
EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122 Fault-Tolerant Computer Systems

Welcome to Lecture 12

Experimental studies of software diversity
Study of field failure data

Outline

• Design diversity
 N-version programming

 Recovery blocks

EDA122/DIT061 Fault-Tolerant Computer Systems 2Lecture 12

Design Diversity

Design diversity is used to tolerate development
faults in hardware and software

Two techniques for tolerating software design faults:
 N-version programming

 Recovery blocks

EDA122/DIT061 Fault-Tolerant Computer Systems 3Lecture 12

N-version programming

• Uses majority voting on results produced by N
program versions

P i d l d b diff t• Program versions are developed by different
teams of programmers

• Assumes that programs fail independently

• Resembles hardware voting redundancy

EDA122/DIT061 Fault-Tolerant Computer Systems 4Lecture 12

N-version programming

Program
version 1

Program
version 2

Program
Inputs

Voting
element

Program
Output

Program
Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems 5Lecture 12

Program
version 3

Program
version 4

Program
Inputs

Recovery Blocks

• Uses one primary software module and one or
several secondary (back-up) software modules

• Assumes that program failures can be detected by p g y
acceptance tests

• Executes only the primary module under error-free
conditions

• Resembles dynamic hardware redundancy

EDA122/DIT061 Fault-Tolerant Computer Systems 6Lecture 12

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 2

Recovery blocks

Acceptance
tests

Primary
Module

Secondary
Module 1

Program
Inputs

N-to-1
Switch

Program
OutputProgram

Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems 7Lecture 12

tests

Secondary
Module 2

S c

Secondary
Module N

Error detection
Program
Inputs

Program
Inputs

Construction of acceptance tests

• An acceptance test is a software implemented
check designed to detect errors in the results
produced by a primary or a secondary module

• Acceptance tests often relies on application
specific information

• An acceptance test is similar to a software
assertion (a.k.a. executable assertion).

EDA122/DIT061 Fault-Tolerant Computer Systems 8Lecture 12

Comparison of N-version
programming and Recovery blocks

N-version programming
 Applied at the program level

 Runs N programs at the same time

 Resembles static hardware redundancy

 Assumes that independence among program versions is achieved by
random differences in programming style among programmers

Recovery blocks
 Applied at the module (subprogram) level

 Runs only the primary module under error-free conditions

 Resembles dynamic hardware redundancy

 Independence is achieved by deliberately designing the primary and
secondary modules to be as different as possible

EDA122/DIT061 Fault-Tolerant Computer Systems 9Lecture 12

Evaluation of N-version programming

Objective
 To investigate if independently developed programs fail independently

Overview
 Missile interceptor program

 27 versions produced by students at University of Virginia and University
of California, Irvine.

 All students was given the same specification

 200 test cases to validate each program

 1 million test cases to test independence (simulation of production
environment)

 Published 1985

Knight, J.C., N.G. Leveson, and L.D. St. Jean, ”A Large Experiment in N-version Programming”, Digest of
Papers, Int. Symposium on Fault-tolerant Computing (FTCS-15), Ann Arbor, Michigan, June, 1985, pp.
135-139.

EDA122/DIT061 Fault-Tolerant Computer Systems 10Lecture 12

Experimental set-up (1)
• 27 versions produced by senior-level students
 9 versions from University of Virginia

 18 versions from University of California, Irvine

 Written in Pascal

• Program for anti-missile system
 Determines if radar reflections represents a incoming

hostile missile.

 Well-known problem – previously used in software
engineering experiments.

EDA122/DIT061 Fault-Tolerant Computer Systems 11Lecture 12

Experimental set-up (1)

• Input to students

 Requirements specification

 Instructed not to cooperate or discuss the problem amongst themselves

 No restrictions on the use of references

 12 input data sets for debugging

• Acceptance test for programs

 200 randomly generated tests

 Different set of tests for each program

 Resembles testing in real systems

 Only programs that passed the acceptance test was used in the
experimental data

EDA122/DIT061 Fault-Tolerant Computer Systems 12Lecture 12

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 3

EDA122/DIT061 Fault-Tolerant Computer Systems 13Lecture 12

Evaluation of N-version programming
Occurrence of Multiple Program Failures

Failed Programs # Test Cases

2 551

3 343

4 2434 243

5 73

6 32

7 12

8 2

Conclusion: The programs in this experiment do not fail independently*!
(1256 multiple failures, 21257 single failures)

*The hypothesis of independence is rejected at the 99% confidence level.
EDA122/DIT061 Fault-Tolerant Computer Systems 14Lecture 12

EDA122/DIT061 Fault-Tolerant Computer Systems 15Lecture 12

Discussion (1)

Is it realistic to use students in a software engineering
experiment?

• Programming experiences of students outside their degree
programs
 12 students had less than two years of programming experience

 10 students had between two and five years of programming
experience

 5 students had more than five years of programming experience

• Students had diverse backgrounds

EDA122/DIT061 Fault-Tolerant Computer Systems 16Lecture 12

Discussion (2)

Is one million test cases enough?
 Test cases represent “unusal” events.

 “If the program is executed once per second and unusal
events occur every ten minutes, then one million test
cases correspond to 20 years of operational use”

EDA122/DIT061 Fault-Tolerant Computer Systems 17Lecture 12

Conclusions of NVP study (1)

• The assumption of independence of failures among
versions does not hold

• The above does not render NVP useless! - It merely
h th t th i t f l t d f il t b t kshows that the impact of correlated failures must be taken

into consideration when estimating the reliability of
systems that use NVP.

• The result is only valid for the application used

• Similar results may, or may not, be observed for other
applications.

EDA122/DIT061 Fault-Tolerant Computer Systems 18Lecture 12

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 4

Conclusions of NVP study (2)

• More than half of the software fault was present in two or
more programs

• Possible explanations for the high percentage of
l t d f ltcorrelated faults:

 Programmers make similar mistakes

 Certain parts of the problem is difficult and lead to mistakes by
many programmers

 Flaws causing uncorrelated failures are easy to catch by normal
debugging

EDA122/DIT061 Fault-Tolerant Computer Systems 19Lecture 12

Conclusions of NVP study (3)

• Need for further research
 More experiments needed to draw general conclusions

 Possible explanations for the high percentage of
correlated faults need to be investigated.

 Relying on random chance to obtain diversity may not
be an effective approach. Deliberate diversity may work
better.

EDA122/DIT061 Fault-Tolerant Computer Systems 20Lecture 12

Evaluation of Recovery Blocks

• Goal: to evaluate recovery blocks for a medium-scale
naval command and control system (concurrent real-time
system)

• The system provides a simulated radar display overlaid y p p y
with tracking information. Allows the operator to attack
hostile submarines.

• 8000 lines of source code in CORAL, 14 concurrent
activities

• Programmed by professional programmers

• Recovery supported by a special recovery cache

EDA122/DIT061 Fault-Tolerant Computer Systems 21Lecture 12

Conduct of Experiment

• The command and control system was run against
an environment simulator by the operator

• Several typical scenarios were simulatedyp

• Operator logged all abnormal behaviors of the
system

• Monitoring routines within the system recorded
recovery and failure events

EDA122/DIT061 Fault-Tolerant Computer Systems 22Lecture 12

Evaluation of recovery blocks

Naval command and control system (8000 statements in the Coral language)

117 abnormal events

Correct recovery 78 %

Incorrect recovery, program failure 3 %

Incorrect recovery, no program failure 15 %

Unnecessary recovery 3 %

Anderson, T., et al., ”Software Fault Tolerance: An Evaluation,” IEEE Trans. on Software Engineering, vol.
SE-11, no. 12, Dec 1985, pp. 1502-1510.

EDA122/DIT061 Fault-Tolerant Computer Systems 23Lecture 12

Overhead for the Case Study

• 60% supplementary development cost

• 33% extra code memory

• 35% extra data memory35% extra data memory

• 40% extra execution time

EDA122/DIT061 Fault-Tolerant Computer Systems 24Lecture 12

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 5

Failure Data from Los Alamos National
Laboratories

• Data collected during nine years (1996 – 2005)

• 22 high-performance computing systems

• 4 750 machines

24 101• 24 101 processor

• 23 000 failures

• Covers failures that required interventions by system administrators

EDA122/DIT061 Fault-Tolerant Computer Systems 25Lecture 12

Failure data from System X

• Large supercomputing system

• 20 nodes

• 512 processor per node = 10240 processors

D t f ti• Data covers one year of operation

• Operational since October 2005

EDA122/DIT061 Fault-Tolerant Computer Systems 26Lecture 12

Root causes of failures

Environment

Network
<1%

Human
2%

Unknown
14%

Los Alamos NL

Unknown

System X

EDA122/DIT061 Fault-Tolerant Computer Systems 27Lecture 12

Hardware
63%Software

18%

Environment
2%

Hardware
53%

Software
23%

Human
2%

Unknown
23%

Detailed Root Cause Breakdown of
LANL Data

EDA122/DIT061 Fault-Tolerant Computer Systems 28Lecture 12

Important observation: Most outages attributed to memory DIMM:s are caused by transient
failures generating more bit flips than the error correcting code can handle.

Average number of failure per year

EDA122/DIT061 Fault-Tolerant Computer Systems 29Lecture 12

NOTE: Systems with the same hardware type have the same color.

Average number of failures per year
normalized by the number of processors

EDA122/DIT061 Fault-Tolerant Computer Systems 30Lecture 12

Observation:
“Failure rates do not grow significantly faster than linearly with system size.”

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 6

Number of failure per node
for system 20

EDA122/DIT061 Fault-Tolerant Computer Systems 31Lecture 12

Observation: The failure rate depend on the workload!
Nodes 21, 22 and 23, which accounts for 20 % of all failures, runs different
workloads than the other nodes.

Sampled CDF compared with
fitted distributions

EDA122/DIT061 Fault-Tolerant Computer Systems 32Lecture 12

Observation: Normal and lognormal distributions provide the best fit. The measured
data has considerably higher variation that the fitted Poisson distribution. Hence, the
Poisson distribution fits poorly with the measured data.

Long term variation of failure rate

EDA122/DIT061 Fault-Tolerant Computer Systems 33Lecture 12

Observation: Failure rates vary over time, and they do so differently for different
systems.

Short term variation of failure rate

EDA122/DIT061 Fault-Tolerant Computer Systems 34Lecture 12

Important observation: Failure rates depend on the workload of the system.

CDF for interarrival times for one
node 2000 - 2005

EDA122/DIT061 Fault-Tolerant Computer Systems 35Lecture 12

Observation: The Weibull and gamma distributions provides best fit. The squared
coefficient of variation C2 is 1.9 for the measured data.

CDF for interarrival times for one
node 1996 - 1999

EDA122/DIT061 Fault-Tolerant Computer Systems 36Lecture 12

Observation: Best fit provided by the lognormal distribution.

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2012/2013

Department of Computer Science and Engineering
Chalmers University of Technology 7

Time to repair

EDA122/DIT061 Fault-Tolerant Computer Systems 37Lecture 12

Observation: Note the high values of the squared coefficient of variation C2.

CDF of repair times

EDA122/DIT061 Fault-Tolerant Computer Systems 38Lecture 12

Observation: The lognormal provides the best fit. The exponential distribution is a
very poor fit due to the high variability of the repair times.

Effect of learning on mean repair time

EDA122/DIT061 Fault-Tolerant Computer Systems 39Lecture 12

Observation: The mean repair time drops after the first year of operation. This
reflects the learning curve of the system administrators.

Effect of learning on median repair time

EDA122/DIT061 Fault-Tolerant Computer Systems 40Lecture 12

Change of Lectures

• The guest lecture by Lars Holmlund has been
moved to October 15.

EDA122/DIT061 Fault-Tolerant Computer Systems 41Lecture 12

Overview of Lecture 13

• Byzantine failures
Read before the lecture:

 Byzantine Agreement, Section 3.1

 Lecture slides Lecture slides

• Error detection and time redundancy
Read before the lecture:

 Section 6.3 and 6.4 in the course book

 Lecture slides

EDA122/DIT061 Fault-Tolerant Computer Systems 42Lecture 12

