
EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems

Welcome to Lecture 17

Time-triggered systems
Error detection

Course summary

Outline

• Clock synchronization in time-triggered systems

• Fault detection vs. error detection

• Error detection techniques (continued)

 Generic principles

 Hardware layer techniques

 Software layer techniques

 System layer techniques

• Wrap-up and course summary

Lecture 17 2EDA122/DIT061 Fault-Tolerant Computer Systems

Hardware Structure of the Communication
Controller in a bus-based TTA node

Host Computer

CNI
DPRAM

o
b

a
l T

im
e

T
ic

kCommunication
Controller

EDA122/DIT061 Fault-Tolerant Computer Systems 3Lecture 17

Protocol
processor

G
l

BG BG

Control
Data ROM

DPRAM = Dual port random access memory
BG = Bus guardian

CNI = Communication Network Interface

Clock Synchronization

• Assumption: Each node sends at least one message in each TDMA
communication cycle.

• The communication controller (CC) timestamps the reception of each correctly
received message.

• The CC saves the actual arrival time and the expected arrival time whichThe CC saves the actual arrival time and the expected arrival time, which
allows it to calculate the skew between its own clock and the sender’s clock.

• During a TDMA cycle, the CC can determine the skews between its own clock
and all other clocks in the cluster.

• At regular intervals, the CC calculates the average of the clock skews and
uses this to correct its own clock.

• The algorithm used for correcting the local clocks is called the Fault-Tolerant
Average (FTA) algorithm.

Lecture 17 4EDA122/DIT061 Fault-Tolerant Computer Systems

The FTA algorithm

• Of an ensemble of n clocks, the FTA algorithm can tolerate k faulty
clocks

• At a synchronization point, FTA calculates the values of the other
clocks based on the latest clock skew information

Th k l t d k hi h t l k l di d d• The k lowest and k highest clock values are discarded

• The average of the remaining clock values is used as a correction
value

Lecture 17 5EDA122/DIT061 Fault-Tolerant Computer Systems

Outline

• Clock synchronization in time-triggered systems

• Fault detection vs. error detection

• Error detection techniques (continued)

 Generic principles

 Hardware layer techniques

 Software layer techniques

 System layer techniques

• Wrap-up and course summary

Lecture 17 6EDA122/DIT061 Fault-Tolerant Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 2

Fault Detection vs. Error Detection

• Terminology
 Both the terms fault detection and error detection are used in the literature,

see discussion in the beginning of Chapter 6.4 in the course book

• We distinguish between

EDA122/DIT061 Fault-Tolerant Computer Systems 7Lecture 17

 Concurrent (on-line) error detection
• Detection of errors during operation
• Purpose is to mask or minimize adverse effects of errors

 Non-concurrent (off-line) fault detection
• Testing to find physical hardware faults while the system is off-line
• Purpose is to identify faulty hardware units

Off-line fault detection techniques

• Functionality checking (p. 127 in the course book)

 Examples:

• Test of random access memory (RAM) by writing and reading back test patterns
to all memory words

• Test of CPU by running special test programs

• Loop back testing (p. 129 in the course book)

 Example:

• “echo” testing of communication paths

EDA122/DIT061 Fault-Tolerant Computer Systems 8Lecture 17

Outline

• Clock synchronization in time-triggered systems

• Fault detection vs. error detection

• Error detection techniques (continued)

 Generic techniques

 Hardware layer techniques

 Software layer techniques

 System layer techniques

• Wrap-up and course summary

Lecture 17 9EDA122/DIT061 Fault-Tolerant Computer Systems

Layered fault tolerance

Fault tolerance can be implemented at three
abstraction layers in a distributed system:

• Hardware layer – mechanisms
implemented in hardware either within one
integrated circuit, or by replication of
integrated circuits within a node

Node A Node B Node C Node P

Communication Network

…

integrated circuits within a node.

• Software layer – mechanisms
implemented in software dealing with
errors occurring within a node

• System layer – mechanisms
implemented in software dealing with
errors occurring in other nodes or the
communication network.

EDA122/DIT061 Fault-Tolerant Computer Systems 10Lecture 17

Node Q Node R Node S

Distributed system

Layered fault tolerance

System-layer mechanisms

Interference
failure

Timing
failure

Content
failure

Fail
signal

Fail
silent

Error
removed

Catastrophic
failure

Benign
failure

Safe
Shutdown

ci
ng

3rd line of defence

EDA122/DIT061 Fault-Tolerant Computer SystemsLecture 17

Error
removed

Detected
Error

Undetected
Error

Hardware-layer mechanisms

Software-layer mechanisms
Error

removed

C
os

t b
al

an
c

11

HW Design
Fault

SW Design
Fault

Physical
Fault

ErrorErrorError

2nd line of defence

1st line of defence

Generic techniques for error detection (I)

• Duplication and comparison (pp. 128 and 138-141 in the course book)
 Examples:

• Comparison of redundant signals
• Self-checking pair

• Consistency checking (p. 128 in the course book)Consistency checking (p. 128 in the course book)

 Uses a priori knowledge about information or system behaviour
 Examples:

• Hardware exceptions in CPUs
• Range checking in software of constrained program variables

EDA122/DIT061 Fault-Tolerant Computer Systems 12Lecture 17

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

Generic techniques for error detection (II)

• Information redundancy (pp. 125 and 128 in the course book)

 Use of error detecting and error correcting codes
 Examples:

• Cyclic redundancy check (CRC)
• Hamming codes

• Time redundancy (p. 125 in the course book)

 Examples:
• Double time redundant execution with comparison
• Triple time redundant execution with majority voting

EDA122/DIT061 Fault-Tolerant Computer Systems 13Lecture 17

Hardware techniques for error detection
(examples)

• Bus monitoring (p. 130 in course book)

 Checking the range of addresses generated by a CPU

 Examples
• Checking that the CPU use an even address when reading a 32 or 64-bit word.
• Checking CPU memory accesses using a memory management unit (MMU).

EDA122/DIT061 Fault-Tolerant Computer Systems 14Lecture 17

• Watchdog timers (p. 130 in course book)

 Hardware technique supported by software

• Power supply monitoring (pp. 130-131 in the course book)

CPU Exceptions

• Modern central processing units (CPUs) (or cores) are equipped with
hardware implemented error detection mechanisms called hardware
exceptions

• The number and type of hardware exceptions varies depending on the
CPU designCPU design

• When a hardware exception is raised, the CPU stops the program
execution and jumps to an exception routine

• The handling of exceptions is very similar to how a CPU responds to
interrupt signals

• Some examples of common hardware exceptions is given in the next
two slides

EDA122/DIT061 Fault-Tolerant Computer Systems 15Lecture 17

Examples of CPU exceptions (1)

Bus error: detects errors during read and write accesses to the main
memory. This exception is raised (triggered) when the CPU attempts to
access an address to which no memory or I/O device is connected.

Address error: detects when the CPU attempts to access memory usingAddress error: detects when the CPU attempts to access memory using
an address that is not aligned with the word size of the CPU.

Undefined instruction: detects if the CPU during an instruction fetch
reads a value from memory (or the instruction cache) that doesn’t
correspond to a valid instruction. This error can occur if the program
counter is erroneously loaded with an address pointing to a data area
rather than a program code area.

EDA122/DIT061 Fault-Tolerant Computer Systems 16Lecture 17

Examples of CPU exceptions (2)

Privilege violation: detects if a user program attempts to execute an
instruction which is allowed only for programs that execute in the
superuser mode (privileged mode), such as the operating system or
device drivers. User programs normally executes in user mode (normal
mode).

Division by zero: detects if a program tries to divide a number with zero.

Spurious interrupt: detects if an interrupt is signalled but no interrupt
vector is provided by the interrupting device. (The interrupt vector tells the
CPU which device it was that raised the interrupt signal and thereby
indicates which interrupt service routine that the CPU shall execute.)

EDA122/DIT061 Fault-Tolerant Computer Systems 17Lecture 17

Watchdog timers

• Watchdog timers are used to detect slow programs or programs that
hang in infinite loops

• The principle is simple:

 When a program starts to execute, either the program itself or the
operating system starts a hardware timer.p g y

 The timer must be reset by the program within a given deadline, otherwise
the timer will send an interrupt signal to the CPU.

 The interrupt signal causes the CPU to take appropriate recovery actions,
such as restarting the program or rebooting the node.

• Watchdog timers are common in embedded real-time systems.

• They can be used to “transform” timing failures into signalled failures or
silent failures.

EDA122/DIT061 Fault-Tolerant Computer Systems 18Lecture 17

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

Initiating recovery via a watchdog timer

• Watchdog timers are often used in conjunction with other error
detection mechanisms to simplify implementation of recovery

• This works as follows:

 When an error is detected, the error detection mechanism stores an error
code in a designated memory area (preferably a “crash-proof” memory)g y (p y p y)

 The error detection mechanism then forces a program hang, which causes
the watchdog timer to raise an interrupt.

 The interrupt signal invokes a recovery routine that reads the error code
and then selects and executes appropriate recovery actions.

 Restart and recovery could be done for an entire node, a single program,
or a group of programs.

EDA122/DIT061 Fault-Tolerant Computer Systems 19Lecture 17

Software techniques for error detection
(examples)

• Operating system assertions
Examples:

 Integrity checks of data structures used by the operating system

 Execution time monitoring of application and system processes

• Compiler generated run-time assertions• Compiler generated run-time assertions
Examples:

 Value range overflow checking

 Loop iteration bound overflow checking

 Type checking of constrained variables

• When these mechanisms detect an error, they typically execute a TRAP or
software interrupt instruction, causing the CPU to execute an exception
handler that initiates appropriate recovery actions.

EDA122/DIT061 Fault-Tolerant Computer Systems 20Lecture 17

Examples of how acceptance tests/
software assertions can be constructed

(from lecture 4)

• Satisfaction of requirements
 Inversion of mathematical functions; e.g. squaring the result of a

square-root operation to see if it equals the original operand

 Checking sort functions; result should have elements in descending
orderorder

 …

• Reasonable checks
 Checking physical constraints; e.g. speed, pressure, etc

 Checking sequence of application states

 …

EDA122/DIT061 Fault-Tolerant Computer Systems 21Lecture 17

EDMs in a jet-engine controller
EDM Description

WDM A timer which must be reset periodically to prevent it from tripping, i.e.
signalling that an error has occurred

Hardware
exceptions

Hardware EDMs supported by the Motorola 68340 processor.

Software
exceptions

Software checks generated automatically by MATRIXx or by the
programmer using the exception-clause in the ADA-language. They
detect erroneous execution, erroneous calculations and other errors.

Software
assertions

Range checks on engine parameters.

S/W assertion Failure condition Possible cause Effect when not detected

EDA122/DIT061 Fault-Tolerant Computer SystemsLecture 17

Hardware
exception

No Description

Illegal instruction 4 Occurs if the processor attempts to execute an
unimplemented instruction.

Software exception Description

MATH_ERROR Raised when the predefined ADA exception NUMERIC_ERROR or
CONSTRAINT_ERROR is raised. This happens if a numeric operation is undefined or
when a variable is erroneously assigned.

NH overspeed
(HP shaft)

The measured speed of the
compressor and high-pressure
turbine is too high.

Overspeed of the HP
shaft, failure in the
input data.

There is a risk for engine
disintegration.

22

Time redundancy

• Commonly used to detect or mask errors caused by transient physical
faults, such as particle radiation-induced soft errors.

• Error detection

 A program is run two times on the same processor

Errors are detected b comparing the o tp ts of the t o r ns Errors are detected by comparing the outputs of the two runs

• Error masking

 A program is run three times on the same processor

 Errors are masked by majority voting

• Important Assumption:

 Only one run is affected by an error

 => Fault containment must be ensured between the runs.

EDA122/DIT061 Fault-Tolerant Computer Systems 23Lecture 17

Temporal Error Masking

• A task is executed at least three times to produce three or more copies
of a result

• A majority vote is performed on the copies to mask any faults

• Input data integrity ensured by end-to-end checksum

EDA122/DIT061 Fault-Tolerant Computer Systems 24Lecture 17

……..T1 T2 T3Task

Kernel

Save result

Input data

Voting

……

time

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 5

Temporal Error Masking

T3
Error detected by the comparison
between T1 and T2: T1 T2

Fault free execution: T1 T2

Comparison

EDA122/DIT061 Fault-Tolerant Computer Systems 25Lecture 17

T3

Voting

between T1 and T2:

Comparison

T1 T2

T1 T2
Error detected by other HW or SW
EDM:

Error detected

T2

Comparison

T3

Overview of error detection mechanisms

Hardware layer

• CPU hardware exceptions: Bus error, Address error, Undefined instruction, Privilege
violation, Division by zero, Spurious interrupt, etc.

• Error detecting and correcting codes in main memory, caches, internal buffers

• Special hardware circuits (often connected to the non-maskable interrupt signal of
a CPU): Power supply monitor, Network (bus) guardian.

EDA122/DIT061 Fault-Tolerant Computer Systems 26Lecture 17

• Watchdog timer (usually implemented as combination of HW and SW)

Software layer

• Compiler: Type checking of constrained variables, Value range overflow, Loop iteration
bound overflow

• OS: Processing time overflow, consistency checks on OS data

• Application: Time-redundant execution of tasks, application specific consistency checks

System layer

• End-to-end checksums

• Comparison of results produced by two nodes

• Voting on results produced by three or more nodes

Combination of error detection techniques

• Hardware, software and system layer techniques often combined to
achieve high error detection coverage.

• The next slide (from lecture 2) describes how duplication and
comparison in hardware and end-to-end checksums are combined
to ensure the fail silence property for a node in a distributed system.to ensure the fail silence property for a node in a distributed system.

EDA122/DIT061 Fault-Tolerant Computer Systems 27Lecture 17

HW architecture for a fail-silent node in a
distributed system

(slide from Lecture 2)

• Processor failures are detected by
duplication and comparison

• The processors produce replicated
messages that are compared by the
comparator.

• The network interfaces receive• The network interfaces receive
messages from the comparator and
send them to other nodes via two
redundant real-time busses.

• The message content (payload) is
protected by end-to-end checksums
calculated by the content producer.

• The end-to-end checksums ensures that
faults in the comparator and network
interfaces are detectable by the service
users (other nodes).

EDA122/DIT061 Fault-Tolerant Computer Systems 28Lecture 17

Self-checking node supporting software
implemented message comparison

• The processors executes the same
programs and exchange copies of
outgoing messages via the inter
processor links

• They compare the message copies and
stops execution if the copies do not
match.

• An error counter stores the number of
mismatches that has occurred.

• The node is restarted after a mismatch
only if the value of the error counter is
below a predefined threshold

• The bus guardian protects the bus from
erratic behavior (e.g., babbling idiot) of
the network interfaces

EDA122/DIT061 Fault-Tolerant Computer Systems 29Lecture 17

Outline

• Clock synchronization in time-triggered systems

• Fault detection vs. error detection

• Error detection techniques (continued)

 Generic techniques

 Hardware layer techniques

 Software layer techniques

 System layer techniques

• Wrap-up and course summary

Lecture 17 30EDA122/DIT061 Fault-Tolerant Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

Highlights from guest lectures

• Torbjörn Hult – Fault tolerant computers in space applications

• Jan Jacobson – Why standards for functional safety?

• Lars Holmlund – Fault tolerance in the Gripen Flight Control System

EDA122/DIT061 Fault-Tolerant Computer Systems 31Lecture 17

Fault tolerant computers in space
applications

EDA122/DIT061 Fault-Tolerant Computer Systems 32Lecture 17

Fault tolerant computers in space
applications

EDA122/DIT061 Fault-Tolerant Computer Systems 33Lecture 17

Why standards for functional safety?

EDA122/DIT061 Fault-Tolerant Computer Systems 34Lecture 17

Why standards for functional safety?

EDA122/DIT061 Fault-Tolerant Computer Systems 35Lecture 17

Why standards for functional safety?

EDA122/DIT061 Fault-Tolerant Computer Systems 36Lecture 17

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 7

Why standards for functional safety?

EDA122/DIT061 Fault-Tolerant Computer Systems 37Lecture 17

JAS Gripen EFCS

EDA122/DIT061 Fault-Tolerant Computer Systems 38Lecture 17

JAS Gripen EFCS

EDA122/DIT061 Fault-Tolerant Computer Systems 39Lecture 17

JAS Gripen EFCS

EDA122/DIT061 Fault-Tolerant Computer Systems 40Lecture 17

Summary of study of failures in high-
performance computing systems (I)

• Failure rates vary widely across systems, ranging from 20 to more than 1,000 failures per
year, and depend mostly on system size and less on the type of hardware.

• Failure rates are roughly proportional to the number of processors in a system, indicating
that failure rates are not growing significantly faster than linearly with system size.

• There is evidence of a correlation between the failure rate of a machine and the type andThere is evidence of a correlation between the failure rate of a machine and the type and
intensity of the workload running on it. This is in agreement with earlier work for other
types of systems [2], [6], [19].

• The curve of the failure rate over the lifetime of an HPC system looks often very different
from lifecycle curves reported in the literature for individual hardware or software
components.

• Time between failure is not modeled well by an exponential distribution, which agrees with
earlier findings for other types of systems [5], [27], [9], [15], [19]. We find that the time
between failure at individual nodes, as well as at an entire system, is fit well by a gamma
or Weibull distribution with decreasing hazard rate (Weibull shape parameter of 0.7-0.8).

EDA122/DIT061 Fault-Tolerant Computer Systems 41Lecture 17

Summary of study of failures in high-
performance computing systems (ii)

• Failures exhibit significant levels of temporal correlation at both short and long time lags.
We find indication of autocorrelation for all types of failures; however, autocorrelation is
particularly strong for hardware and software failures.

• We also find indication of spatial correlation, i.e., correlation between failures at different
nodes during the same time interval. However, those are limited to failures with network
root cause and not significant for other types of failures.g yp

• Mean repair times vary widely across systems, ranging from one hour to more than a day.
Repair times depend mostly on the type of the system, and are relatively insensitive to the
size of a system.

• Repair times change significantly over the lifetime of a system. Both mean and median
repair times drop by more than a third after the first year in operation.

• This might indicate that during the first year of operation, system administrators get
significantly better at quickly identifying the root cause of a problem and fixing it.

• Repair times are extremely variable, even within one system, and are much better
modeled by a lognormal distribution than an exponential distribution.

EDA122/DIT061 Fault-Tolerant Computer Systems 42Lecture 17

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 8

Final remarks (I)

• No system is perfect – single points of failure cannot be avoided
completely (cf. Fukushima nuclear disaster in Japan last year)

• Redundancy is no panacea – it may prevent system failures, but
increases cost, failure rate and energy consumption

• IT systems are physical artifacts – the quality of their service
depends on both the software and the hardware

 Vertical thinking is needed – from transistors to user interfaces

• IT-systems cannot be fully understood – they are too complex

 Billions of transistors, millions of lines of code lead to almost infinite
numbers of fault, error and failure scenarios

EDA122/DIT061 Fault-Tolerant Computer Systems 43Lecture 17

Final remarks (II)

• Development of dependable IT systems requires holistic thinking

• We need to consider how different parts of a system interact:

 Hardware, software, users, environment, organization, management …

EDA122/DIT061 Fault-Tolerant Computer Systems 44Lecture 17

Holism (from holos, a Greek word meaning all, entire, total) is the idea that
all the properties of a given system (physical, biological, chemical, social,
economic, mental, linguistic, etc.) cannot be determined or explained by its
component parts alone. Instead, the system as a whole determines how the
parts behave.

Questions?

Lecture 17 45EDA122/DIT061 Fault-Tolerant Computer Systems

Thank You!

G d L k ith Th E !Good Luck with The Exam!

Lecture 17 46EDA122/DIT061 Fault-Tolerant Computer Systems

