
EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems

Welcome to Lecture 14

Error detection techniques

Outline

• Hardware reliability trends

• Case study: Experimental evaluation of error handling
mechanisms in a jet-engine controller

• Layered fault tolerance (from lecture 13)• Layered fault tolerance (from lecture 13)

• Error detection techniques

• Fault detection vs. error detection

Lecture 14 2EDA122/DIT061 Fault-Tolerant Computer Systems

Transistor reliability trends

Shekhar Borkar, Intel Corp:

“As technology scales, variability in transistor
performance will continue to increase, making
transistors less and less reliable. ….

EDA122/DIT061 Fault-Tolerant Computer Systems 3Lecture 14

Finding solutions to these challenges will
require a concerted effort on the part of all
the players in a system design.”

Borkar, S.; "Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation," IEEE Micro, December 2005.

Trends in the bathtube curve

ur
e

ra
te

Infant mortality Constant failure rate Wear out

EDA122/DIT061 Fault-Tolerant Computer Systems 4Lecture 14

• Infant mortality: Increasing manufacturing defects

• Constant failure rate: Increasing rate of transient, intermittent and permanent faults

• Wearout: Acceleration of aging phenomena

Time

Source: Vikas Chandra, ARM R&D, Dependable Design in Nanoscale CMOS Technologies: Challenges and Solutions
Keynote address, WDSN, Estoril, Portugal, June 29, 2009

F
ai

l

1 – 20 weeks 3 – 10 years

Main sources of transistor faults

• Process variations
 Random variations related to lithography, etching, dopant count

 Voltage and temperature variations

• Wear out effects (degradation)
 NBTI - negative bias temperature instability

 HCI - hot carrier injection

 Gate oxide breakdown

 Electromigration

 …

• Soft errors
 Bit-flips in latches, flip-flops and memory cells

 Mainly caused by cosmic-induced high energy neutrons (cosmic neutrons)

 Soft errors  no permanent damage to hardware

Lecture 14 5

EDA122/DIT0
61 Fault-
Tolerant
Computer
Systems

Electromigration

Gate oxide breakdowns

• Gate oxide breakdowns increase
leakage currents and change
electrical characteristics of
transistors

EDA122/DIT061 Fault-Tolerant Computer Systems 6Lecture 14

Gate oxide in 90 nm technology
Thickness: 5 atom layers

Gate oxide scaling
Source: Intel 2005

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 2

Single event upset (SEU)

• SEU:s are particle induced upsets
(bit-flips)

• Caused by highly energetic particles
such as neutron, protons and muons

Particle

Bit-flips SRAM cell

EDA122/DIT061 Fault-Tolerant Computer Systems 7Lecture 14

Si substrate
p

SiO2 gate

Poly Si gate

Drain Source

n+ n+

Particle strike in n-channel
MOSFET transistor

Depletion
region

Particle
trajectory

Soft error rate trend for SRAM
(Radiation test data from Sun Microsystems)

EDA122/DIT061 Fault-Tolerant Computer Systems 8Lecture 14

Source: A. Dixit, R. Heald, and A. Wood, “Trends from Ten Years of Soft Error Experimentation, SELSE´09, Stanford, CA, USA.

1 FIT = 10-9 faults per hour

Raw soft error rate trend for microprocessors
(Data from Sun Microsystems)

Technology
node (nm)

Year
introduced

Relative SEU
rate in
FITs/kbit

Mbits/processor Relative
uncorrected
SEU rate /
microproces
sor

250 1998 3.2 1.52 5.0

180 1999 3.0 1.52 4.3

130 2000 2.4 3.28 7.9

90 2002 1.0 33.6 33.6

65 2006 0.7 44.3 30.5

40 2008 0.94 71 67

Lecture 14 9

EDA122/DIT0
61 Fault-
Tolerant
Computer
Systems

Source: A. Dixit, R. Heald, and A. Wood, “The Impact of New Technology on Soft Error Rates, SELSE-6, Stanford, CA, USA, 2010

1 FIT = 10-9 faults per hour

Outline

• Hardware reliability trends

• Case study: Experimental evaluation of error handling
mechanisms in a jet-engine controller (see separate
presentation)

• Layered fault tolerance (from lecture 13)

• Fault detection vs. error detection

• Error detection techniques

Lecture 14 10EDA122/DIT061 Fault-Tolerant Computer Systems

Outline

• Hardware reliability trends

• Case study: Experimental evaluation of error handling
mechanisms in a jet-engine controller

• Layered fault tolerance (from lecture 13)• Layered fault tolerance (from lecture 13)

• Error detection techniques

• Fault detection vs. error detection

Lecture 14 11EDA122/DIT061 Fault-Tolerant Computer Systems

Layered fault tolerance

Fault tolerance can be implemented at three abstraction layers:

• Hardware layer – mechanisms implemented in hardware either
within one integrated circuit, or by replication of integrated
circuits within a node.

• Software layer – mechanisms implemented in software dealing
with errors occurring within a node

• System layer – mechanisms implemented in software dealing
with errors occurring in other nodes in the system, or in the
system’s communication network

EDA122/DIT061 Fault-Tolerant Computer Systems 12Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

Purpose of different layers

• Hardware layer – serves as a first line of defense that should

 Correct as many errors as is economically feasible

 Detect errors that cannot be corrected

• Software layer – serves as a second line of defense that should

 Correct errors detected, but not corrected by the hardware layer.

 Detect errors that are not detected or corrected by the hardware layer

 Ensure appropriate failure semantics for the node for any error that
cannot be corrected.

• System layer – serves as a third line of defense that should

 Detect and correct any errors that are not detected or corrected by the
software and hardware layers

EDA122/DIT061 Fault-Tolerant Computer Systems 13Lecture 14

Layered fault tolerance

System-layer mechanisms

Interference
failure

Timing
failure

Content
failure

Fail
signal

Fail
silent

Fault
removed

Catastrophic
failure

Benign
failure

Safe
Shutdown

ci
ng

Node failure modes

System failure modes

3rdline of defence

EDA122/DIT061 Fault-Tolerant Computer SystemsLecture 14

Error
removed

Detected
Error

Undetected
Error

Hardware-layer mechanisms

Software-layer mechanisms
Error

removed

C
os

t b
al

an
c

Undesirable failure modes are marked in red.
14

HW Design
Fault

SW Design
Fault

Physical
Fault

ErrorErrorError

Errors escaping detection by HW

2nd line of defence

1stline of defence

Outline

• Hardware reliability trends

• Case study: Experimental evaluation of error handling
mechanisms in a jet-engine controller

• Layered fault tolerance (from lecture 13)• Layered fault tolerance (from lecture 13)

• Error detection techniques

• Fault detection vs. error detection

Lecture 14 15EDA122/DIT061 Fault-Tolerant Computer Systems

Error detection techniques
(slide from Lecture 2)

Two examples:

• Duplication and comparison

 Two modules produce replicated results

 Errors are detected by comparing the results

 Ensures fail-silence

• End-to-end checksums

 The service provider adds a checksum to its outputs

 Checksums are checked by the service user

 Provides detectability of value failures

 Protects the content of a service while it is being transferred from the
service provider (the producer) to the service users (the consumers).

EDA122/DIT061 Fault-Tolerant Computer Systems 16Lecture 14

On-line error detection techniques
mentioned in the course book (1)

(Hardware layer techniques)

• Watchdog timers (p. 130 in course book)

 Hardware layer technique supported by software

• Bus monitoring (p. 130 in course book)

 Checking the range of addresses generated by a CPU

EDA122/DIT061 Fault-Tolerant Computer Systems 17Lecture 14

Checking the range of addresses generated by a CPU

 Examples
• Checking that the CPU use an even address when reading a 32 or 64-bit word.
• Checking CPU (or program) memory accesses using a memory management

unit (MMU).

• Power supply monitoring (pp. 130-131 in the course book)

On-line error detection techniques
mentioned in the course book (2)

(Generic principles)

• Duplication and comparison (pp. 128 and 138-141 in the course book)

 Comparison of redundant signals

 Self-checking pair

• Consistency checking

 Uses a priori knowledge about information or system behaviour.

 Examples:

• Hardware exceptions in CPUs checking for illegal operations, e.g., division by
zero.

• Range checking in software of constrained program variables.

• Information redundancy

 Use of error detecting and error correcting codes

EDA122/DIT061 Fault-Tolerant Computer Systems 18Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

Generic principles for error detection

• Duplication and comparison, consistency checking and information
redundancy are examples of generic principles for error detection1.

• These principles can be used at all abstraction layers, i.e., the
hardware, software and system layers.hardware, software and system layers.

1Note: Information redundancy can also used to correct errors.

EDA122/DIT061 Fault-Tolerant Computer Systems 19Lecture 14

Combination of error detection techniques

• Error detection techniques at different abstraction layers are often
combined to achieve high error detection coverage.

E lExample:

• The next slide (from lecture 2) describe how duplication and
comparison in hardware and end-to-end checksums are combined
to ensure fail silence for a node in a distributed system.

• End-to-end checksums is an example of a system layer technique that
uses information redundancy (a checksum).

EDA122/DIT061 Fault-Tolerant Computer Systems 20Lecture 14

HW architecture for a fail-silent node in a
distributed system

(slide from Lecture 2)

• Processor failures are detected by
duplication and comparison

• The processors produce replicated
messages that are compared by the
comparator.

• The network interfaces receive• The network interfaces receive
messages from the comparator and
send them to other nodes via two
redundant real-time busses.

• The message content (payload) is
protected by end-to-end checksums
calculated by the content producer.

• The end-to-end checksums ensures that
faults in the comparator and network
interfaces are detectable by the service
users (other nodes).

EDA122/DIT061 Fault-Tolerant Computer Systems 21Lecture 14

Self-checking node supporting software
implemented message comparison

• The processors executes the same
programs and exchange copies of
outgoing messages via the inter
processor links

• They compare the message copies and
stops execution if the copies do not
match.

• An error counter stores the number of
mismatches that has occurred.

• The node is restarted after a mismatch
only if the value of the error counter is
below a predefined threshold

• The bus guardian protects the bus from
erratic behavior (e.g., babbling idiot) of
the network interfaces

EDA122/DIT061 Fault-Tolerant Computer Systems 22Lecture 14

Watchdog timers

• Watchdog timers are used to detect slow programs and programs that hang in
infinite loops

• The principle is simple:

 When a program starts to execute, either the program itself or the operating system
starts a hardware timer.

Th ti t b t b th ithi i d dli th i th ti The timer must be reset by the program within a given deadline, otherwise the timer
will send an interrupt signal to the CPU.

 The interrupt signal causes the CPU to take appropriate recovery actions, such as
restarting the program or rebooting the node.

• Watchdog timers are common in embedded real-time systems.

• They are used to “transform” timing failures into signalled failures or silent
failures.

EDA122/DIT061 Fault-Tolerant Computer Systems 23Lecture 14

Initiating recovery via a watchdog timer

• Watchdog timers are sometimes used in conjunction with other error
detection mechanisms to simplify the implementation of recovery.

• This works as follows:

 When an error is detected, the error detection mechanism stores an error
flag in a designated memory area (preferably a “crash-proof” memory)g g y (p y p y)

 The error detection mechanism then forces a program hang, which
subsequently causes the watchdog timer to raise an interrupt.

 The interrupt invokes a recovery routine which reads the error flag and then
initiates the appropriate recovery actions.

 Restart and recovery could be done for an entire node, a single program,
or a group of programs.

EDA122/DIT061 Fault-Tolerant Computer Systems 24Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 5

Restarting a node in a distributed system

• Restarting a node in a distributed system involves an elaborate set of
actions, including

 recovering the node’s view of the system state

 reintegrating the node into the set of operational nodes

• These actions are handle by a system-layer mechanism called a
node membership service.

EDA122/DIT061 Fault-Tolerant Computer Systems 25Lecture 14

CPU Exceptions
(Hardware layer technique)

• Modern central processing units (CPUs) are equipped with hardware
implemented error detection mechanisms called hardware exceptions

• The number and type of hardware exceptions varies depending on the
CPU design

Wh h d ti i i d th CPU t th• When a hardware exception is raised, the CPU stops the program
execution and jumps to an exception routine

• The handling of exceptions is very similar to how a CPU responds to
interrupt signals

• Some examples of common hardware exceptions is given in the next
two slides

EDA122/DIT061 Fault-Tolerant Computer Systems 26Lecture 14

Examples of CPU exceptions (1)

Bus error: detects errors during read and write accesses to the main
memory. This exception is raised (triggered) when the CPU attempts to
access an address to which no memory or any I/O device is connected.

Address error: detects when the CPU makes an attempt to accessAddress error: detects when the CPU makes an attempt to access
memory using an odd numbered address; only even numbered addresses
are allowed in many CPUs.

Illegal opcode: detects if the CPU during an instruction fetch reads a
value from memory (or the instruction cache) that doesn’t correspond to a
valid instruction. This error can occur if the program counter is erroneously
loaded with an address pointing to a data area rather than a program code
area.

EDA122/DIT061 Fault-Tolerant Computer Systems 27Lecture 14

Examples of CPU exceptions (2)

Privilege violation: detects if a user program attempts to execute an
instruction which is allowed only for programs that execute in the
superuser mode (privileged mode), such as the operating system or
device drivers. User programs normally executes in user mode (normal
mode).

Division by zero: detects if a program tries to divide a number with zero.

Spurious interrupt: detects if an interrupt is signalled but no interrupt
vector is provided by the interrupting device. (The interrupt vector tells the
CPU which device it was that raised the interrupt signal and thereby
indicates which interrupt service routine that the CPU shall execute.)

EDA122/DIT061 Fault-Tolerant Computer Systems 28Lecture 14

Operating System and Complier Generated
Software Assertions

(Software layer techniques)

• Operating system assertions:
Examples:

 Integrity checks of data structures used by the operating system

 Execution time monitoring of application and system processes

• Compiler generated run-time assertions:• Compiler generated run-time assertions:
Examples:

 Value range overflow checking

 Loop iteration bound overflow checking

 Type checking of constrained variables

• When an error is detected by any of these mechanisms, typically a “trap” or
software interrupt instruction is executed, which initiates appropriate recovery
actions.

EDA122/DIT061 Fault-Tolerant Computer Systems 29Lecture 14

Overview of error detection mechanisms at
different layers

Hardware layer

• CPU hardware exceptions: Bus error, Address error, Illegal opcode, Privilege violation,
Division by zero, Spurious interrupt, etc.

• Error detecting and correcting codes in main memory, caches, internal buffers

• Special hardware circuits (often connected to the non-maskable interrupt signal of
a CPU): Power supply monitor, Network (bus) guardian.

EDA122/DIT061 Fault-Tolerant Computer Systems 30Lecture 14

• Watchdog timer (usually implemented as combination of HW and SW)

Software layer

• Compiler: Type checking of constrained variables, Value range overflow, Loop iteration
bound overflow

• OS: Processing time overflow, consistency checks on OS data,

• Application: time-redundant execution of tasks, application specific consistency checks

System layer

• End-to-end checksums

• Comparison of results produced by two nodes

• Voting on results produced by three or more nodes

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/13

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

Outline

• Hardware reliability trends

• Case study: Experimental evaluation of error handling
mechanisms in a jet-engine controller

• Layered fault tolerance (from lecture 13)• Layered fault tolerance (from lecture 13)

• Error detection techniques

• Fault detection vs. error detection

Lecture 14 31EDA122/DIT061 Fault-Tolerant Computer Systems

Fault Detection vs. Error Detection

• Terminology
 Both the terms fault detection and error detection are used in the literature,

see discussion in the beginning of Chapter 6.4 in the course book

• We distinguish between

EDA122/DIT061 Fault-Tolerant Computer Systems 32Lecture 14

 Concurrent (on-line) error detection
• Detection of errors during operation
• Purpose is to mask or minimize adverse effects of errors

 Non-concurrent (off-line) fault detection
• Testing to find physical hardware faults while the system is off-line
• Purpose is to identify faulty hardware units

Off-line fault detection techniques

• Functionality checking (p. 127 in the course book)

 Examples:

• Test of random access memory (RAM) by writing and reading back test patterns
to all memory words

• Test of CPU by running special test programs

• Loop back testing (p. 129 in the course book)

 Example:

• “echo” testing of communication paths

EDA122/DIT061 Fault-Tolerant Computer Systems 33Lecture 14

Overview of Lecture 15

• Time-Triggered Systems

• Read before the lecture:
 Lecture slides

 The Time-Triggered Architecture (see reading instructions)

EDA122/DIT061 Fault-Tolerant Computer Systems 34Lecture 14

 The Time-Triggered Architecture (see reading instructions)

