
EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems

Welcome to Lecture 4

Development faults

Outline

• Case study: Ariane 501 Disaster

• Software redundancy

• Design diversityDesign diversity
 N-version programming

 Recovery blocks

EDA122/DIT061 Fault-Tolerant Computer Systems 2Lecture 4

Ariane 5 Disaster

”On 4 June 1996, the maiden flight of the Ariane 5 launcher

ended in failure. Only about 40 seconds after the initiation of

the flight sequence, at an altitude of about 3700 m, the

EDA122/DIT061 Fault-Tolerant Computer Systems 3

launcher veered off its flight path, broke up and exploded.”

(From J.L. Lions, et al, ARIANE 5 Flight 501 failure,
http://www.esrin.esa.it/tidc/Press/Press96/ariane5rep.html)

Lecture 4 EDA122/DIT061 Fault-Tolerant Computer Systems 4Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems 5Lecture 4 EDA122/DIT061 Fault-Tolerant Computer Systems 6Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 2

Ariane 5 Disaster

• Development cost ~8 billion euros

• Loss of ~500 million euros

• One year delay of the Ariane program

EDA122/DIT061 Fault-Tolerant Computer Systems 7

One year delay of the Ariane program

Lecture 4

Ariane 5 Flight Control System

• An Inertial Reference System (SRI) measures the attitude of the
launcher and its movements in space. The SRI calculates angles and
velocities which are sent to the On-Board Computer (OBC).

EDA122/DIT061 Fault-Tolerant Computer Systems 8

• The OBC executes the flight control program and controls the nozzles
of the solid boosters and the Vulcain Cryogenic engine.

• There are two SRIs with identical hardware and software operating,
one active and one in hot stand-by.

Lecture 4

Engine Nozzles

EDA122/DIT061 Fault-Tolerant Computer Systems 9Lecture 4

Ariane 5 Disaster

From the press release issued by ESA on July 23, 1996:
(http://www.esrin.esa.it/tidc/Press/Press96/press33.html)

The Inquiry Board report begins by presenting the causes of the failure,
analysis of the flight data having indicated:

EDA122/DIT061 Fault-Tolerant Computer Systems 10

y g g

 nominal behaviour of the launcher up to H0 + 36 seconds;

 failure of the back-up Inertial Reference System followed
immediately by failure of the active Inertial Reference System;

 swivelling into the extreme position of the nozzles of the two solid
boosters and, slightly later, of the Vulcain engine, causing the
launcher to veer abruptly;

 self-destruction of the launcher correctly triggered by the rupture of
the electrical links between the solid boosters and the core stage.

Lecture 4

Ariane 5 Disaster
Chain of events, tracing backwards in time

(From J.L. Lions, et al, ARIANE 5 Flight 501 failure,
http://www.esrin.esa.it/tidc/Press/Press96/ariane5rep.html)

• The launcher started to disintegrate at about H0 + 39 seconds because
f hi h d i l d d t l f tt k f th 20

EDA122/DIT061 Fault-Tolerant Computer Systems 11

of high aerodynamic loads due to an angle of attack of more than 20
degrees that led to separation of the boosters from the main stage, in
turn triggering the self-destruct system of the launcher.

• This angle of attack was caused by full nozzle deflections of the solid
boosters and the Vulcain main engine.

Lecture 4

Ariane 5 Disaster
Chain of events, tracing backwards in time

• These nozzle deflections were commanded by the On-Board
Computer (OBC) software on the basis of data transmitted by the
Inertial Reference System 2 (SRI 2). Part of these data at that time did
not contain proper flight data, but showed a diagnostic bit pattern of the

t f th SRI 2 hi h i t t d fli ht d t

EDA122/DIT061 Fault-Tolerant Computer Systems 12

computer of the SRI 2, which was interpreted as flight data.

• The reason why the active SRI 2 did not send correct attitude data was
that the unit had declared a failure due to a software exception.

• The OBC could not switch to the back-up SRI 1 because that unit had
already ceased to function during the previous data cycle (72
milliseconds period) for the same reason as SRI 2

Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 3

Ariane 5 Disaster
Chain of events, tracing backwards in time

• The internal SRI software exception was caused during execution of a
data conversion from 64-bit floating point to 16-bit signed integer value.
The floating point number which was converted had a value greater
than what could be represented by a 16-bit signed integer. This
resulted in an Operand Error. The data conversion instructions (in Ada

EDA122/DIT061 Fault-Tolerant Computer Systems 13

p (
code) were not protected from causing an Operand Error, although
other conversions of comparable variables in the same place in the
code were protected.

• The error occurred in a part of the software that only performs
alignment of the strap-down inertial platform. This software module
computes meaningful results only before lift-off. As soon as the
launcher lifts off, this function serves no purpose.

Lecture 4

Ariane 5 Disaster
Chain of events, tracing backwards in time

• The alignment function is operative for 50 seconds after starting of the
Flight Mode of the SRIs which occurs at H0 - 3 seconds for Ariane 5.
Consequently, when lift-off occurs, the function continues for approx.
40 seconds of flight. This time sequence is based on a requirement of
Ariane 4 and is not required for Ariane 5.

EDA122/DIT061 Fault-Tolerant Computer Systems 14

q

• The Operand Error occurred due to an unexpected high value of an
internal alignment function result called BH, Horizontal Bias, related to
the horizontal velocity sensed by the platform. This value is calculated
as an indicator for alignment precision over time.

• The value of BH was much higher than expected because the early
part of the trajectory of Ariane 5 differs from that of Ariane 4 and results
in considerably higher horizontal velocity values.

Lecture 4

Lessons Learned from the
Ariane 5 Disaster

• Both random faults and systematic (development/design) faults must
be considered.

• Do not expect software, which has proven to be reliable in one
environment, to be reliable in another environment.

EDA122/DIT061 Fault-Tolerant Computer Systems 15

• Ensure that system tests that are realistic.

• Use an “intelligent” error handling strategy

 Shut down non-critical tasks (processes) that fail.

 Try to recover from errors that occur in critical tasks before shutting down
the unit.

 Enforce omission failures instead of crash failures, whenever possible.

Lecture 4

Example of an “intelligent” error
handling strategy

• Provide a mechanism to separate critical services and non-critical
services

• Employ a “never give up” strategy for critical services

 Provide error recovery for critical servicesProvide error recovery for critical services

 Make the system resilient to omission failures (temporary service failures)

 Provide support for graceful degradation, if possible.

 Enforce crash failures only as a last resort

• Shut down non-critical services that fail.

EDA122/DIT061 Fault-Tolerant Computer Systems 16Lecture 4

DesignDesign

D d bilitD d bilit

Competence Areas

EDA122/DIT061 Fault-Tolerant Computer Systems 17

TechnicalTechnical
ManagementManagement

Verification &Verification &
ValidationValidation

DependabilityDependability
EngineeringEngineering

Lecture 4

Discussion

Like many disasters, the Ariane 501 failure was caused by a
lack of knowledge and insight

In which of the competence areas

EDA122/DIT061 Fault-Tolerant Computer Systems 18

In which of the competence areas

• Design

• Verification and Validation

• Technical Management

did the Ariane 5 project lack knowledge and insight?

Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 4

Recommendations made by the
Inquiry Board (1-4)

• R1 Switch off the alignment function of the inertial reference system immediately after
lift-off. More generally, no software function should run during flight unless it is needed.

• R2 Prepare a test facility including as much real equipment as technically feasible, inject
realistic input data, and perform complete, closed-loop, system testing. Complete
simulations must take place before any mission. A high test coverage has to be
obtained.

• R3 Do not allow any sensor, such as the inertial reference system, to stop sending best
effort data.

• R4 Organize, for each item of equipment incorporating software, a specific software
qualification review. The Industrial Architect shall take part in these reviews and report
on complete system testing performed with the equipment. All restrictions on use of the
equipment shall be made explicit for the Review Board. Make all critical software a
Configuration Controlled Item (CCI).

EDA122/DIT061 Fault-Tolerant Computer Systems 19Lecture 4

Recommendations made by the
Inquiry Board (5-7)

• R5 Review all flight software (including embedded software), and in particular :

 Identify all implicit assumptions made by the code and its justification documents on
the values of quantities provided by the equipment. Check these assumptions
against the restrictions on use of the equipment.

 Verify the range of values taken by any internal or communication variables in theVerify the range of values taken by any internal or communication variables in the
software.

 Solutions to potential problems in the on-board computer software, paying particular
attention to on-board computer switch over, shall be proposed by the project team
and reviewed by a group of external experts, who shall report to the on-board
computer Qualification Board.

• R6 Wherever technically feasible, consider confining exceptions to tasks and
devise backup capabilities.

• R7 Provide more data to the telemetry upon failure of any component, so that
recovering equipment will be less essential.

EDA122/DIT061 Fault-Tolerant Computer Systems 20Lecture 4

Recommendations made by the
Inquiry Board (8-12)

• R8 Reconsider the definition of critical components, taking failures of software
origin into account (particularly single point failures).

• R9 Include external (to the project) participants when reviewing specifications,
code and justification documents. Make sure that these reviews consider the
substance of arguments rather than check that verifications have been madesubstance of arguments, rather than check that verifications have been made.

• R10 Include trajectory data in specifications and test requirements.

• R11 Review the test coverage of existing equipment and extend it where it is
deemed necessary.

• R12 Give the justification documents the same attention as code. Improve the
technique for keeping code and its justifications consistent.

EDA122/DIT061 Fault-Tolerant Computer Systems 21Lecture 4

Recommendations made by the
Inquiry Board (13-14)

• R13 Set up a team that will prepare the procedure for qualifying software,
propose stringent rules for confirming such qualification, and ascertain that
specification, verification and testing of software are of a consistently high
quality in the Ariane 5 programme. Including external RAMS experts is to be
considered.co s de ed

• R14 A more transparent organisation of the cooperation among the partners in
the Ariane 5 programme must be considered. Close engineering cooperation,
with clear cut authority and responsibility, is needed to achieve system
coherence, with simple and clear interfaces between partners.

EDA122/DIT061 Fault-Tolerant Computer Systems 22Lecture 4

Fault-Tolerance – How?

• By introducing redundancy (extra resources)

• Forms of redundancyForms of redundancy
 hardware redundancy

 software redundancy

 time redundancy

 information redundancy

EDA122/DIT061 Fault-Tolerant Computer Systems 23Lecture 4

Software redundancy

• Software redundancy techniques can be divided in two
major classes:

 With diversity
Ai i t t l t ft d l t f lt– Aim is to tolerate software development faults

– Design diversity

– Data diversity

 Without diversity
– Aim is to handle errors of any origin (physical faults, development

faults, operator faults)

EDA122/DIT061 Fault-Tolerant Computer Systems 24Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 5

What is Software Fault Tolerance?

The term ”software fault tolerance” can mean two things:

1. ”the tolerance of software development faults”, or

2. ”the tolerance of faults by the use of software”

EDA122/DIT061 Fault-Tolerant Computer Systems 25

Definition 1 is more commonly used.

Definition 2 is used by N. Storey (author of the course book).

The term ”software redundancy” corresponds to definition 2.

Lecture 4

Design Diversity

Design diversity is used to tolerate development faults in
hardware and software

EDA122/DIT061 Fault-Tolerant Computer Systems 26

Two techniques for tolerating software design faults:
 N-version programming

 Recovery blocks

Lecture 4

N-version programming

• Uses majority voting on results produced by N program
versions

• Program versions are developed by different teams of

EDA122/DIT061 Fault-Tolerant Computer Systems 27

Program versions are developed by different teams of
programmers

• Assumes that programs fail independently

• Resembles hardware voting redundancy

Lecture 4

N-version programming

Program
version 1

Program
version 2

Program
Inputs

Voting
element

Program
Output

Program
Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems 28

Program
version 3

Program
version 4

Program
Inputs

Lecture 4

Ensuring independence in N-version
programming

• Use different design teams for each version

• Use diverse specifications

EDA122/DIT061 Fault-Tolerant Computer Systems 29

• Prevent cooperation among design teams

• Use diverse programming languages, compilers,
development tools, etc.

• …

Lecture 4

Recovery Blocks

• Uses one primary software module and one or
several secondary (back-up) software modules

• Assumes that program failures can be detected by

EDA122/DIT061 Fault-Tolerant Computer Systems 30

p g y
acceptance tests

• Executes only the primary module under error-free
conditions

• Resembles dynamic hardware redundancy

Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 6

Acceptance
tests

Recovery blocks

Primary
Module

Secondary
Module 1

Program
Inputs

N-to-1
Switch

Program
OutputProgram

Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems 31

tests

Secondary
Module 2

S c

Secondary
Module N

Error detection
Program
Inputs

Program
Inputs

Lecture 4

Construction of acceptance tests

• An acceptance test is a software implemented check
designed to detect errors in the results produced by a
primary or a secondary module

EDA122/DIT061 Fault-Tolerant Computer Systems 32

• Acceptance tests often relies on application specific
information

• An acceptance test is similar to a software assertion (a.k.a.
executable assertion).

Lecture 4

Software assertions

 Executes consistency checks on application data or
operating system data

 Implemented in software

 Automatic generation
– E.g., run-time type checking generated by compiler

 Manual generation
– E.g., application programmer inserts checks on a valid

temperature range, acceleration, etc.

EDA122/DIT061 Fault-Tolerant Computer Systems 33Lecture 4

Examples of how acceptance tests/
software assertions can be constructed

• Satisfaction of requirements
 Inversion of mathematical functions; e.g. squaring the result of a

square-root operation to see if it equals the original operand

 Checking sort functions; result should have elements in descendingChecking sort functions; result should have elements in descending
order

 …

• Reasonable checks
 Checking physical constraints; e.g. speed, pressure, etc

 Checking sequence of application states

 …

EDA122/DIT061 Fault-Tolerant Computer Systems 34Lecture 4

Comparison of N-version
programming and Recovery blocks

N-version programming

 Applied at the program level

 Runs N programs at the same time

 Resembles voting redundancy in hardware (static redundancy)

EDA122/DIT061 Fault-Tolerant Computer Systems 35

 Assumes that independence among program versions is achieved by random
differences in programming style among programmers

Recovery blocks

 Applied at the module (subprogram) level

 Runs only the primary module under error-free conditions

 Resembles standby redundancy in hardware (dynamic redundancy)

 Independence is achieved by deliberately designing the primary and secondary
modules to be as different as possible

Lecture 4

Summary

• Ariane 5 case study:
 Don’t forget to consider development faults!

 Do not expect software which has proven reliable in one environment to be
reliable in another environment.

• N-version programming
 Relies on voting to mask software failures

 Uses “accidental” redundancy

• Recovery blocks
 Relies on acceptance tests and reconfiguration

 Uses “deliberate” redundancy

EDA122/DIT061 Fault-Tolerant Computer Systems 36Lecture 4

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 7

Overview of Lecture 5

• Markov chain models
 Hot standby system

 Cold standby system

 Coverage factor Coverage factor

 Dormancy factor

• Read before the lecture:
 Storey: Section 7.2 Markov models (pages 183 - 186)

 Lecture slides

EDA122/DIT061 Fault-Tolerant Computer Systems 37Lecture 4

