
NonStop® Advanced Architecture

David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia,

Robert Jardine, Jim Klecka, Jim Smullen

Hewlett Packard Company
{David.Bernick, Bill.Bruckert, Paul.DelVigna, Dave.Garcia, Robert.Jardine, Jim.Klecka, Jim.Smullen}@hp.com

Abstract
For nearly 30 years the Hewlett Packard NonStop

Enterprise Division (formerly Tandem Computers
Inc.) has produced highly available, fault-tolerant,
massively parallel NonStop computer systems. These
vertically integrated systems use a proprietary
operating system and specialized hardware for
detecting, isolating, and recovering from faults. The
NonStop Advanced Architecture (NSAA) uses dual or
triple modular redundant fault-tolerant servers built
from standard HP 4-way SMP Itanium®2 server
processor modules, memory boards, and power
infrastructure. A unique synchronization mechanism
allows fully compared operations from loosely
synchronized processor modules. In addition, the
NSAA improves system availability by additional
hardware fault masking, and significantly lowers cost
by leveraging existing high-volume Itanium server
components.

1. Introduction

The NonStop system is a massively parallel
cluster of independent processors each running its own
copy of the operating system [1]. The processors
communicate with each other and with shared I/O
adapters through the ServerNet® [2] system area
network (SAN). A single hardware failure can disrupt
at most one processor, I/O adapter, or interconnect
path. Even with a failure, the redundancy in the system
allows the user’s application to continue uninterrupted.

NonStop systems rely on self-checked processor
modules that provide a simple guarantee: they either
provide the correct result, or they promptly stop and
emit no result, preventing incorrect data from
propagating elsewhere in the system.

The methods used to achieve self-checked
processors have evolved over the span of different
NonStop processor products. Early systems used
custom designed processors with self-checking
techniques such as redundancy codes to detect failures.
For the last sixteen years, all NonStop processors have
been built with tightly lock-stepped microprocessors.
Two microprocessors using the same clock have their
outputs compared after each operation and
immediately signal any discrepancy. See figure 1.
Redundancy codes in the memory and cache ensure
that any memory errors are corrected or result in the
immediate stopping of the processor.

Future NonStop systems will not be able to use
these same techniques. Trends in microprocessor
design mean it is no longer viable to duplicate and
compare tightly lock-stepped microprocessors. For
example:
• Minor nondeterministic behavior, such as an

arbiter of asynchronous events, will not affect
normal operation but will disrupt lock-stepped
operation of the microprocessors.

• Power management techniques with variable
clock frequencies cannot be used with lock-
stepped microprocessors.

• Multiple very high-speed functional blocks
integrated onto one die result in multiple clocks
and asynchronous interfaces, making lock-
stepping difficult (or impractical).

• Smaller die geometries result in higher soft-error
rates and require low level fix-up routines. This
greatly complicates lock-stepped operation of the
microprocessors.

• Future microprocessors will predominantly be
Chip Multi-processors (CMP) and have multiple
processor cores on each die. NonStop systems
rely on the fact that a single failure can disrupt at

f

most one processor in the system. A failure in a
CMP would disrupt multiple processors –
something the pre-NSAA NonStop system
architecture cannot tolerate.
In addition, market forces produce continual

pressure to reduce the cost of product and cost of
development. High volume 4- or 8-way SMP servers
have significantly better cost/performance than
previous high-data-integrity NonStop hardware.
Leveraging these servers would be desirable, but there
are significant problems, not the least of which is that
these servers are not self-checking.

The NonStop Advanced Architecture (NSAA) is a
new way of building fully self-checked processors
without requiring lock-stepped comparison of
microprocessors. NSAA systems can deterministically
run an application on multiple microprocessors
without requiring custom processor boards running the
exact same operations on each clock cycle. NSAA
uses slightly modified traditional servers in a dual or
triple modular redundant configuration. The redundant
processors are said to be in loose lockstep. That is,
they deterministically run the same application
instruction stream, but they are allowed to run at
different clock rates, to independently do error retries
or fixup routines, and to hit or miss cache(s) at
different points.

This paper begins with a description of the
NonStop architecture and explains the methods for
achieving high reliability. Next the new NonStop
Advanced Architecture is explained. Further sections
describe key features of the NSAA including voting,
the synchronization of IO and interrupts, as well as
online replacement of a processor module.

2. NonStop System Background

NonStop systems are used in applications that
require the very highest levels of availability, data
protection, or scalability, such as automatic teller
systems, credit card authorization, retail point-of-sale,
stock trading, funds transfer, cellular phone tracking
and billing, 911 emergency calls, electronic medical
records, travel and hotel reservations, and electronic
mail.

Today, well-managed NonStop systems achieve
“five nines” (99.999%) application availability in the
face of unplanned outages (based on customer-
reported outages attributable to NonStop hardware,
software, or processes). The goals for data integrity
protection are similarly ambitious: these NonStop
systems are expected to experience undetected data
corruption at a rate of less than one FIT per processor

(one undetected error per billion hours of operation).
This data integrity goal is two or more orders of
magnitude smaller than expected for an unchecked
microprocessor [3].

With respect to scalability, our goal is to approach
100% linear scalability from a few to thousands of
processors. In this context, scalability means that the
amount of incremental useful work done when any
processor is added to a cluster is essentially the same
as the incremental amount of work that was
accomplished when each earlier processor was added.
This goal contrasts with conventional systems, for
which scalability degrades significantly as a system or
cluster grows from 8 to 16 to 32 to 64 processors, etc.
NonStop systems are not subject to shared-memory
multiprocessor scaling issues such as memory
bandwidth contention, shared lock contention, and
cache-line contention.

NonStop systems comprise multiple processors,
I/O adapters, storage devices, communications lines,
and system area networks (SAN) (figure 1). Two or
more of each of these components are used in an all-
active, ‘N+1’ configuration, providing full backup in
the event of failure. Each processor is associated with
its own memory; there is no memory shared among
processors. Instead, the processors are independent
and communicate with each other only via messages
passed over the SAN. The SAN connects all of the
processors to each other as well as to all I/O adapters.
Because all system components (processors, I/O
adapters, I/O devices, and the SAN itself) are
replicated, no single fault can stop the user's
application.

Each of these hardware components is self-
checking and (except for simple correctable or
retryable errors, such as many memory errors and I/O

f

timeouts) implements a fail-fast philosophy: when an
error is detected, the component stops. It either works
correctly or removes itself from the system. This
approach provides a high level of fault containment
and also serves to unambiguously identify the failing
component. When a component fails for any reason,
its workload is distributed among the remaining
components, thus providing fault tolerance.

The operating system executing on these systems
is the NonStop Kernel [4]. It provides the usual
operating system features (memory management,
process control, etc.) along with a sophisticated
message system and a variety of mechanisms to
recover from failures, both hardware and software.

Critical system software is implemented as
process pairs, a primary and backup copy of the same
program. The primary process performs the actual
work of the pair and communicates state changes to
the backup process via interprocessor messages.
When a fault occurs, the backup process can take over
the responsibilities of the pair. Such a fault could be
either a hardware fault (e.g., the failure of a processor)
or a software fault (e.g., the failure of the primary
process due to a consistency check, an invalid address,
or similar fault). When a backup process takes over
from its primary process, the message system
automatically routes messages intended for that
process pair to the former backup (now primary)
process.

(Process pair takeovers due to failure of the
primary process happen immediately. Takeovers after
a processor failure, whether done because of a
hardware or a software fault, are usually accomplished
within a few seconds. This time is long enough to
prevent the NonStop architecture from serving
extreme real-time requirements, but it is quite
satisfactory for commercial on-line transaction
processing applications, and it is very short when
compared with so-called “high-availability” clustered
solutions.)

Twenty-five years ago, application writers had to
write process pairs by hand and undertake the difficult
job of assuring that the backup could recover in all
cases. Modern applications avoid this work by using
system-supplied middleware such as the NonStop
Pathway [4] or Tuxedo transaction monitor. By
layering on top of this middleware, the user’s
application becomes fault tolerant with no additional
work or specialized knowledge required.

With N+1 processor redundancy, the workload of
a failing processor is shifted to the remaining
processors without any disruption to the user’s
application. A single processor failure is not a critical

problem, as it does not result in a customer system
outage. After a processor is replaced, the workload
migrates back to the new processor. (Workload
shifting in transactional OLTP applications is done by
simply routing new transactions to server processes in
the other processors.)

The system area network, ServerNet, is a high-
speed, low-latency, packet-switched network, used for
both inter-processor communications (IPC) and input-
output (I/O). It comprises two independent fabrics,
connecting all processors to each other as well as to all
I/O adapters. A single failure in ServerNet can disrupt
at most one fabric. Packets are protected by a (CRC)
checksum; lost or corrupted packets are retransmitted,
first on the same fabric, and then, if necessary, on the
other fabric. Both fabrics are typically used at all
times by the various processors making independent
choices of the fabric to be used for any given message.

ServerNet provides “memory semantics” similar
to InfiniBand® [5] or RDMA/Ethernet [6] (although
ServerNet does not provide direct user-mode access to
RDMA). Data can be pushed (remote write) or pulled
(remote read) between any pair of components on the
SAN, with appropriate permissions established by the
owner of the resource (which can be enforced at byte
granularity). Thus, for IPC, the message system uses
the SAN to send and receive messages to/from other
processors. For I/O, the I/O adapters use the SAN to
pace the movement of I/O data to and from the host
(processor) memory.

Fault tolerance for storage data is provided by two
mechanisms: end-to-end checksums for error
detection and mirrored volumes for data recovery.

Logical disk volumes are implemented by a pair
of mirrored drives or Logical Units. Writes are
performed to both volumes; reads are optimized to use
the copy that should provide the quickest access time.
In case of a read error, the data can be read from the
mirror copy. In case of a catastrophic media failure of
one of the drives in a logical disk volume, the drive
can be replaced and “revived” with the contents of the
other disk drive in an on-line operation. Optional
Enterprise Storage Systems can also mask many disk
failures from both application software and even the
operating system.

Disk data is protected by end-to-end checksums.
For each block, a checksum covering the data and
block address is calculated in the processor, written to
disk along with the data, and verified by the processor
when the block is read. In the event of a checksum
error, the data is read from the other member of the
mirrored pair.

Layered on top of the NonStop Kernel are a

f

distributed, transactional, relational database (NonStop
SQL), and other transaction processing software.
These software layers are designed and tightly
integrated with the operating system to provide high
performance, scalability, and high levels of fault
tolerance and data integrity protection. In addition, a
distributed file system and middleware present an
integrated single-system image to application software
and to external (LAN and WAN) clients.

3. The NonStop Advanced Architecture

The new architecture retains the overall logical
structure and all of the features of the previous
NonStop architecture, but it uses a different method of
error detection in the processors.

Instead of lockstepping microprocessors, the
NSAA detects processor failures by comparing the
outputs of I/O operations (both IPC and device I/O)
from two or three slightly modified high-volume 4- or
8-way SMP servers. The two or three servers execute
similar instruction streams, each running on an
independent clock. All outputs from the servers are
compared for 100% detection of faults. Because the
primary point of comparison is on I/O output
operations, variations in operation for error handling,
e.g. error correction, cache retries etc. are tolerated and
do not result in a processor miscompare, unlike in
traditional lockstep mechanisms.

Either dual or triple modular redundant (DMR,
TMR) configurations of Itanium servers are used in
the NSAA. Each server is slightly modified to support
reintegration (see Reintegration below) and output
comparison (see Voter below). Both DMR and TMR
provide full detection of faults. While DMR is more
cost effective, TMR is capable of unambiguous
determination of which server is in error and allows
uninterrupted operation, even after a failure.

DMR meets the requirements for fault tolerance in
a NonStop System: it provides unassailable detection
and isolation of failures within a processor. Since the
NonStop System can tolerate the stopping of a single
processor, DMR adequately ensures continuous
application availability for the customer.

A successful fault-tolerant computer minimizes
the impact of hardware and software errors on the
customer’s application. However, that improvement
means that human errors, such as erroneous service
actions, become a more significant cause of outages.
For example, a user attempting to replace the lone
working module of a redundant pair can cause the
application to fail. The NSAA TMR system is resilient
to such faults. Removing the wrong module in a TMR

system reduces the degree of redundancy but does not
stop processor operation.

Another benefit of TMR is that it shields old
applications that were neither written as process pairs
nor layered above fault-tolerant middleware from
hardware failures. Such non-fault-tolerant applications
would be disrupted by a single processor outage. TMR
removes almost all single hardware causes of failure.

In a TMR NonStop system, three 4-way SMP
servers operate as four processors of the scalable
NonStop system. Given this arrangement, the term
“processor” is ambiguous. Instead, the NSAA defines
the terms ‘slice’, ‘logical processor’, and ‘processor
element’ (PE). Figure 2 shows the three 4-way SMP
servers as columns, each referred to in the NSAA as a
slice. Each row in figure 2 represents a logical
processor. In a NonStop system, the logical processor
is the self-checked member of the cluster. The logical
processor is made up of processor elements (PEs), one
from each of the slices. Each processor element is a
microprocessor running its own instruction stream and
has a portion of the slice memory dedicated to its use.
There are no synchronized clocks among the slices.
Each PE runs asynchronously of the other PEs in the
logical processor.

Processors in the NonStop architecture do not

share memory among themselves; instead, each
maintains its own copy of the operating system and
communicates only through the system area network
(SAN). Even though the NSAA hardware supports
shared memory, it is not used by the NSAA
processors. The memory system in each slice is
partitioned so that each PE can access only its own
portion of the memory. This isolation of each PE’s
memory space is enforced through unique virtual to
physical mappings as well as the Itanium protection

Slice A

PEA0

PEA1

PEA3

Slice B

PEB0

PEB1

PEB3

Slice C

PEC0

PEC1

PEC3

Each logical processor is
three (TMR) processor
elements running the
same instruction stream
on three loosely lock
stepped Processor
Elements

PEA2 PEB2 PEC2

Each Slice is an
individually powered
and clocked 4-way
SMP server

Each Processor
Element is an individual
microprocessor running
its own instruction
stream.

Figure 2: Four Logical NSK Processors
built from TMR 4-way SMP servers.

f

key mechanism [7].
All I/O from the logical processor goes through

the system area network, which in turn connects to
additional TMR/DMR processors and to I/O adapters.
There are no individual I/O adapters on the slices. The
I/O section of each standard high-volume server is
replaced with serial links tying the two or three server
boxes to ‘logical synchronization units’ or LSUs
(figure 3). The fully self-checked LSU contains the
voting logic and SAN interface for one logical
processor. The voting unit compares all output
operations of a logical processor, ensuring that all
slices agree on a result before the data is written to the
system area network. Should one of the slices
disagree, the voting unit selects the data from the other
two and software stops the failing PE.

The NSAA allows each logical processor to have
either one or two LSUs. If a logical processor is
configured with a single LSU, an LSU failure stops the
logical processor. Such a failure does not stop the
customer’s fault-tolerant application because LSU
replacement does not affect the slices (it is an
independently-replaceable unit), and the NonStop
system can tolerate a single logical processor failure.

For those customers seeking to be shielded from
any possible hardware induced failure, a second LSU
can be associated with the logical processor. The
second LSU enables four independent SAN fabrics.
With two LSUs per TMR logical processor, the system
can be configured to be fully tolerant of any two
hardware faults.

3.1 Symmetric Memory State

When fault-tolerant microprocessors are run on
the same clock they are referred to as lock-stepped or
tightly synchronized. By contrast the NSAA is loosely

synchronized. Each PE of the logical processor
updates memory so that on any output operation the
data pulled from each slice’s memory is the same. To
keep the memories symmetric, each PE executes
basically the same instruction stream.

The PEs of a logical processor all have the same
virtual to physical mapping and all take page faults at
the same point in the instruction stream. However,
they need not all have the same cache state and TLB
entries. One PE can miss in cache or TLB while the
others hit. This flexibility is allowed since the only
requirement is that I/O operations of each PE be the
same.

The requirement that the PEs do symmetric page
faults limits the NSAA’s ability to exploit Itanium data
and control speculation [7]. Even though the
speculative code executed by an Itanium processor is
not necessarily symmetric across all PEs, the resulting
state of memory is deterministic. Unfortunately, the
speculation fixup routine that might execute on one PE
and not the other could create an asymmetric page
fault. Lacking the compiler restrictions to prevent
these asymmetric page faults, the NSAA takes the safe
path and disallows all data and control speculation that
uses independent speculation fixup routines. The
NSAA allows only the inline form of Itanium data
speculation fixup. Single instruction check loads, (e.g.
ld.c) are allowed, but to avoid asymmetric page faults
the NSAA does not allow advanced load check fixup
routines (e.g. a fixup routine reached by a chk.a
instruction) or any form of control speculation.

At any point in time each PE will be slightly
ahead or behind the other PEs in the logical processor.
The process scheduling and interrupt handling
algorithms on each server are modified so that
asynchronous inputs are acted upon by each server at
the same point in their instruction stream (See
Rendezvous below).

Input data from the system area network is written
into each slice’s memory. Incoming packets from the
system area network arrive in each PE’s memory at
slightly different times. This data is considered
asymmetric until an I/O completion notification
informs all the PEs that the data has arrived. A
program must not read incoming data before the
completion notification. To prevent an application
program from reading this potentially asymmetric
data, the operating system marks the page inaccessible
until the I/O operation completes. If an application
reads or writes the page prematurely, a fault is
generated and the process is made inactive until the
I/O operation completes. Similarly, a process is not
allowed to modify an active outbound I/O buffer.

f

To ensure symmetric operation, the time-of-day
(TOD) value used in the logical processor must be
synchronized for each PE. On a typical system, the
TOD is derived directly from a timer in the
microprocessor. Such a timer is unusable in the NSAA
since each slice executes instructions at a slightly
different rate due to asymmetric cache misses and
slightly different clock oscillators. To solve this
problem the LSU hardware provides a TOD value for
the entire logical processor. Software can access this
TOD value by reading a register in the LSU. For
higher performance, the TOD value either can be
pushed to each PE during the Rendezvous operation
(see below) or can be deterministically estimated by
each PE.

3.2 Logical Synchronization Unit: Voter &
SAN Interface

The Logical Synchronization Unit (figure 3) is
NSAA specific hardware that provides the voter and
SAN interface function for the processor. There are
one or two LSUs per logical processor. For an NSAA
system built from 4-way SMP slices, there would be
four or eight LSUs for the four logical processors.
Failure of any one LSU affects only a single logical
processor. The LSU (both the voter and SAN interface
function) is designed with a completely self-checking
methodology [8] to ensure that any data passing
through it is not corrupted. The LSU is designed to
either function correctly or self-detect the failure and
shut down, thus isolating failures from the rest of the
system. An LSU can be replaced on-line without
affecting any of the other logical processors. The
failure rate of an LSU is expected to be a small
fraction of the failure rate of a PE. For the first
implementation of the NSAA, the LSU is built from an
FPGA voter and an ASIC ServerNet SAN interface.

The voter logic ensures that any data leaving the
logical processor is agreed to by a strict majority of the
slices. The voter logic checks all PIO (Programmed
I/O) loads and stores from the PEs to ensure that the
identical operation is coming from each slice. Since all
I/O operations from the logical processor go through
the SAN interface, the voter guarantees that any data
going onto the SAN is agreed to by all the slices. The
voter logic not only keeps any failure from
propagating outside the logical processor, but also can
often identify which slice is in error.

In a TMR configuration, a voter miscompare
unambiguously identifies which slice is at fault. With
the failing slice identified, the I/O is allowed to
complete with the good data. Application software
continues running on the logical processor, and low

level system software can shut down the failed PE.
After a failure, the PE can either be restarted and
reintegrated or the entire slice can be replaced.
Restarting the PE is the best choice for a random soft
error. If the error repeats, replacement is in order. A
three-way voter miscompare results in halting of the
logical processor, although there is no known single
failure mode that could cause such a miscompare.

In a DMR configuration, a voter miscompare can
be ambiguous as to which slice is at fault. Certain
errors, like a bus fault, are self-identifying and allow
continued operation on the good slice. But if the voter
logic simply detects a miscompare with no other
information, the logical processor must be halted.
Since the NonStop architecture can tolerate the loss of
a single logical processor, the application will fail-over
to other logical processors and continue to run.

The NSAA offers an option to add a simple
heuristic that may disambiguate a DMR voter
miscompare. The heuristic uses a probation vector
with one bit for each possible slice. If a bit is set and
there is an ambiguous DMR vote miscompare, the
voting is resolved either in favor of the slice that does
not have its probation bit set or against the slice that is
unable to access the probation bit. The probation bit is
set for a short time after a slice with a known error is
restarted or if the slice has been experiencing
excessive correctable errors. On the assumption that a
slice already identified as having problems will tend to
exhibit more problems, the bit allows hardware to
choose which slice’s I/O to block and which to allow.
Probation bits are expected to be only infrequently set
and then only for a short period.

3.3 Reintegration

Reintegration is the process where Processing
Elements (PEs) on a single slice are brought back into
loose synchronization with PEs on other slices.
Reintegration is required after a new slice is installed
or replaced or after a voting error results in a stopped
PE. After just a single error, a failing PE might be
reintegrated with the rest of the logical processor on
the assumption the voting error was the result of a
transient error and not a persistent fault.

The reintegration procedure copies the state of the
running, on-line PE’s memory into the memory of the
newly added PE. After the memory state is copied, the
new PE starts executing the exact same instruction
stream as the other PEs. The reintegration operation
happens while the logical processor is online and
executing the customer’s application. All memory
writes that occur in the source PE are also copied to

f

the target, assuring a consistent memory image.
Reintegration consumes only a small percentage of
CPU utilization and takes less than ten minutes to
complete for a 32 GByte logical processor.

To facilitate reintegration, the standard 4- or 8-
way SMP server is modified to support a reintegration
link (figure 4). The reintegration link forms a
directional ring connecting the two or three slices. The
reintegration link connects to logic inserted between
the processor chipset and the main memory. The logic
replicates each local write to memory and sends it
across the reintegration link to the neighbor slice. A
slice in normal operation ignores the input from the
reintegration link. But during reintegration, the
reintegration target feeds its memory with write
operations from the reintegration link. The
reintegration link for our Itanium2 servers supports
full-speed memory writes transmitting 7.5 GByte/s
over 24 optical fibers, each operating at 3.125 Gbit/s.
The reintegration links are CRC protected, and correct
link operation is checked even when the links are not
in use for a reintegration operation.

The reintegration procedure consists of several
steps:

1) The reintegration target PE is quiesced and
executes a tight, in-cache loop, not accessing memory.

2) The reintegration target PE switches its
memory system to accept write operations from the
incoming reintegration link.

3) A background reintegration process is started
on the running processor elements. The process

sweeps all of physical memory forcing a write-back of
each cache line (by touching each cache line with an
atomic read and write of the same data). This causes
all of the memory contents of the source slice to be
copied to the reintegration target. DMA write
operations from the SAN as well as memory writes
from the active processes are also copied to the
reintegration target.

4) At the end of the sweep, the running PEs are
momentarily stopped while their internal state is
written to memory and their caches are flushed to
memory. After the flush, the reintegration target
memory is identical to that of the source.

After the flush completes, all the processor
elements (including the reintegration target) can
resume operation. All the PEs are executing the same
instruction stream and memory is symmetric among
the PEs of the logical processor. Except for the brief
(a few milliseconds) disruption in step (4), the user’s
application continues to run throughout the
reintegration operation. This disruption is much less
than the disruption caused by a processor takeover in
the traditional NonStop architecture.

3.4 Rendezvous

Interrupts to the processor, such as I/O completion
interrupts, arrive at each PE at slightly different times.
If the processor were to immediately handle an
interrupt, each PE would be interrupted at a different
point in its instruction stream. This divergent
execution would result in asymmetric memory state in
the logical processor. In order to keep memory
symmetric, each processor element must handle an
interrupt at the exact same point in the instruction
stream as the other PEs in the logical processor.

To do symmetric interrupt handling, the NSAA
defines a scheme for synchronizing the execution of
interrupt handler code. This “rendezvous” scheme
consists of:
• Hardware in the Voter logic that writes up to 32

bytes of data from each PE to the rest of the PEs in
the logical processor.

• A small section of code called a Voluntary
Rendezvous Opportunity (VRO) embedded
throughout the OS and implicitly invoked by user
applications.

• A rendezvous protocol, in which each PE proposes
a certain VRO that, when reached, will schedule
the interrupt handler for execution.
After receiving an interrupt, each PE initiates a

rendezvous operation. A rendezvous operation consists

LSU

Voter

SAN
Intfc

Voter

SAN
Intfc

Voter

SAN
Intfc

Slice A

Slice B

Slice C

Reintegration Links

LSU LSU

System Area Networks

Figure 4: Reintegration Link Reflects
Memory Writes in one Slice to the Next Slice

f

of each PE writing special rendezvous registers in the
voter logic. After all the writes complete, the voter
reflects the data from the rendezvous registers back to
a specific block of memory in each PE. Rendezvous
code in each PE then reads the block of data to see
what the other PEs wrote.

The PEs use the block of data to propose where in
the instruction stream they intend to execute the
interrupt handler code for a specific interrupt. The
proposal consists of an interrupt identification and a
VRO sequence number in the near future. Each PE
compares its proposal with that of the other PEs and
selects the highest proposed VRO sequence number.
When each PE reaches that VRO it can symmetrically
schedule the interrupt handler for execution.

The VRO is a small section of code inserted into
the code stream. At a minimum, the VRO code will be
inserted into every privilege level transition. The
highly optimized VRO code takes only a handful of
instructions to execute in the typical case where there
is no synchronization action required. The VRO code
increments an identifying sequence number and
checks to see if any interrupt handlers are pending
execution at this particular VRO.

The intent is to execute VRO code periodically.
The VRO serves as a landmark that identifies a
particular point in the symmetric instruction stream
that is the same in each of the PEs in the logical
processor. This landmark can then be used to process
interrupts or dispatch new processes all the while
maintaining symmetric memory state among the PEs
of the logical processor.

3.5 Uncooperative Processes

When a process executes for a long time without
encountering a VRO, it is referred to as
“uncooperative” and must be interrupted.
Uncooperative processes are undesirable in that they
increase the latency to handle interrupts and delay the
dispatching of higher priority processes. Due to
automatic embedding of VROs, the typical transaction
processing workload run on NonStop systems is
expected to be cooperative.

The interval timer interrupt used to detect long
inter-VRO intervals does not occur at the same point
in the instruction stream of each processor element of
the logical processor. In order to ensure a symmetric
memory state, each PE must be brought to the same
point in its execution before the uncooperative process
can be suspended and another process dispatched. The
NSAA can use any one of several solutions to do this.

For our Itanium-based implementation, pure

instruction counting based on the retired user-level
instruction count alone may not be sufficient to
synchronize the PEs, as its function is to monitor
performance, not to count perfectly in every
circumstance. So, we don't trust it to be perfect -- we
assume only that its error is bounded and reasonably
small over a short time interval. After first
synchronizing based on the count of retired user-level
instructions, we assume all PEs are within a bounded
number of (actual) instructions, N. By counting only
user-level instructions we allow low-level system code
to do soft-error fixups on one PE without affecting the
instruction count.

We define two algorithms to bring the PEs to the
exact same point in the instruction stream, called
UNCP-Store and UNCP-Trace.

The UNCP-Store algorithm identifies process
state that could be different in the PEs. It then chooses
one PE (the source PE) and copies its values for that
state to the other (target) PEs, putting the target PEs at
the same execution point as the source PE.

To identify process state that differs among the
PEs, breakpoints are set in each PE so that all user
stores are trapped. Each PE is executed for at least N
instructions, trapping on every store. The trap handler
simply saves the address that is being stored and
resumes the process. After this step each PE has a set
of locations they have modified. The union of these
sets represents all the memory locations that may
differ. One PE is chosen, and its values for those
locations are copied to the other PEs. Finally, the
register state is copied from the chosen PE to the other
PEs. All copies of the uncooperative process are now
synchronized.

Due to copying some state from the source to the
target PE(s), the UNCP-Store algorithm is vulnerable
to error propagation. We expect this risk to be quite
small, both because the algorithm should be executed
infrequently and the amount of state that is copied
should be small. The UNCP-Trace algorithm,
described next, addresses this vulnerability.

The second algorithm, UNCP-Trace, does not
copy state from one PE to the others. Instead, it
determines which PE is ahead, and by how far, and
executes instructions in the trailing PEs until they are
synchronized with the leader.

Once the PEs are all at the same retired instruction
count, each PE does single-step execution for N to 3N
instructions. As a PE executes the instructions, it
records the instruction pointer (IP) and the inputs of
each instruction. For an add instruction at IP 200, with
addends 5 and 9, it would record 200:5,9. The PEs
exchange and correlate their instruction traces to

f

determine where they are relative to one another. The
matching algorithm (not described here) determines
the length of trace necessary to determine the leader,
which PE is the leader, and how far the trailing PEs
must execute to catch up.

Once the PEs are synchronized, by either of these
methods, one final step is taken. A VRO is inserted
into the code at the point of synchronization. This
change prevents the process from becoming
uncooperative again, at least at this point in its
execution.

3.6 Asymmetric Memory Dump

The unique capabilities of the NSAA provide
additional benefits. As an example, they are exploited
in a method that allows for a post-failure dump of
processor memory while still immediately reloading
the logical processor. In previous systems, preserving
the memory state of a failed processor for later
analysis of software faults meant delaying the return of
that processor to full availability. With redundant
processor and memory state available in the NSAA,
one of the dual or triple redundant processor/memories
is preserved for the memory dump while the other one
or two processor/memories are immediately
reinitialized to run the operating system. After the
memory dump completes, a reintegration operation
loads the “preserved” processor element with the
currently running state of the other one or two
processor elements, thus returning the logical
processor to its fully redundant state.

4. Performance Implications of the NSAA

NSAA is designed to offer the highest levels of
availability required by the most demanding
customers. How much does this architecture affect
performance in comparison to conventional
uniprocessors? At this stage in the design, some of the
answers are estimates, but confidence is high that the
performance implications of NSAA are small.
• I/O latency is slightly increased due to voting the

results; we expect this impact to be negligible;
• Memory latency is increased due to the memory

copy hardware, which is in the path to memory
even when reintegration operations are not active;
based on modeling of processor caches and the
memory subsystem, we expect this impact to be
small, but not negligible, probably in the 5%
percent range;

• Interrupt-handling latency is slightly increased

due to the voluntary rendezvous mechanism of
handling interrupts at the same logical time in
each processor element; in most on-line
applications, we expect this extra latency to have
a very small impact;

• We do not currently take advantage of the Itanium
speculation features. At least for current Itanium
processors, we expect only a few percent
performance impact for most applications.
Because future Itanium speculation features may
be more effective, we are planning additional
work to allow the use of these features in future
generations of NSAA processors.
In summary, we expect the negative impact of

NSAA to be in the range of 5% to 10% compared to a
more traditional uniprocessor approach. However,
balancing those performance decreases are several
significant benefits that NSAA provides relative to our
previous designs:
• NSAA allows increased clock frequency relative

to a more traditional tightly-lockstepped
processor; this may become an even larger
benefit with the advent of power management
techniques with variable clock frequencies;

• NSAA allows NonStop processors to make use of
cost effective chip multi-processors. The
traditional NonStop architecture cannot otherwise
run on SMP hardware;

• NSAA allows the development of processors with
significantly lower development costs, which is a
significant benefit given the relatively low
volumes in this market segment.

5. Competitive Approaches

Prior to the mid-1980’s, fault-tolerant computers
for enterprise class data processing used custom-
designed processors with redundancy techniques such
as parity predicting ALUs to ensure correct operation
of the processor. With the advent of microprocessors,
these techniques were dropped in favor of duplicating
and comparing standard microprocessor parts.
Standard microprocessors have significantly higher
performance and lower cost than specially-designed
self-checked processors.

The most straightforward way to duplicate and
compare a microprocessor is the technique of hard
lockstepping, or running both microprocessors with
the exact same clock. Each microprocessor is expected
to produce the same outputs given the same inputs.
Tandem Computers, IBM and Stratus Computers have
all successfully used this technique. But hard lock-

f

stepped microprocessors are susceptible to minor non-
determinisms and can have high failure rates due to
otherwise correctable soft-errors. Furthermore, such a
design can be unusable if a minor design error in the
microprocessor renders the otherwise perfectly good
part unusable for lock-stopped operation (this is a
particularly troublesome problem, as a microprocessor
vendor would be reluctant to undertake a costly design
change for a problem that affects a relatively small
market segment).

The Tandem Integrity S2 system moved away
from the hard lockstepping approach and allowed each
microprocessor to run on its own clock. To ensure
deterministic operation, the microprocessor’s
performance counter is used to count retired
instructions. Inputs to the microprocessors are
carefully controlled. This technique allowed Tandem
to use commodity microprocessors with only specially
designed I/O interfaces.

The NSAA extends the duplicate and compare
technique to allow each of the microprocessors to run
more independently of the others. This allows running
slices with different clock rates and even different
microprocessor versions. Furthermore, NSAA allows
asymmetric TLB fixup code and error fixup routines
and even limited non-deterministic operation.

Current research in fault tolerant computing often
discusses multiple threads doing serial execution of
the same instruction stream [9]. This “replication in
time” technique was first used in space-borne systems
subject to high soft error rates. The technique is
receiving renewed interest due to the high soft error
rates in processors with sub 60nm features. These
solutions have not been commercially viable in the
fault tolerant data center for several reasons.
Depending on how the checking is done, the approach
might not be able to detect hard failures and can
negatively impact performance. Furthermore, the
checking covers processor execution units but not
necessarily caches, memory controllers, and bus
interconnects.

6. Conclusion

The NonStop Advanced Architecture avoids
several roadblocks that would have affected new
systems built with the prior NonStop architecture. The
NSAA leverages existing 4-way Itanium2 servers,
lowers development cost, and provides better customer
value. And it does all this while increasing the
fundamental deliverable of NonStop systems, better
system availability for the customer’s application.

The NonStop Advanced Architecture is the basis

for all planned future NonStop systems. The MIPS®-
based product line will be phased out in favor of the
Itanium-based NSAA systems. New NSAA system
designs are ongoing and NSAA will first ship to
customers in mid-2005.

7. Acknowledgments

The authors thank Wendy Bartlett and David
Schorow for their thoughtful reviews of earlier drafts
of this paper. We also thank the anonymous DSN
reviewers, whose perspective and useful comments
helped us to improve the paper significantly. In
addition, we gratefully acknowledge the many
contributions of the hardware and software developers
who are in the process of bringing this new
architecture to life.

8. References

[1] “Commercial Fault Tolerance: A Tale of Two Systems”,
W. Bartlett and L. Spainhower, IEEE Transactions on
Dependable and Secure Computing, Jan. – Mar. 2004.
[2] “ServerNet® II”, D. Garcia, W. Watson, Proceedings of
the Parallel Computer Routing and Communication
Workshop, 1997
[3] “The Risk of Data Corruption in Microprocessor-based
Systems”, R. Horst, D. Jewett, and D. Lenoski, Proc 23rd
International Symposium on Fault-Tolerant Computing, June
1993.
[4] “Reliable Computer Systems, Design and Evaluation”,
2nd ed., pp 586-648, D. Siewiorek, R. Swarz, Digital Press,
1992.
[5] “InfiniBand® Architecture Specification Volume 1,
Release 1.1”, November 6, 2002.
http://www.infinibandta.org/specs.
[6] “RDMA Protocol Specification”, Version 1.0, R. Recio,
P. Culley, D. Garcia, J. Hilland,
http://www.rdmaconsortium.org/home/draft-recio-iwarp-
rdmap-v1.0.pdf
[7] “Intel® Itanium® Architecture Software Developer’s
Manual”, Intel Corporation, October 2002.
[8] “Reliable Computer Systems, Design and Evaluation”,
2nd ed., pp 124-130, D. Siewiorek, R. Swarz, Digital Press,
1992.
[9] “Transient Fault Detection via Simultaneous
Multithreading”, S. Reinhardt, S. Mukherjee, Proceedings of
the 27th Annual International Symposium on Computer
Architecture, 2000.

