

ISO 26262: How safety is achieved

"System safety is achieved through a number of safety measures, which are implemented in a variety of technologies (for example: mechanical, hydraulic, pneumatic, electrical, electronic, programmable electronic etc).

Although ISO 26262 is concerned with E/E systems, it provides a framework within which safety-related systems based on other technologies can be considered." (quote from ISO 26262, part 2)

Note: E/E systems means electrical and electronic systems

ISO 26262 Road Vehicles – Functional Safety

- Part 1: Vocabulary
- Part 2: Management of functional safety
- Part 3: Concept phase
- Part 4: Product development: system level
- Part 5: Product development: hardware level
- Part 6: Product development: software level
- Part 7: Production and operation
- Part 8: Supporting processes
- Part 9: ASIL-oriented and safety-oriented analyses
- Part 10: Guideline on ISO 26262

ISO 26262: Summary (text from part 2 of the standard)

ISO 26262:

- provides an automotive safety lifecycle (management, development, production, operation, service, decommissioning) and supports tailoring the necessary activities during these lifecycle phases;
- provides an automotive specific risk-based approach for determining risk classes (Automotive Safety Integrity Levels, ASILs);
- uses ASILs for specifying applicable requirements of ISO 26262 for avoiding unreasonable residual risk; and
- provides requirements for validation and confirmation measures to ensure a sufficient and acceptable level of safety being achieved.
- · provides requirements for the relation with suppliers.

ISO 26262: What influences safety? *"Functional safety is influenced by the development process (including such activities as requirements)*

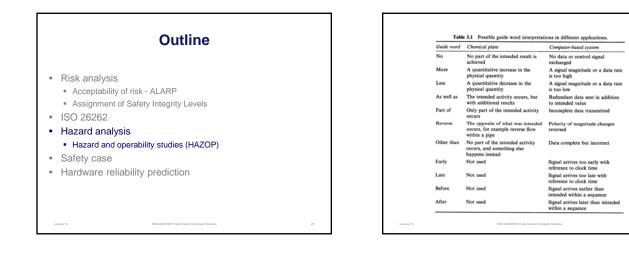
process (including such activities as requirements specification, design, implementation, integration, verification, validation and configuration), the production and service processes and by the management processes." (quote from the standard)

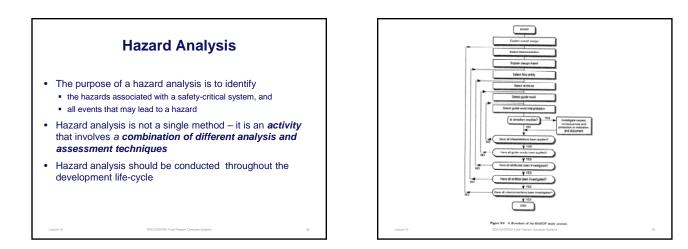
		exposure	
	Class	Description	
	E0	Incredible	
	E1	Very low probability	
	E2	Low probability	
	E3	Medium probability	
	E4	High probability	
Note:	No probabi	lity values is specified by the st	andard.

ASIL – Automotive Safety Integrity The ASIL for an item (array of systems or system or function) is determined during hazard analysis and risk assessment. The ASIL depends on three factors: Severity of potential harm to endangered persons such as the driver and the passengers of the vehicle, pedestrians, cyclists and occupants of other vehicles. Probability of exposure – the probability that endangered persons are exposed to an hazardous event. Controllability – the probability that the driver or an other endangered person can control the hazardous event and thereby avoid the specific harm.

ISO	2626	2: Classes of controlla	bility
	Class	Description	
	C0	Controllable	
	C1	Simply controllable	

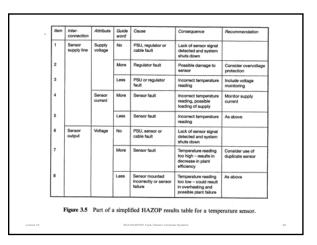
	Simply controllable
C2	Normally controllable


C3 Difficult to control or uncontrollable

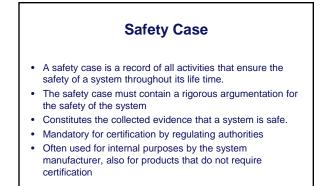

00	Dimount to	anoonaloidabio

SO26262: Classes of severi		
Class	Description	
	· · ·	
S0	No injuries	
S1	Light and moderate injuries	
S2	Severe and life-threatening injuries (survival probable)	
S3	Life-threatening injuries (survival uncertain), fatal injuries	

ISO 26262: ASIL determination


E1 E2 E3 E4	QM QM	QM QM	QM
S1 E3		OM	
E3		~	QM
F 4	QM	QM	А
E4	QM	A	В
E1	QM	QM	QM
S2 E2	QM	QM	А
52 E3	QM	А	В
E4	А	В	С
E1	QM	QM	А
S3 E2	QM	А	В
55 E3	A	В	С
E4	В	С	D





Hazard and operability study (HAZOP)

- Invented by ICI (Imperial Chemical Industries), a British chemical company in the early 1960's.
- Method for structured study of safety-critical processes and systems
- · Performed by a team of engineers and experts
- Aims to identify the consequences of *deviations* from normal operation
- Guide words are used to systematically generate questions of "what if" nature

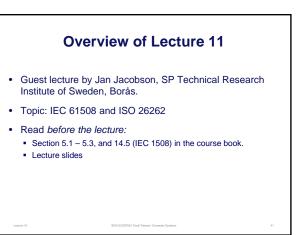
- Decrease temperature
- Decrease temperature
- Decrease electrical stress (derating)
- Reduce number of components or increase integration
- Increase quality of components
- Improve physical environment
 - Reduce exposure to moisture
 Reduce exposure to vibrations

- Contents of a Safety Case
 - (Example)
- A description of the safety-related system
- Evidence of competence of personnel involved in any safety activity
- A specification of safety requirements
- The results of hazard and risk analysis
- The results of design analysis showing that the system design meets all the required safety targets
- The verification and validation strategy
 Records of safety reviews
- Records of safety reviews
- Records of any incidents which occur throughout the life of the system
- Records of all changes to the system and justification of its continued safety
- (See Chapter 14.4, pp. 364-365 in course book)

Examples of Failure Rate Prediction for Hardware

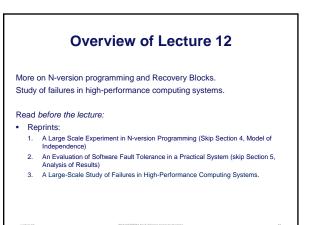
- MIL-HDBK-217, Military handbook, US Department of Defense, Parts Stress Model (Revision F Notice 2, released February 1995)
- Telcordia SR-332, Issue 2 (released Sept 2006)

Failure Rate Prediction Mil-Hdbk-217F


 $\lambda_p = (C_1 \Pi_T + C_2 \Pi_E) \Pi_Q \Pi_L$ failures / 10⁶ hours

- λ_p is the part failure rate C₁ is related to die comple
- C_1 is related to die complexity Π_T is related to ambient temperature
- C_2 is related to the package type
- $\Pi_{\rm E}$ is determined by the operating environment
- Π_{Q} is determined by the part quality
- $\Pi_{\rm L}^{-}$ represents the learning factor and is determined by the experience of the manufacturer.

Standards for hardware reliability prediction


- FIDES Guide 2009
 The FIDES methodology is applicable to all domains using electronics: aeronautical, naval, military, production and distribution of electricity, automobile, railway, space, industry, telecommunications, data processing, home automation, household appliances.
- BRT British Telecom British Telecom Module for reliability prediction based on British Telecom document HRD-4 or HRD-5.
- GJB299 Chinese reliability standard.
- Siemens SN29500.1 Siemens reliability standard.

$\label{eq:linear_states} \begin{array}{l} \textbf{Telcordia SR-332}\\ \textbf{(Bellcore)} \end{array}$ $\lambda_{ss} = \lambda_G \; \Pi_Q \Pi_S \Pi_T \; \text{failures / 10^6 hours} \\ \lambda_{ss} & \text{is the steady state failure rate} \\ \lambda_G & \text{is the generic steady state failure rate (table look up based on field data)} \\ \Pi_Q & \text{is determined by the part quality} \\ \Pi_S & \text{is determined by the electrical stress} \\ \Pi_T & \text{is related to operating temperature} \end{array}$

Standards for hardware reliability prediction

- MIL-HDBK-217 Part Stress & Part Count MIL-HDBK-217 F Notice 2.
- 217Plus Based on Handbook of 217PlusTM Reliability Prediction Models, 26 May 2006 by Reliability Information Analysis Center (RIAC).
- Telcordia Issue 2 Reliability Prediction Procedure for Electronic Equipment, SR-332, Issue 2, September 2006
- IEC 62380 (RDF 2003)
 Updated version of RDF 2000 UTEC 80810 method French Telecom reliability prediction Standard. It includes most of the same components as MIL-HDBK-217.

