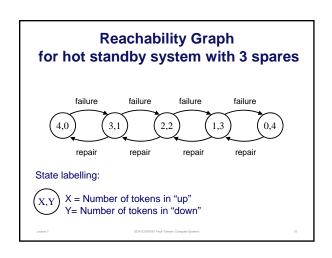

ture 7 EDA122/DIT061 Fault-Tolerant Computer Systems

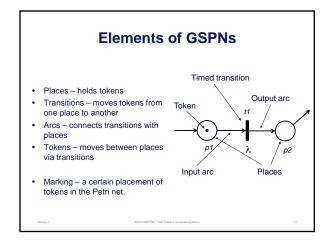
GSPN modell of repairable hot standby system with one spare unit

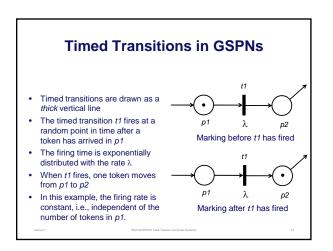

EDALTSDOWN Ford Toleran Communic Parkers

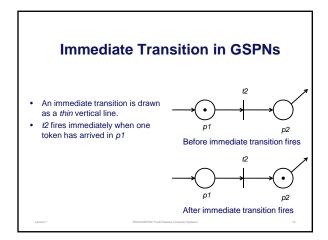

GSPN modell of repairable hot standby system with one spare unit

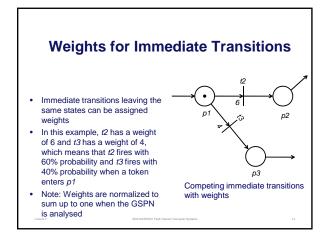


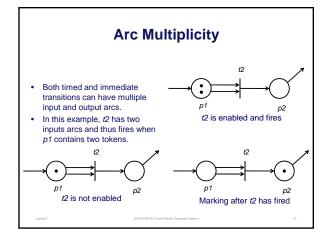

Marking when one module is up and one is down

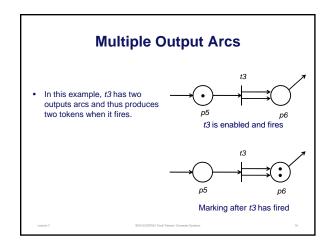

Lecture 7 EDA122/CITOS1 Fault-Tolerant Computer Systems

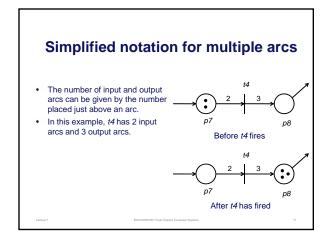


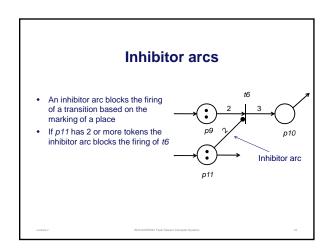


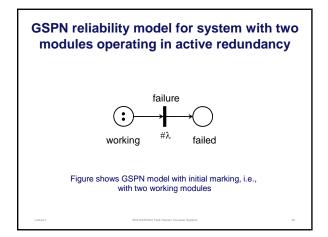


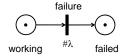






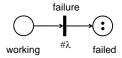





Problems

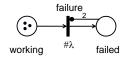
- Construct a GSPN model for calculating the reliability of a system consisting of two modules operating in active redundancy.
- Construct a GSPN model for calculating the reliability of a TMR system
- 3. Construct a GSPN model for calculating the reliability of a *k-of-n* system

Lecture 7 EDA122/DIT061 Fault-Tolerant Computer Systems


GSPN reliability model for system with two modules operating in active redundancy

Marking corresponding to one working and one failed module

Lecture 7 EDA122/DIT061 Fault-Tolerant Computer Systems

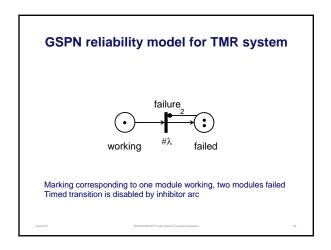

GSPN reliability model for system with two modules operating in active redundancy

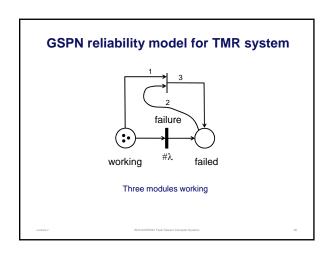
Marking corresponding to system failure

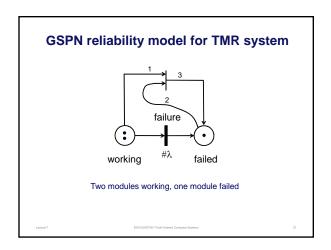
EDA122/DIT061 Fault-Tolerant Computer Systems

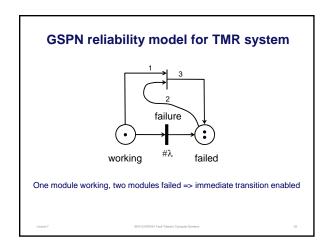

GSPN reliability model for TMR system

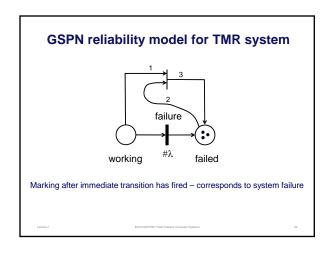
Marking corresponding to three modules working

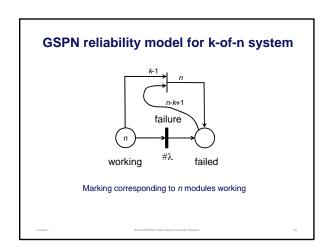

Lecture 7 EDA122/DIT061 Fau8-Tolerant Computer Systems


GSPN reliability model for TMR system



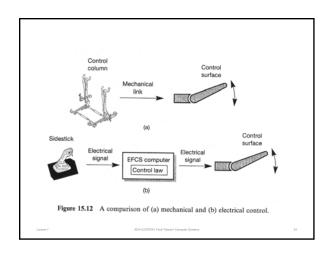

Marking corresponding to two modules working, one module failed


ture 7 EDA122/DIT061 Fault-Tolerant Computer Systems



Fault tolerance in the Airbus A330/A340 fly-by-wire system

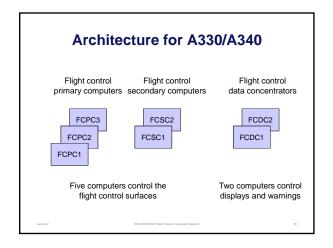
- Motivation
- System overview
- · Design diversity


ture 7 EDA122/DITG

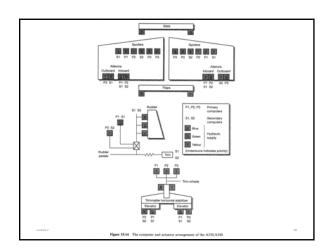
Motivation for fly-by-wire system

- Improving safety through automated control
 - Reducing the pilot's workload
 - 60% of air traffic accidents are due human errors of some kind (not only pilots errors).
 - Reduced workload for the pilot increases safety
 - Prevent the pilot from inadvertently exceeding the aircraft's controllability

ecture 7 EDA122/DIT061 Fault-Tolerant Computer Systems

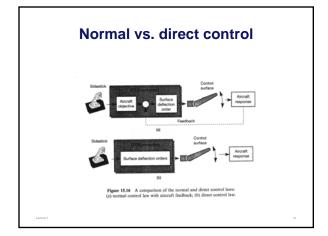


Design Diversity in Airbus A330/A340

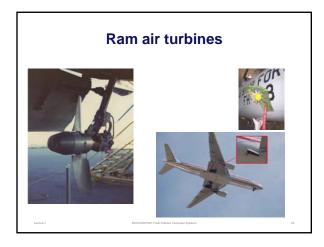

- Two types of computers
 - 3 primary computers
 - 2 secondary computers
- Each computer are internally duplicated and consists of two channels
 - Command channel
 - Monitor channel

entre 7 FDA122DFDR Fluid-Toleren Commuter Statema

Design Diversity in Airbus A330/A340


- · Implementation of primary computers
 - Supplier: Aérospatiale (HW&SW)
 - Hardware: Two Intel 80386 (one for each channel)
 - Software: assembler for command channel, PL/M for
- · Implementation of secondary computers
 - Supplier: Sextant Avionique (HW), Aérospatiale(SW)
 - Hardware: Two Intel 80186 (one for each channel)
 - Software: assembler for command channel, Pascal for monitor channel.

Principle of Graceful Degradation Figure 15.15 The flight control laws.


Features of control laws · No flight envelope protection

- Normal flight control law
 - Stabilization against gusts of wind
 - Flight envelope protection
 - Prevents stall and overspeed
- Alternate flight control law
 - · Pitch trimming and stabilization
 - · Warns pilot about stall and overspeed conditions
- Direct flight control law
 - The position of the side stick determines the position of the control surfaces.
 - Open-loop control

Summary of fault tolerance features in A330/A340

- Mechanical back-up: Mechanical linkages to the rudder and trimmable horizontal stabilizer give control in the event of total electronic system failure
- Computers: Five computers of two types with diverse hardware and software
- Sensors: Dual or triple redundant sensors
- Actuators: Single, double or triple actuators
- Hydraulic supplies: Three independent circuits and five pumps; hydraulic power can be produced by engines and ram air turbine
- Electrical supplies The A340 uses six generators and two batteries; four generators are driven by the engines, one by a auxiliary power unit (APU) and one by the hydraulic system.

Overview of Lecture 8

- Management
- · Life-cycles models
- Standards
- Safety case
- · Verification and Validation
- · Fault-tree analysis
- Failure mode effects analysis

Preparations:

- Lecture notes
- Chapter 3 5 in the course book, see reading instructions on home page.

EDA122/DIT061 Fault-Tolerant Computer Systems

Overview of Lecture 9

Fault tolerance in space computers
 Guest lecture by Torbjörn Hult, RUAG Space Sweden (formerly Saab Space)

Preparations:

- Ariane 501 failure report
- The US space shuttle's computer system, page 152 -154 in the course book
- Lecture slides

Lecture 7

EDA122/DIT061 Fault-Tolerant Computer Systems