IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

A Large-Scale Study of Failures
in High-Performance Computing Systems

Bianca Schroeder and Garth A. Gibson, /EEE

Abstract—Designing highly dependable systems requires a good understanding of failure characteristics. Unfortunately, little raw data
on failures in large IT installations are publicly available. This paper analyzes failure data collected at two large high-performance
computing sites. The first data set has been collected over the past nine years at Los Alamos National Laboratory (LANL) and has
recently been made publicly available. It covers 23,000 failures recorded on more than 20 different systems at LANL, mostly large
clusters of SMP and NUMA nodes. The second data set has been collected over the period of one year on one large supercomputing
system comprising 20 nodes and more than 10,000 processors. We study the statistics of the data, including the root cause of failures,

337

the mean time between failures, and the mean time to repair. We find, for example, that average failure rates differ wildly across
systems, ranging from 20-1000 failures per year, and that time between failures is modeled well by a Weibull distribution with
decreasing hazard rate. From one system to another, mean repair time varies from less than an hour to more than a day, and repair

times are well modeled by a lognormal distribution.

Index Terms—Large-scale systems, high-performance computing, supercomputing, reliability, failures, node outages, field study,

empirical study, repair time, time between failures, root cause.

1 INTRODUCTION

ESEARCH in the area of dependable computing relies in

many ways on a thorough understanding of what
failures in real systems look like. For example, knowledge
of failure characteristics can be used in resource allocation
to improve cluster availability [5], [28]. The design and
analysis of checkpoint strategies relies on certain statistical
properties of failures [8], [24], [26]. Creating realistic
benchmarks and testbeds for reliability testing requires an
understanding of the characteristics of real failures.

Unfortunately, obtaining access to failure data from
modern, large-scale systems is difficult, since such data is
often perceived to be sensitive. Existing studies of failures
are often based on only a few months of data, covering
typically only a few hundred failures [22], [27], [16], [19],
[15], [7]. Many of the commonly cited studies on failure
analysis stem from the late 1980s and early 1990s, when
computer systems were significantly different from today
[3], [4], [6], [13], [22], [9], [11]. Finally, none of the raw data
used in the above studies has been made publicly available
for use by other researchers.

This paper analyzes failure data collected at two large
high-performance computing sites. The first data set was
collected over the past nine years at Los Alamos National
Laboratory (LANL) and covers 22 high-performance com-
puting (HPC) systems, including a total of 4,750 machines

e B. Schroeder is with the Department of Computer Science, University of
Toronto, Toronto, ON Mb5S 2E4, Canada.
E-mail: bianca@cs.toronto.edu.

o G.A. Gibson is with the Computer Science Department, Carnegie Mellon
University, Wean Hall 8219, 5000 Forbes Ave., Pittsburgh, PA 15213.
E-mail: garth@cs.cmu.edu.

Manuscript received 19 Mar. 2007; revised 7 Jan. 2008; accepted 7 Aug. 2008;
published online 28 Jan. 2009.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2007-03-0040.
Digital Object Identifier no. 10.1109/TDSC.2009.4.

1545-5971/10/$26.00 © 2010 IEEE

and 24,101 processors. The data contains an entry for any
failure that occurred during the nine-year time period and
that required the attention of a system administrator. For
each failure, the data includes start time and end time, the
system and node affected, as well as categorized root cause
information. The second data set was collected at another
supercomputing site, which prefers to remain anonymous,
and covers one year of node outages at one large HPC system
containing more than 10,000 processors. To the best of our
knowledge, this is the largest set of failure data studied in the
literature to date, both in terms of the time period spanned,
and the number of systems and processors covered. More-
over, all LANL data used in this work have been made
publicly available [1], presenting the first public release of a
large set of failure data from large-scale production systems.

Our goal is to provide a description of the statistical
properties of the data, as well as information for other
researchers on how to interpret the publicly released data.
We first describe the environments the data come from,
including the systems and the workloads, the data collection
process, and the structure of the data records (Section 2).
Section 3 describes the methodology of our data analysis. We
then study the data with respect to three important proper-
ties of system failures: the root causes (Section 4), the time
between failures (Section 5), and the time to repair (Section 6).
Section 7 compares our results to related work. Section 8
describes our ongoing efforts to create a public failure data
repository and some of our experiences in obtaining failure
data. Section 9 concludes.

2 DESCRIPTION OF THE DATA AND ENVIRONMENT

2.1 The Systems

We obtained data from two different high-performance
computing sites, LANL and a supercomputing site that
would like to remain unnamed.

Published by the IEEE Computer Society



338 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

TABLE 1
Overview of LANL Systems. Systems 1-18 are SMP-based, and
systems 19-22 are NUMA-based

TABLE 2
Overview of System X

[ (@ High-level system information || (11) Information per node category

[ @ High-level system information ] (II) Information per node category |

Mem

Procs Production

. Procs Production Mem .
| HW | Nodes Procs ‘ ‘ Jnode Time (GB) NICs
[ X T 20 ] 10,240 [[ 512 ] 10/05-now [ 1,024 | N/A |

| HW ID ‘ Nodes Procs H Jnode ‘ Time (GB) NICs
A T T B 8 | NA-12999 6] 0
B ) i ) 3 | N/A - 12003 51 1
c 1 3 T 3 3 [ N/A Z04/03 T 0
7 [ 04001 —now T 1
D | 4 164 328 2 | 12/02 = now 1] o1
5T 25 | 1,004 3 [ 1201 “now 6 2
5 2% 312 2 [ 0901 —01/02 6| 2
2 [ 0502 —now 81 2
4 | 0502-now 16| 2
7| 1024 4,09 4 | 0502 now 2| 2
4| 0502-now | 352 | 2
2 [ 10002 —now s 2
E | 8| 1024 | 409 4 | 1002 - now 16| 2
4 | 1002 - now 2| 2
9 2% ST 209703 “now p
0 2% T2 209703 “now P
T 28 512 2 [ 0903 —now T
2 [ 0903 —now P
12 32 128 4 09/03 — now 16 1
3 3% 756 7 [ 09703 now I
77256 ST 209703 “row T
15 756 512 2 | 09/03 —now T
F [16 ] 236 512 7 [ 09703 —now I
7 256 512 7 [ 09703 now |
7 [ 09703 —now P
181 sz 1024 2 | 03/05-06/05 4] 1
138 | 12/96 —09/02 Y
19 16| 2048 128 | 12/96 - 09/02 64 | 4
128 01/97 — now 128 12
20 4 | 6152 128 | 01/97 - 11/05 2| 12
G 80 | 06/05 - now 80 | o
28 [ T0/98—T2/04 | 128 | 3
32 | 01/98 - 12/04 16| 4
2l E S 128 | 1102 - now 64 | 4
128 | 11/05- 12/04 2| 4
T 2 T 756 || 236 | [1/04—now | 1024 | O

The LANL data span 22 high-performance computing
systems that have been in production use at LANL between
1996 and November 2005. Most of these systems are large
clusters of either Nonuniform-Memory-Access (NUMA)
nodes, or two-way and four-way Symmetric-Multiproces-
sing (SMP) nodes. In total, the systems include 4,750 nodes
and 24,101 processors. Table 1 gives an overview of the
22 systems.

The left half of Table 1 provides high-level information
for each system, including the total number of nodes and
processors in the system, and a system ID we use
throughout to refer to a system. The data do not include
vendor-specific hardware information. Instead, it uses
capital letters (A-H) to denote a system’s processor/memory
chip model. We refer to a system’s label as its hardware type.

As the table shows, the LANL site has hosted a diverse
set of systems. Systems vary widely in size, with the
number of nodes ranging from 1 to 1,024 and the number of
processors ranging from 4 to 6,152. Systems also vary in
their hardware architecture. There is a large number of
NUMA- and SMP-based machines, and a total of eight
different processor and memory models (types A-H).

The nodes in a system are not always identical. While all
nodes in a system have the same hardware type, they
might differ in the number of processors and network
interfaces (NICs), the amount of main memory, and the
time they were in production use. The right half of Table 1

categorizes the nodes in a system with respect to these
properties. For example, the nodes of system 12 fall into
two categories, differing only in the amount of memory per
node (4 versus 16 GB).

The data from the unnamed site cover one year of node
outages at a large supercomputing system, which we will
refer to as system X. Table 2 provides an overview over the
basic properties of system X. Note that the main difference
compared to the LANL systems is that system X employs a
very large number of processors per node (512) and that it
was put in production relatively recently (October 2005).

2.2 The Workloads

At both sites, most workloads are large-scale long-running
3D scientific simulations, e.g., for nuclear stockpile steward-
ship or for plasma flow analysis. These applications
perform long periods (often months) of CPU computation,
interrupted every few hours by a few minutes of I/O for
checkpointing. Simulation workloads are often accompa-
nied by scientific visualization of large-scale data. Visuali-
zation workloads are also CPU-intensive, but involve more
reading from storage than compute workloads. Finally,
some nodes are used purely as front-end nodes, and others
run more than one type of workload, e.g., graphics nodes
often run compute workloads as well.

Failure tolerance is frequently implemented through
periodic checkpointing. When a node fails, the job(s) running
on it is stopped and restarted on a different set of nodes,
either starting from the most recent checkpoint or from
scratch if no checkpoint exists.

2.3 Data Collection

The LANL data are based on a “remedy” database created
at LANL in June 1996. At that time, LANL introduced a site-
wide policy that requires system administrators to enter a
description of every failure they take care of into the
remedy database. Consequentially, the database contains a
record for every failure that occurred in LANL’s HPC
systems since June 1996 and that required intervention of a
system administrator.

A failure record contains the time when the failure
started, the time when it was resolved, the system and node
affected, the type of workload running on the node, and the
root cause. The workload is either compute for computa-
tional workloads, graphics for visualization workloads, or fe
for front-end. Root causes fall in one of the following five
high-level categories: Human error; Environment, including
power outages or A/C failures; Network failure; Software
failure; and Hardware failure. In addition, more detailed
information on the root cause is captured, such as the
particular hardware component affected by a Hardware
failure. More information on the root causes can be found in



SCHROEDER AND GIBSON: A LARGE-SCALE STUDY OF FAILURES IN HIGH-PERFORMANCE COMPUTING SYSTEMS 339

the released data [1]. The failure classification and rules for
assigning failures to categories were developed jointly by
hardware engineers, administrators, and operations staff.

Failure reporting at LANL follows the following protocol.
Failures are detected by an automated monitoring system
that pages operations staff whenever a node is down. The
operations staff then create a failure record in the database
specifying the start time of the failure, and the system and
node affected, then turn the node over to a system
administrator for repair. Upon repair, the system adminis-
trator notifies the operations staff who then put the node
back into the job mix and fill in the end time of the failure
record. If the system administrator was able to identify the
root cause of the problem, he provides operations staff with
the appropriate information for the “root cause” field of the
failure record. Otherwise, the root cause is specified as
“Unknown.” Operations staff and system administrators
have occasional follow-up meetings for failures with
“Unknown” root cause. If the root cause becomes clear later
on, the corresponding failure record is amended.

Two implications follow from the way the data were
collected. First, these data are very different from the error
logs used in many other studies. Error logs are automatically
generated and track any exceptional events in the system,
not only errors resulting in system failure. Moreover, error
logs often contain multiple entries for the same error event.

Second, since the data were created manually by system
administrators, the data quality depends on the accuracy of
the administrators” reporting. Two potential problems in
human-created failure data are underreporting of failure
events and misreporting of root cause. For the LANL data,
we do not consider underreporting (i.e., a failure does not
get reported at all) a serious concern, since failure detection
is initiated by automatic monitoring and failure reporting
involves several people from different administrative
domains (operations staff and system administrators).
While misdiagnosis can never be ruled out completely, its
frequency depends on the administrators’ skills. LANL
employs highly-trained staff backed by a well-funded
cutting edge technology integration team, often pulling
new technology into existence in collaboration with
vendors; diagnosis can be expected to be as good as any
customer and often as good as a vendor.

Failure data collection at the site containing system X
works in a fashion similar to that described above for LANL.
However, the data we obtained provided only monthly
summary statistics, rather than detailed information on each
individual outage. That is, for every month, our data set
contains the number of failures observed during that month,
including a breakdown of the number of failures by root
cause. While the LANL data use six root cause categories
(Hardware, Software, Network, Human, Environment, and
Unknown), at system X failures are grouped into one of only
four different categories: Hardware, Software, Human, and
Unknown. Network failures in system X are assigned to
either the Hardware, the Software, or the Human category,
depending on which was responsible for the network failure.
Node outages due to environmental problems were not
observed in system X during the measurement period. For
system X, no data on repair times is available.

3 METHODOLOGY

In our work, we use common statistical methods that would
be covered in most college-level statistics classes [18]. We
characterize an empirical distribution using three import
metrics: the mean, the median, and the squared coefficient
of variation (C?). The squared coefficient of variation is a
measure of variability and is defined as the squared
standard deviation divided by the squared mean. The
advantage of using the C? as a measure of variability, rather
than the variance or the standard deviation, is that it is
normalized by the mean, and hence allows comparison of
variability across distributions with different means.

We also consider the empirical cumulative distribution
function (CDF) and how well it is fit by four probability
distributions commonly used in reliability theory': the
exponential, the Weibull, the gamma, and the lognormal
distribution. We use maximum likelihood estimation to
parameterize the distributions and evaluate the goodness of
fit by visual inspection and the negative log-likelihood test.

Note that the goodness of fit that a distribution achieves
depends on the degrees of freedom that the distribution
offers. For example, a phase-type distribution with a high
number of phases would likely give a better fit than any of
the above standard distributions, which are limited to one or
two parameters. Whenever the quality of fit allows, we
prefer the simplest standard distributions, since these are
well understood and simple to use. In our study, we have not
found any reason to depend on more degrees of freedom.

4 RooTt CAUSE BREAKDOWN

An obvious question when studying failures in computer
systems is what caused the failures. Below, we study the
entries in the high-level root cause field of the data.

We firstlook at the relative frequency of the high-level root
cause categories in the LANL data and in system X, presented
in Fig. 1. Recall that the LANL data provide a root cause
breakdown of failures into human, environment, network,
software, hardware, and unknown, while the failures in
system X are attributed to either hardware, software, human,
or unknown. Fig. 1 shows that the trends at both sites are
similar. Hardware is the single largest component, with more
than 50 percent of all failures assigned to this category for
both the LANL systems and for system X. Software is the
second largest contributor, with around 20 percent of all
failures at both sites attributed to software.

It is important to note that at both sites, the number of
failures with unidentified root cause is significant
(14 percent and 23 percent, respectively). Since at both sites
the fraction of hardware failures is larger than the fraction
of undetermined failures, and the fraction of software
failures is close to that of undetermined failures, we can still
conclude that hardware and software are among the largest
contributors to failures. However, we cannot conclude that
any of the other failure sources (Human, Environment,
Network) is insignificant.

While Fig. 1a provides an aggregate view of the root
cause information across all LANL systems, two interesting

1. We also considered the Pareto distribution [25], [15], but did not find it
to be a better fit than any of the four standard distributions.



340 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

14% [ JHardware
Il Software
<1% |[EXNetwork
é2/§/° Environment
I Human
Il Unknown

18%
64%

@)

[ IHardware
Il Software
P Human

Il Unknown

53%

(b)

Fig. 1. The breakdown of failures into root causes for the LANL systems (a) and system X (b). The LANL graph shows the breakdown across all

systems (A-H).

100

[ JHardware
I Software
80 1l |Network
Environment
I Human
Il Unknown

60

Percentage (%)

40

20

E AII systems

()

[_JHardware
I Software
11 |Network
Environment
[ Human
I Unknown

80

601

Percentage (%)

40

201

All systems

(b)

Fig. 2. The breakdown of failures into root causes (a) and the breakdown of downtime into root causes (b) for the LANL systems. Each graph shows
the breakdown for systems of type D, E, F, G, and H and aggregate statistics across all systems (A-H).

questions are 1) whether the root cause breakdown changes
over the lifetime of a system and 2) how it varies across the
different types of systems at LANL.

Regarding question 1, we do not see a significant change
in the root cause breakdown over the lifetime of a system
(i.e., when moving from initial deployment to later years of
operation). The main change we observe is that for some
systems, the percentage of failures with unidentified root
cause drops over time. However, the relative frequency of
the other types of failures remains unchanged.

Regarding question (2), Fig. 2a shows root cause
information broken down by the type of system. Each of
the five bars to the left presents the breakdown across all
failure records for systems of a particular hardware type.?
The rightmost bar describes the breakdown across all
failure records in the data set.

Fig. 2a indicates that while the basic trends are similar
across system types, the actual breakdown varies. Hard-
ware is the single largest component for each system type,
with the actual percentage ranging from 30 percent to more
than 60 percent. Software is the second largest contributor
for each system type, with percentages ranging from
five percent to 24 percent. Type D systems differ most
from the other systems, in that hardware and software are
almost equally frequent as a root cause.

We asked LANL about the higher fraction of downtime
with unknown root cause for systems of type D and G and
were told the reason lies in the circumstances surrounding
their initial deployment. Systems of type G were the first

2. For better readability, we omit bars for types A-C, which are small
single-node systems.

NUMA-based clusters at LANL and were commissioned
when LANL had just started to systematically record
failure data. As a result, initially the fraction of failures
with unknown root causes was high (>90 percent), but
dropped to less than 10 percent within two years, as
administrators gained more experience with the system
and the root cause analysis. Similarly, the system of type D
was the first large-scale SMP cluster at LANL, so initially
the number of unknown root causes was high, but then
quickly dropped.

The above example shows that interpreting failure data
often requires interaction with the people who run the
systems and collect the data. The public release of the data
[1] includes a complete FAQ of all questions that we asked
LANL in the process of our work.

We also study, using the repair time information in the
LANL data, how much each root cause contributes to the
total repair time. Fig. 2b shows the total downtime per
system broken down by the downtime root cause. The basic
trends are similar to the breakdown by frequency: hard-
ware tends to be the single largest component, followed by
software. Interestingly, for most systems, the failures with
unknown root cause account for less than 5 percent of the
total downtime despite the fact that the percentage of
unknown root causes is higher. Only systems of type D and
G have more than 5 percent of downtime with unknown
root cause.

In addition to the six high-level root cause categories in
the LANL data (recall Fig. 2), we also looked at the more
detailed root cause information. Table 3 shows the 10 most



SCHROEDER AND GIBSON: A LARGE-SCALE STUDY OF FAILURES IN HIGH-PERFORMANCE COMPUTING SYSTEMS

341

TABLE 3
Detailed Root Cause Breakdown of LANL Data

Hardware root causes (%) Hardware root causes (%)
without type E systems
CPU 42.8 | Memory Dimm 30.1
Memory Dimm 21.4 | Node Board 16.4
Node Board 6.8 | Other 11.8
Other 5.1 | Power Supply 9.7
Power Supply 4.4 | Interconnect Interface 6.6
Interconnect Interface 3.1 | Interconnect Soft Error 3.1
Disk Drive 2.0 | CPU 24
Interconnect Soft Error 1.3 | Fan Assembly 1.8
System Board 0.9 | Router Board 1.5
PCI Backplane 0.8 | Fibre Raid Controller 1.4

Software root causes (%) Environmental root causes (%)
Other Software 30.0 | Power Outage 48.4
oS 26.0 | UPS 21.2
Parallel File System 11.8 | Power Spike 15.1
Kernel software 6.0 | Chillers 9.8
Scheduler Software 4.9 | Environment 5.3
Cluster File System 3.6
Resource Mgmt System 3.2
Network 2.7
User code 2.4
NFS 1.6

common root causes within the high-level hardware, soft-
ware, and environmental categories and their percentages.

As the first column in the table indicates, a large
fraction (more than 40 percent) of all hardware-related
outages at LANL are attributed to CPU. The second most
commonly blamed hardware component is memory
DIMMS. However, a closer look at the data reveals that
for most systems memory is the by far more common root
cause than CPU. The only exception are systems of type E.
System E experienced a very high percentage (more than
50 percent) of CPU-related failures, due to a design flaw in
the type E CPU.

The second column in the table presents the breakdown
of hardware failures into low-level root causes across all
LANL systems, except for type E systems, indicating that
nearly a third of all hardware-related node failures among
those systems are due to memory. In fact, we find that in all
systems memory-related failures make up a significant
portion of all failures, not just hardware failures. Memory
was the single most common “low-level” root cause for all
systems (across all failures not only hardware failures),
except for system E. For each system covered by the data
(including type E systems), more than 10 percent of all
failures (not only hardware failures) were due to memory.
Interestingly, we observe similar trends for system X. While
we do not have detailed low-level root cause information
for all outages in system X, we do have records of a
significant number of memory-related outages (making up
more than 20 percent of all outages).

Surprised by the high percentage of node outages
attributed to memory DIMMS, we talked to the adminis-
trators of the systems about the nature of these outages. We
were told that most node outages attributed to memory are
not fatal hardware failures that require the replacement of a
DIMM. Instead, it is common that the number of bit flips
exceeds what the error correcting code is able to correct,
causing the system to crash. One might at first assume that
this is a problem particular to LANL, which happens to be
geographically located at a high altitude, and hence, might
see a higher rate of cosmic rays. However, as mentioned
above, we also see similarly high DIMM failure rates for
system X, which is located at a low altitude.

The third column in Table 3 provides a breakdown of
software-related failures into low-level root cause categories.

Unfortunately, a significant fraction of software failures
were not specified further, but rather assigned to the “Other
Software” category. When looking at individual systems, we
find that the detailed breakdown for software-related
failures varies quite a bit across systems. For system F, the
most common software failure was related to the parallel file
system, for system H to the scheduler software, and for
system E to the operating system. For system D and G, a
large portion of the software failures were not specified
further (“Other Software”).

The fourth column in Table 3 provides a breakdown of
failures with environmental root cause. Nearly half of the
failures in this category are due to power outages. The
second most common root cause are problems with a
uninterruptible power supply (UPS) device, followed by
power spikes.

For network failures and human errors, the data does not
contain a more detailed breakdown, and hence, there are no
corresponding columns in Table 3.

5 ANALYSIS OF FAILURE RATES

5.1 Failure Rate as a Function of System and Node
This section looks at how failure rates vary across different
systems, and across the nodes within the same system.
Studying failure rates across different systems is interesting
since it provides insights on the effect of parameters such as
system size and hardware type. Knowledge on how failure
rates vary across the nodes in a system can be utilized in job
scheduling, for instance, by assigning critical jobs or jobs
with high recovery time to more reliable nodes.

Fig. 3a shows for each of the 22 systems the average
number of failures recorded per year during the system'’s
production time. The yearly failure rate varies widely
across systems, ranging from only 17 failures per year for
system 2, to an average of 1,159 failures per year for system
7. In fact, variability in the failure rate is high even among
systems of the same hardware type.

The main reason for the vast differences in failure rate
across systems is that they vary widely in size. Fig. 3b
shows for each system the average number of failures per
year normalized by the number of processors in the system.
The normalized failure rates show significantly less varia-
bility across systems, in particular, across systems with the



342 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

1200

1000

Number of failures per year
o
S
.

200 1

— Hﬂﬂmﬂﬂﬂﬂﬂﬂ mll

1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22
LANL systems

(a)

o

System X

2.5

151 B

0.5

Number of failures per year per processor

1H Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂmﬁml —

2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22
LANL systems

(b)

System X

Fig. 3. (a) Average number of failures for each system per year. (b) Average number of failures for each system per year normalized by number of
processors in the system. Systems with the same hardware type have the same color.

Number of failures during lfetime

20 30 40
Node ID

(@)

1

B

=

[+

o

S o.6

S

® - -,

= I 5

= 0.4+ I .2

= A —— Data

g 0.2 g --- Normal dist.

IS e Poisson dist.
L - . : - “ Lognormal dist.
50 200

100 1
Number of failures per node

(b)

Fig. 4 (a) Number of failures per node for system 20 as a function of node ID. (b) The corresponding CDF, fitted with a Poisson, normal, and

lognormal distribution.

same hardware type. For example, all type E systems
(systems 5-12) exhibit a similar normalized failure rate,’®
although they range in size from 128 to 1,024 nodes. The
same holds for type F systems (systems 13-18), which vary
in size from 128 to 512 nodes. This indicates that failure rates
do not grow significantly faster than linearly with system size.

We next concentrate on the distribution of failures across
the nodes of a system. Fig. 4a shows the total number of
failures for each node of system 20 during the entire system
lifetime.* We first observe that nodes 21-23 experience a
significantly higher number of failures than the other nodes.
While nodes 21-23 make up only six percent of all nodes,
they account for 20 percent of all failures. A possible
explanation is that nodes 21-23 run different workloads than
the other nodes in the system. Nodes 21-23 are the only
nodes used for visualization, as well as computation,
resulting in a more varied and interactive workload
compared to the other nodes. We make similar observations
for other systems, where failure rates vary significantly
depending on a node’s workload. For example, for systems E
and F, the front-end nodes, which run a more varied,
interactive workload, exhibit a much higher failure rate than
the other nodes.

While it seems clear from Fig. 4a that the behavior of
graphics nodes is very different from that of other nodes,
another question is how similar the failure rates of the
remaining (compute-only) nodes are to each other. Fig. 4b

3. The higher failure rates for systems 5-6 are due to the fact that they
were the first systems of type E at LANL and experienced a higher failure
rate during the initial months of deployment.

4. Note that the lifetime of all nodes is the same, with the exception of
node 0, which has been in production for a much shorter time (see Table 1).

shows the CDF of the measured number of failures
per node for compute-only nodes, with three different
distributions fitted to it: the Poisson, the normal, and the
lognormal distributions. If the failure rate at all nodes
followed a Poisson process with the same mean (as often
assumed, e.g., in work on checkpointing protocols), the
distribution of failures across nodes would be expected to
match a Poisson distribution. Instead, we find that the
Poisson distribution is a poor fit, since the measured data
have a higher variability than that of the Poisson fit. The
normal and lognormal distribution are a much better fit,
visually as well as measured by the negative log-likelihood.
This indicates that the assumption of Poisson failure rates
with equal means across nodes is suspect.

5.2 Failure Rate at Different Time Scales

Next, we look at how failure rates vary across different time
scales, from very large (system lifetime) to very short (daily
and weekly). Knowing how failure rates vary as a function
of time is important for generating realistic failure work-
loads and for optimizing recovery mechanisms.

We begin with the largest possible time scale by looking
at failure rates over the entire lifetime of a system. We find
that for all systems in our data set, the failure rate as a
function of system age follows one of two shapes. Fig. 5
shows a representative example for each shape.

The left graph in Fig. 5 shows the number of failures per
month for system 5 at LANL, starting at production time.
Failure rates are high initially, and then drop significantly
during the first months. The shape of this curve is the most
common one and is representative of all LANL systems of
types E and F.



SCHROEDER AND GIBSON: A LARGE-SCALE STUDY OF FAILURES IN HIGH-PERFORMANCE COMPUTING SYSTEMS 343

300 80 —_ 100
[ |Hardware L__JHardware Il Unknown
Il Software 70t Il Software
250 = INetwork I INetwork - Il Software
[~ JEnvironment 60- [__]Environment s [ JHardware|
£ 200 Il Human £ B Human g
Unknown Unknown
g I Unknow 8 50 - w € 60
g 3 40 3
8 8 2
2 3 30+ £ 40
© o =
|| ] | | 20
L {1100 P
0
0 10 4 5 6 7 8 9101112131415

20 0
Months in production use

(@)

Months m productlon use

Months in production use

(b) (c)

Fig. 5. Some representative examples for how the failure rate changes as a function of system age (in months). The leftmost graph corresponds to
system 5, which is representative for LANL systems of types E and F. The graph in the middle corresponds to system 19, which is representative of
LANL systems of types D and G. The rightmost graph corresponds to system X. (a) LANL system 5. (b) LANL system 19. (c) System X.

The shape of this curve is intuitive in that the failure rate
drops during the early age of a system, as initial hardware
and software bugs are detected and fixed and adminis-
trators gain experience in running the system. One might
wonder why the initial problems were not solved during
the typically 1-2 months of testing before production time.
The reason most likely is that many problems in hardware,
software, and configuration are only exposed by real user
code in the production workloads.

The middle graph in Fig. 5b corresponds to the failures
observed over the lifetime of system 19 and represents the
other commonly observed shape. The shape of this curve is
representative for systems of types D and G, and is less
intuitive: The failure rate actually grows over a period of
nearly 20 months, before it eventually starts dropping. One
possible explanation for this behavior is that getting these
systems into full production was a slow and painful process.

Type G systems were the first systems of the NUMA era at
LANL and the first systems anywhere that arranged such a
large number of NUMA machines in a cluster. As aresult, the
first two years involved a lot of development work among
system administrators, vendors, and users. Administrators
developed new software for managing the system and
providing the infrastructure to run large parallel applica-
tions. Users developed new large-scale applications that
would not have been feasible to run on previous systems.
With the slower development process, it took longer until the
systems were running the full variety of production work-
loads and the majority of the initial bugs were exposed and
fixed. The case for the type D system was similar in that it was
the first large-scale SMP cluster at the site.

Two other observations support the above explanation.
First, the failure rate curve for other SMP clusters (systems
of types E and F) that were introduced after type D and
were running full production workloads earlier in their life,
follows the more traditional pattern in Fig. 5a. Second, the
curve of system 21, which was introduced two years after
the other systems of type G, is much closer to Fig. 5a.

The rightmost graph in Fig. 5 corresponds to system X.
Unlike the other two graphs in the figure, the shape of the
graph for system X shows no signs of increased failure rates
in the early lifetime of the system. However, for system X,
we have no data available for the first three months of
production use. The figure plots the failure rates only
starting in month 4 of production use. It is likely that the
failure rates of system X follow a pattern similar to the one

observed in Fig. 5a, although at this point we are not able to
validate this assumption.

Next, we look at how failure rates vary over smaller
time scales. It is well known that usage patterns of systems
vary with the time of the day and the day of the week. The
question is whether there are similar patterns for failure
rates. Fig. 6 categorizes all failures in the LANL data by
hour of the day and by day of the week. We observe a
strong correlation in both cases. During peak hours of the
day, the failure rate is two times higher than at its lowest
during the night. Similarly, the failure rate during week-
days is nearly two times as high as during the weekend.
We interpret this as a correlation between a system’s
failure rate and its workload, since, in general, usage
patterns (not specifically LANL), workload intensity, and
the variety of workloads are lower during the night and on
the weekend.

Another possible explanation for the observations in
Fig. 6 would be that failure rates during the night and
weekends are not lower, but that the detection of those
failures is delayed until the beginning of the next (week-)
day. We rule this explanation out, since failures are detected
by an automated system, and not by users or administrators.
Moreover, if delayed detection was the reason, one would
expect a large peak on Mondays, and lower failure rates on
the following days, which is not what we see.

5.3 Statistical Properties of Time Between Failures
In this section, we view the sequence of failure events as a
stochastic process and study the distribution of its
interarrival times, i.e., the time between failures. Since the
data from system X provide only summary statistics, and no
timestamps for individual failures, we will focus in this

2000

-
o
(=]
o

Number of failures

N
o
[}
(=]

o
=]
o

Number of failures

1000 ’
Hour of day

I
() (b)

Fig. 6. Number of failures by hour of the day (a) and the day of the week
(b) at LANL.

]

SunMon TueWedThu Fri Sat

(o]



344 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

-
i
)

Data ,:5;‘,/‘:” o

= - - -Weibull P
= 0.8 Lognormal 1
< Gamma
‘§ o.6 - — Exponential
=S
L
= %7 ]
=
g 0.2 i
O

O e s " .

1 10* s 10° 107

Time between failures (sec)
@)
1
Data

= Weibull
= 0.8p Lognormal
8 Gamma
S oell " Exponential
=%
L
= 0.4t |
=} Y-
E o2 LI J
S )

ol e

10° 10° 10% 10°

Time between failures (sec)

()

Data
= - - -Weibull
= O.8p Lognormal
< Gamma
'g o.ell—— Exponential
o
=
g o
=
% 0.2
O
o i . .
1 © 107

Time between failures (sec)

(b)

-

- — Data

= - - - Weibull

s 0-8) L. 1

= ognorma

=2 Gamma

S 06 - - Exponential

L

= 9

=

E oz ]

O
o == . a—t . . n . . . —
10° 10" 10° 10°

Time between failures (sec)

(d)

Fig. 7. Empirical CDF for interarrival times of failures on node 22 in system 20 at LANL early in production (a) and late in production (b) Empirical
CDF for interarrival times of failures for the system-wide view of failures in system 20 at LANL early in production (c) and late in production (d).

section entirely on the LANL data. We take two different
views of the failure process: 1) the view as seen by an
individual node, i.e., we study the time between failures
that affect only this particular node; 2) and the view as seen
by the whole system, ie., we study the time between
subsequent failures that affect any node in the system.

Since failure rates vary over a system’s lifetime (Fig. 5),
the time between failures also varies. We therefore analyze
the time between failures separately for the early produc-
tion time, when failure rates are high, and the remaining
system life, when failure rates are lower. Throughout, we
focus on system 20 as an illustrative example.

We begin with the view of the time between failures as
seen by an individual node. Figs. 7a and 7b show the
empirical distribution at node 22 in system 20 during the
years 1996-1999 and the years 2000-2005, respectively, fitted
by four standard distributions. We see that from 2000-2005,
the distribution between failures is well modeled by a
Weibull or gamma distribution. Both distributions create an
equally good visual fit and the same negative log-like-
lihood. The simpler exponential distribution is a poor fit, as
its C? of 1 is significantly lower than the data’s C? of 1.9.

During years 1996-1999, the empirical distribution of the
time between failures at node 22 looks quite different (Fig. 7a)
from the 2000-2005 period. During this time, the best fit is
provided by the lognormal distribution, followed by the
Weibull and the gamma distribution. The exponential
distribution is an even poorer fit during the second half of
the node’s lifetime.

Next, we move to the system-wide view of the failures in
system 20, shown in Figs. 7c and 7d. The basic trend for
2000-05 (Fig. 7d) is similar to the per node view during the
same time. The Weibull and gamma distribution provide
the best fit, while the lognormal and exponential fits are
significantly worse.

The system-wide view during years 1996-1999 (Fig. 7c)
exhibits a distribution that is very different from the others

we have seen and is not well captured by any of the
standard distributions. The reason is that an exceptionally
large number (>30 percent) of interarrival times are zero,
indicating a simultaneous failure of two or more nodes.
While we did not perform a rigorous analysis of correlations
between nodes, this high number of simultaneous failures
indicates the existence of a tight correlation in the initial
years of this cluster.

Given that in all the above cases the exponential
distribution does not provide a good fit to the data, one
might ask how the empirical distribution differs from an
exponential distribution, i.e., what are the properties of the
data that the exponential distribution cannot capture.

We identify as a first differentiating property that the
time between failures in the data has a significantly higher
variability than that of an exponential distribution. For
example, the time between failures at node 22 in years 1996-
1999 has a squared coefficient of variation C? of 3.9, while
the C? of an exponential distribution is always 1. For some
nodes and systems, we observe C? values as high as 35.

We identify as a second differentiating property that the
empirical time between failures exhibits decreasing hazard
rates. For failure interarrival distributions, the hazard rate
measures how the time since the last failure influences the
expected time until the next failure. An increasing hazard
rate function predicts that if the time since a failure is long
then the next failure is coming soon. And a decreasing
hazard rate function predicts the reverse.

For an exponential distribution, the hazard rate function
is constant, that is the probability of a failure does not
depend on the time that has passed since the last failure. On
the other hand, we find that in those cases in our previous
discussion, where the Weibull distribution provides a good
fit (Figs. 7a, 7b, and 7d), the shape parameter of the Weibull
fit to the data is less than 1, which indicates that the hazard
rate function is decreasing, i.e. not seeing a failure for a long
time decreases the chance of seeing one in the near future.



SCHROEDER AND GIBSON: A LARGE-SCALE STUDY OF FAILURES IN HIGH-PERFORMANCE COMPUTING SYSTEMS 345

120

——LANL system 20

100} |- - - Exponential dist.

7
5
o
=
(&)
=
S 80
=
&
= 60
=
=
£ aof
=
@
] 20y
=N
>
[N}
o .
(o] 150 200

50 100
Time since last failure (hours)

Fig. 8. llustration of decreasing hazard rates in the LANL data versus
constant hazard rates in the exponential distribution.

For example, the data in Fig. 7b are well fit by a Weibull
distribution with shape parameter 0.7.

Fig. 8 provides a graphical illustration of the decreasing
hazard rates in the time between failures. In the figure, we
plot the expected time until the next failure as a function of
the time since the last failure, for the system-wide view of
time between failures for system 20 and for an exponential
distribution fit to the data. For the exponential distribution,
the time until the next failure is independent of the time
since the last failure (dashed line). On the other hand, for
the empirical data, the expected time until failure grows
significantly with the time the system has survived without
a failure (solid line).

5.4 Correlations Between Failures

We are interested in two different types of correlations,
spatial and temporal. By spatial correlation, we mean
correlations between failures of different nodes in the same
system, i.e., does the fact that one node in a system fails
increase the probability of observing another node failing in
the same time interval. By temporal correlation, we mean
correlations between the number of failures observed in a
system in consecutive time intervals.

In order to test for spatial correlation, we compute six
different time sequences for each node in a system,
containing for each hour of operation® the number of
observed failures due to hardware, software, environment,
human error, network, and unknown root cause, respec-
tively. We then compute the correlation coefficients
between the different vectors. The only significant correla-
tion (correlation coefficient larger than 0.1 and p-value
smaller than 0.05) we observe is between failures that are
due to network problems. There is no clear indication for
correlations between other types of failures.

In order to study the degree of temporal correlation, we
make use of the concept of autocorrelation. The autocorre-
lation function (ACF) measures the correlation of a random
variable with itself at different time lags I. The ACF can, for
example, be used to determine whether the number of
failures in one day is correlated with the number of failures
observed [ days later. The autocorrelation coefficient can
range between 1 (high positive correlation) and -1 (high
negative correlation). For a stationary failure process (e.g.,
data coming from a Poisson process), the autocorrelation
would be close to zero at all lags.

5. We also experimented with number of failures per day instead of per
hour, with the same results.

Fig. 9 shows the autocorrelation function for the number
of failures observed per day, per week, and per month,
respectively, in system 19 broken down by the six different
types of root cause. As the graphs show, significant
autocorrelation exists at all three time granularities, indicat-
ing that the number of failures observed in one time interval
is predictive of the number of failures expected in the
following time intervals. Autocorrelation is strongest at the
monthly granularity with autocorrelation coefficients higher
than 0.8, but is still significant at weekly and monthly
granularity, with autocorrelation coefficients higher than 0.2.

One might argue that the observed autocorrelation, in
particular, at larger time granularities, is not surprising,
given that we have shown earlier (recall Fig. 5) that failure
rates change as a function of system age, in particular,
during the time of initial deployment. In order to verify that
the observed autocorrelation is not solely due to this factor,
we repeated our analysis separately for the different parts
of a system’s lifetime. We find that the ACF graphs look
nearly identical when produced for only the steady state
part of a system’s lifetime compared to the entire lifetime.
Moreover, we find this to be the case for both systems that
follow more closely the typical bathtub curve, such as
system 5, as well as for other systems, such as system 19.

It is interesting to observe that autocorrelation varies
greatly depending on the root cause of failures. Autocorre-
lation is strongest for failures that are due to hardware,
software, and unknown root cause and is less significant for
all other root causes (environment, network, human).

While Fig. 9 shows results only for system 19, we find
that the trends are very similar for the other LANL systems,
in terms of the strength of the observed autocorrelation. The
only significant difference in the ACF of different systems is
in the correlation behavior of failures with unknown root
cause. For example, while we observe significant auto-
correlation for failures with unknown root cause for system
19, failures with unknown root cause in system 5 show very
little autocorrelation. One possible explanation might be
that the actual root cause breakdown of failures with
unknown root cause does vary across systems, e.g., in
system 19, failures with unidentified root cause might be
largely due to hardware failures (which exhibit high
autocorrelation), while in system 5, they might be more
likely due to network, human, or environmental problems
(which exhibit low autocorrelation).

6 ANALYSIS OF REPAIR TIMES

A second important metric in system reliability is the time
to repair. We first study how parameters such as the root
cause of a failure and system parameters affect repair times.
We then study the statistical properties of repair times,
including their distribution and variability. Since the data
on system X do not include information on repair times, we
focus in this section entirely on the LANL data.

Table 4 shows the median and mean time to repair as a
function of the root cause, and as an aggregate across all
failure records in the LANL data. We find that both the
median and the mean time to repair vary significantly
depending on the root cause of the failure. The mean time to
repair ranges from less than three hours for failures caused
by human error, to nearly 10 hours for failures due to
environmental problems. The mean time to repair for the



346

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

Hardware Hardware ! Hardware
Software Software 3 Software
08 - - Unkown || - e~ Unkown 0.8144 - <~ Unkown
) Environment Environment ’ s Environment
Network Network o Network
- Human °Human - oy o Human
W w W %
Q I Q @] T
< < < e
0.4r° s
00
2‘%&&% O 02
i @0 el vk R e O
bl syl s 4 0%ms S B S e S e R T, | o
0 200 400 600 800 0 50 150 0

Lag (days)

100
Lag (weeks)

20
Lag (months)

Fig. 9. The autocorrelation function for number of failures observed per day, per week, and per month, respectively.

other root cause categories varies between four and six
hours. The mean repair time across all failures (indepen-
dent of root cause) is close to six hours. The reason is that it
is dominated by hardware and software failures which are
the most frequent types of failures and exhibit mean repair
times around six hours.

An important observation is that the time to repair for all
types of failures is extremely variable, except for environ-
mental problems. For example, in the case of software
failures, the median time to repair is about 10 times lower
than the mean, and in the case of hardware failures, it is
four times lower than the mean. This high variability is also
reflected in extremely high C? values (see bottom row
of Table 4).

One reason for the high variability in repair times of
software and hardware failures might be the diverse set of
problems that can cause these failures. For example, the
root cause information for hardware failures spans 99
different categories, compared to only two (power outage
and A/C failure) for environmental problems. To test this
hypothesis, we determined the C? for several types of
hardware problems. We find that even within one type of
hardware problem, variability can be high. For example, the
C? for repair times of CPU, memory, and node interconnect
problems is 36, 87, and 154, respectively. This indicates that
there are other factors contributing to the high variability.

Fig. 12 shows the empirical CDF for all repair times in
the data, and four standard distributions fitted to the data.
The exponential distribution is a very poor fit, which is not
surprising given the high variability in the repair times. The
lognormal distribution is the best fit, both visually as well as
measured by the negative log-likelihood. The Weibull
distribution and the gamma distribution are weaker fits
than the lognormal distribution, but still considerably better
than the exponential distribution.

In Fig. 10, we consider how repair times vary across LANL
systems. The graphs in Figs. 10a and 10b show the mean and
median time to repair for each system, respectively. The

TABLE 4
Statistical Properties of Time to Repair as a Function of the Root
Cause of the Failure in the LANL Data

Unkn. Hum. Env. Netw. SW HW All

Mean (min) 398 163 572 247 369 342 355
Median (min) 32 44 269 70 33 64 54
Std. Dev. (min) 6099 418 808 720 | 6316 | 4202 4854
Variability (CZ ) 234 6 2 8 293 151 187

figure indicates that the hardware type has a major effect on
repair times. While systems of the same hardware type
exhibit similar mean and median time to repair, repair times
vary significantly across systems of different types.

Fig. 10 also indicates that system size is not a significant
factor in repair time. For example, type E systems range
from 128 to 1,024 nodes, but exhibit similar repair times. In
fact, the largest type E systems (systems 7-8) are among the
ones with the lowest median repair time.

The relatively consistent repair times across systems of
the same hardware type are also reflected in the empirical
CDF. We find that the CDF of repair times from systems of
the same type (not shown in figure) is less variable than that
across all systems, which results in an improved (albeit still
suboptimal) exponential fit.

Finally, another interesting question is how repair times
change over the lifetime of a system. Recall from Section 5
that failure rates can vary drastically over the span of a
system’s lifetime. We observe that repair times also change
over time; however, the trends, are not as clear as for failure
rates. We do observe, though, that repair times are consis-
tently higher during the first year of operation compared to
the remaining years. After the first one to two years of
operations, the repair times are relatively stable.

Fig. 11 shows the mean and median repair time, broken
down by root cause, for the first year of operation and the
remaining years of operation. As the graphs indicate, mean
repair time drops after the first year of operation for all types
of failures, except for those with unknown root cause, often by
more than a factor of two. Median repair times drop
significantly for all types of failures after the first year of
operation. The overall drop in mean repair time, across all
failure types, is more than a factor of two, while the overall
median repair time drops by more than a third. We also check
whether variability in repair times changes over time, but do
not see a significant change (results not shown in figure).

The decrease in repair times over time likely reflect the
learning curve of the system administrators in troubleshoot-
ing problems in a new system. It might indicate that during
the first year of operation, system administrators get
significantly better at quickly identifying the root cause of
a problem and fixing it.

7 CoMPARISON WITH RELATED WORK

Work on characterizing failures in computer systems differs
in the type of data used; the type and number of systems
under study; the time of data collection; and the number of



SCHROEDER AND GIBSON: A LARGE-SCALE STUDY OF FAILURES IN HIGH-PERFORMANCE COMPUTING SYSTEMS 347

6000 T T T T T T T T T T T ———

n)

4000 -

3000

N
[}
[}
o
T

Mean repair time (mi

ol

4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22

System ID
(a)

e

1 2 3

o

Fig. 10. Empirical CDF of repair times in the LANL data.

900 T T T v T .

HW SW Net

Il Year 1

800 I Year >1

Env Hum Unk All

()

Mean repair time (min)
N @ A O 0O N
c O O 0 O O
c O O O O O

-

[}

c
T

o

[}
a
o

—
-E 300 1
E
@ 250 4
E
" =200f q
=3
150 —
(<
C% 100 —
3
50 —
= lii il
o |_’!_h \l_\!_\’_"_\ﬂ l
1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22
System ID
(b)
700 T T T : !
Il Year 1
600l B Year >1
=
‘€ 500f g
©
£ 400} .
'z
>
L 300+ q
=
K]
é 200f 1
100 I 1
. In na Hn I 1= In

HW SW Net Env Hum Unk All

(b)

Fig. 11. Mean repair time (a) and median repair time (b) for each LANL system.

failure or error records in the data set. Table 5 gives an
overview of several commonly cited studies of failure data.

Four of the above studies include root cause statistics [4],
[13], [16], [7]. The percentage of software-related failures is
reported to be around 20 percent [3], [13], [16] to 50 percent
[4], [7]. Hardware is reported to make up 10-30 percent of
all failures [4], [13], [16], [7]. Environment problems are
reported to account for around 5 percent [4]. Network
problems are reported to make up between 20 percent [16]
and 40 percent [7]. Gray [4] reports 10-15 percent of
problems due to human error, while Oppenheimer et al.
[16] report 14-30 percent. The main difference to our results
is the lower percentage of human error and network
problems in our data. There are two possible explanations.
First, the root cause of 20-30 percent of failures in our data is
unknown and could lie in the human or network category.
Second, the LANL environment is an expensive, very
controlled environment with national safety obligations
and priorities, so greater resources may be put into its
infrastructure than is put into commercial environments.

Several studies analyze the time between failures [19],
[22], [5], [27], [15], [10]. Four of the studies use distribution
fitting and find the Weibull distribution to be a good fit [5],
[27], [9], [15], which agrees with our results. Several studies
also looked at the hazard rate function, but came to
different conclusions. Some of them [5], [27], [9], [15] find
decreasing hazard rates (Weibull shape parameter < 0.5).
Others find that hazard rates are flat [22], or increasing [19].
We find decreasing hazard rates with Weibull shape
parameter of 0.7-0.8.

Three studies [2], [6], [19] report correlations between
workload and failure rate. Sahoo [19] reports a correlation

between the type of workload and the failure rate, while Iyer
[6] and Castillo [2] report a correlation between the work-
load intensity and the failure rate. We find evidence for both
correlations, in that we observe different failure rates for
compute, graphics, and front-end nodes, for different hours
of the day and days of the week.

Sahoo et al. [19] also study the correlation of failure rate
with hour of the day and the distribution of failures across
nodes and find even stronger correlations than we do. They
report that less than 4 percent of the nodes in a machine
room experience almost 70 percent of the failures and find
failure rates during the day to be four times higher than
during the night.

Three studies [2], [6], [19] report correlations between
workload and failure rate. Sahoo [19] reports a correlation
between the type of workload and the failure rate, while
Iyer [6] and Castillo [2] report a correlation between the

= Data
E 5.8/~ Weibull
= Y
< v Lognormal
‘g 0.6 Gamma
[ - - Exponential
=4
5 o
=
E o2
O s

o

10° 10° 10*

Time to Repair (min)

Fig. 12. Mean repair time (a) and median repair time (b) during the first
year of operation versus the remaining years of a system’s lifetime,
broken down by root cause.



348 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010
TABLE 5
Overview of Related Studies
| Study | Date | Length | Environment | Type of Data | # Failures | Statistics
[3,4] 1990 3 years Tandem systems Customer data 800 Root cause
[7] 1999 6 months 70 Windows NT mail server Error logs 1100 Root cause
[16] 2003 3-6 months 3000 machines in Internet services Error logs 501 Root cause
[13] 1995 7 years VAX systems Field data N/A Root cause
[22] 1990 8 months 7 VAX systems Error logs 364 TBF
[9] 1990 22 months 13 VICE file servers Error logs 300 TBF
[6] 1986 3 years 2 IBM 370/169 mainframes Error logs 456 TBF
[19] 2004 1 year 395 nodes in machine room Error logs 1285 TBF
[5] 2002 1-36 months 70 nodes in university and Internet services Error logs 3200 TBF
[27] 1999 4 months 503 nodes in corporate envr. Error logs 2127 TBF
[15] 2005 6-8 weeks 300 university cluster and Condor[23] nodes | Custom monitoring N/A TBF
[10] 1995 3 months 1170 internet hosts RPC polling N/A TBETTR
2] 1980 1 month PDP-10 with KL10 processor N/A N/A TBF,Utilization

workload intensity and the failure rate. We find evidence for
both correlations, in that we observe different failure rates
for compute, graphics, and front-end nodes, for different
hours of the day and days of the week.

Sahoo et al. [19] also study the correlation of failure rate
with hour of the day and the distribution of failures across
nodes and find even stronger correlations than we do. They
report that less than 4 percent of the nodes in a machine
room experience almost 70 percent of the failures and find
failure rates during the day to be four times higher than
during the night.

We are not aware of any studies that report failure rates
over the entire lifetime of large systems. However, there exist
commonly used models for individual software or hardware
components. The failures over the lifecycle of hardware
components are often assumed to follow a “bathtub curve”
with high failure rates at the beginning (infant mortality) and
the end (wear out) of the lifecycle. The failure rate curve for
software products is often assumed to drop over time (as
more bugs are detected and removed), with the exception of
some spikes caused by the release of new versions of the
software [13], [12]. We find that the failure rate over the
lifetime of large-scale HPC systems can differ significantly
from the above two patterns (recall Fig. 5).

Repair times are studied only by Long et al. [10]. Long et al.
estimate repair times of Internet hosts by repeated polling of
those hosts. They, like us, conclude that repair times are not
well modeled by an exponential distribution, but do not
attempt to fit other distributions to the data.

In our recent work, we have collected and analyzed a
number of data sets on storage failures, in particular, data on
hard drive replacements in large storage systems [21]. We
find that some of our findings on hard drive replacements
parallel those we report in this paper on cluster node outages,
while some characteristics of storage failures differ from
those of cluster node failures. For example, the distribution of
time between hard drive replacements is similar to the
distribution of time between cluster node failures. The time
between hard drive replacements is not exponentially
distributed, but instead better modeled by a Weibull
distribution. Again, the Weibull shape parameter for the
best distribution fit to the data is in the range of 0.7-0.8. On the
other hand, we find that failure rate as a function of system
age behaves very differently for storage systems than for
HPC cluster systems. Specifically, for storage systems, we
find little evidence of infant mortality, but significant

evidence of early wear out (increasing failure rates with
system age).

An interesting question that is beyond the scope of our
work is how system design choices depend on failure
characteristics. Plank et al. [17] study how checkpointing
strategies are affected by the distribution of time between
failures, and Nath et al. [14] study how correlations between
failures affect data placement in distributed storage systems.

An earlier version of the work presented in this paper
has appeared in the International Conference on Depend-
able Systems and Networks (DSN "06) [20].

8 THE CoMPUTER FAILURE DATA REPOSITORY

The work described in this paper is part of our broader
research agenda with the goal of analyzing and making
publicly available failure data from a large variety of real
production systems. We are currently working on creating a
public Computer Failure Data Repository (CFDR), to be hosted
by the USENIX Association. The goal of the repository is to
accelerate research on system reliability by filling the nearly
empty collection of public data with detailed failure data
from a variety of large production systems. Below, we first
briefly describe the data sets we have collected so far. We then
describe some of our experiences from collecting failure data
hoping that those might help others in obtaining data.
Finally, we discuss our ongoing efforts and the long-term
goals of the CFDR.

8.1 Data Sets

At this point, all LANL failure data that we have analyzed
in this paper are publicly available. For some of the
LANL systems, additional data have been made available,
including event logs and usage data. We are currently
working with the organization hosting system X to release
their data as well. In addition to data on node outages from
high-performance computing environments, we have also
collected a number of failure data sets on storage failures, in
particular, data on hard drive replacements in large storage
systems [21].

Interestingly, we find that many of our findings on hard
drive replacements parallel those we report in this paper on
cluster node outages. For example, we find that the time
between hard drive replacements is not exponentially
distributed, but, instead, better modeled by a Weibull
distribution. Again, the Weibull shape parameter for the



SCHROEDER AND GIBSON: A LARGE-SCALE STUDY OF FAILURES IN HIGH-PERFORMANCE COMPUTING SYSTEMS 349

best distribution fit to the data is in the range of 0.7-0.8.

8.2 Experiences from Data Collection

Obtaining failure data is difficult, since these data are often
perceived to be sensitive. In our pursuit to create a public
failure data repository, we have talked to more than a
dozen companies and high-performance computing labs
about contributing data. Our experiences in this process
have led us to believe that it is unlikely to obtain data from
vendors of IT equipment, due to their fear of negative
marketing. However, obtaining data from end users of IT
equipment is often complicated by the perception that the
data collection is not state-of-the-art and the complexity and
efforts involved in collecting and explaining the data.

We found that sites with large amount of equipment are
motivated to share data since they are facing a pressing
need to provide reliability at scale and hope that researchers
will be able to develop better solutions, if given real data to
work with.

We would like to encourage any organizations that are
collecting failure data for their systems to consider con-
tributing to the repository. We would also like to encourage
other researchers to share failure data sets that they have
used in their work.

8.3 Long-Term Goals

Our work on the computer failure data repository focuses
on three long-term goals. Our first goal is to extend the
number of failure data sets hosted by the CFDR to cover a
large, diverse set of sites. We are also pursuing other types
of data, including usage data (job logs and utilization
measurements) and event logs, to facilitate the study of
correlations between such data and system failures. For the
LANL systems, both usage data and event logs have
recently been made publicly available.

Second, we plan to study the existing data sets in more
detail, with a focus on how the results can be used for better or
new techniques for avoiding, coping, and recovering from
failures. For example, from the results in this work as well as
in our related paper on hard drive failures, we find that
several common assumptions about failure processes (e.g.,
i.i.d. exponentially distributed time between failures) are not
realistic in practice. One path for future work is to reexamine
algorithms and techniques for fault-tolerant systems to
understand where unrealistic assumptions result in poor
design choices and for those cases explore new algorithms.

Third, we hope that our experiences from working with a
variety of sites on collecting and analyzing failure data will
lead to some best practices for failure data collection.
Currently, data collection and analysis are complicated by
the fact that there is no widely accepted format for anomaly
data and there exist no guidelines on what data to collect and
how. Providing such guidelines will make it easier for sites to
collect data that are useful and comparable across sites.

9 SUMMARY

Many researchers have pointed out the importance of
analyzing failure data and the need for a public failure data
repository [16]. This paper provides a study of a large
amount of failure data that have been collected at two large
high-performance computing sites and have, in part, been
made publicly available [1]. We hope that this data might

serve as a first step toward a public data repository and
encourage efforts at other sites to collect and clear data for
public release. Below, we summarize a few of our findings.

e Failure rates vary widely across systems, ranging
from 20 to more than 1,000 failures per year, and
depend mostly on system size and less on the type
of hardware.

e  Failure rates are roughly proportional to the number
of processors in a system, indicating that failure rates
are not growing significantly faster than linearly
with system size.

e There is evidence of a correlation between the failure
rate of a machine and the type and intensity of the
workload running on it. This is in agreement with
earlier work for other types of systems [2], [6], [19].

e The curve of the failure rate over the lifetime of an
HPC system looks often very different from lifecycle
curves reported in the literature for individual
hardware or software components.

e Time between failure is not modeled well by an
exponential distribution, which agrees with earlier
findings for other types of systems [5], [27], [9], [15],
[19]. We find that the time between failure at
individual nodes, as well as at an entire system, is
fit well by a gamma or Weibull distribution with
decreasing hazard rate (Weibull shape parameter of
0.7-0.8).

e Failures exhibit significant levels of temporal corre-
lation at both short and long time lags. We find
indication of autocorrelation for all types of failures;
however, autocorrelation is particularly strong for
hardware and software failures.

e We also find indication of spatial correlation, i.e.,
correlation between failures at different nodes dur-
ing the same time interval. However, those are
limited to failures with network root cause and not
significant for other types of failures.

e Mean repair times vary widely across systems,
ranging from one hour to more than a day. Repair
times depend mostly on the type of the system, and
are relatively insensitive to the size of a system.

e Repair times change significantly over the lifetime of
a system. Both mean and median repair times drop
by more than a third after the first year in operation.
This might indicate that during the first year of
operation, system administrators get significantly
better at quickly identifying the root cause of a
problem and fixing it.

e Repair times are extremely variable, even within one
system, and are much better modeled by a lognor-
mal distribution than an exponential distribution.

We hope that our first step in analyzing the wealth of

information provided by the data, together with the public
release of the raw data [1], will spark interesting future work.

ACKNOWLEDGMENTS

The authors want to thank Gary Grider, Laura Davey, and
the Computing, Communications, and Networking Divi-
sion at LANL for their efforts in collecting the data and
clearing it for public release. They thank the people who
were involved in collecting and sharing with us failure data



350 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.7, NO.4, OCTOBER-DECEMBER 2010

for system X, but would like to remain anonymous. They
also thank Roy Maxion, Priya Narasimhan, and the
participants of the ISSRE'05 “Workshop on dependability
benchmarking” for their many comments and questions.
Finally, they thank the members of the PDL Consortium
(including APC, EMC, Equallogic, Hewlett-Packard, Hita-
chi, IBM, Intel, Microsoft, Network Appliance, Oracle,
Panasas, Seagate, and Sun) for their interest and support
and the Petascale Data Storage Institute (PDSI) for provid-
ing funding for this work.

REFERENCES

[1] The raw data and more information is available at the following
two URLs: http://www.pdl.cmu.edu/FailureData/ and http://
www lanl.gov/projects/computerscience/data/, 2006.

[2] X. Castillo and D. Siewiorek, “Workload, Performance, and
Reliability of Digital Computing Systems,” Proc. Int'l Symp.
Fault-Tolerant Computing (FTCS-11), 1981.

[3] J. Gray, “Why do Computers Stop and What Can be Done About
It,” Proc. Fifth Symp. Reliability in Distributed Software and Database
Systems, 1986.

[4] J. Gray, “A Census of Tandem System Availability Between 1985
and 1990,” IEEE Trans. Reliability, vol. 39, no. 4, pp. 409-418, Oct.
1990.

[5] T. Heath, R.P. Martin, and T.D. Nguyen, “Improving Cluster
Availability Using Workstation Validation,” Proc. Assoc. Comput-
ing Machinery SIGMETRICS, 2002.

[6] RK. Iyer, D.J. Rossetti, and M.C. Hsueh, “Measurement and
Modeling of Computer Reliability as Affected by System
Activity,” ACM Trans. Computer Systems, vol. 4, no. 3, 1986.

[71 M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer, “Failure Data
Analysis of a LAN of Windows NT based computers,” Proc. Symp.
Reliability in Distributed Software (SRDS)-18, 1999.

[8] G.P. Kavanaugh and W.H. Sanders, “Performance Analysis of
Two Time-Based Coordinated Checkpointing Protocols,” Proc.
Pacific Rim Int’l Symp. Fault-Tolerant Systems, 1997.

[9] T.-T.Y. Lin and D.P. Siewiorek, “Error Log Analysis: Statistical
Modeling and Heuristic Trend Analysis,” IEEE Trans. on
Reliability, vol. 39, no. 4, pp. 419-432, Oct. 1990.

[10] D. Long, A. Muir, and R. Golding, “A Longitudinal Survey of
Internet Host Reliability,” Proc. Symp. Reliability in Distributed
Software (SRDS)-14, 1995.

[11] J. Meyer and L. Wei, “Analysis of Workload Influence on
Dependability,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS),
1988.

[12] B. Mullen and D.R., “Lifecycle Analysis Using Software Defects
Per Million (SWDPM),” Proc. 16th int’l Symp. Software Reliability
(ISSRE’05), 2005.

[13] B. Murphy and T. Gent, “Measuring System and Software
Reliability Using an Automated Data Collection Process,” Quality
and Reliability Eng. Int’l, vol. 11, no. 5, 1995.

[14] S. Nath, H. Yu, P.B. Gibbons, and S. Seshan, “Subtleties in
Tolerating Correlated Failures,” Proc. Symp. Networked Systems
Design and Implementation (NSDI'06), 2006.

[15] D. Nurmi, ]. Brevik, and R. Wolski, “Modeling Machine
Availability in Enterprise and Wide Area Distributed Comput-
ing Environments,” Proc. European Conf. Parallel Computing
(Euro-Par '05), 2005.

[16] D.L. Oppenheimer, A. Ganapathi, and D.A. Patterson, “Why do
Internet Services Fail, and What Can be Done About It?” Proc.
USENIX Symp. Internet Technologies and Systems, 2003.

[17] J.S. Plank and W.R. Elwasif, “Experimental Assessment of
Workstation Failures and Their Impact on Checkpointing Sys-
tems,” Proc. Int’l Symp. Fault-Tolerant Computing (FTCS '98), 1998.

[18] S.M. Ross, Introduction to Probability Models, Academic Press, 1997.

[19] RK. Sahoo, A. Sivasubramaniam, M.S. Squillante, and Y. Zhang,
“Failure Data Analysis of A Large-Scale Heterogeneous Server
Environment,” Proc. Dependable Systems and Networks (DSN '04),
2004.

[20] B. Schroeder and G.A. Gibson, “A Large Scale Study of Failures in
High-Performance-Computing Systems,” Proc. Dependable Systems
and Networks (DSN ’06), 2006.

[21] B. Schroeder and G.A. Gibson, “Disk Failures in the Real World:
What Does An MTTF of 1,000,000 Hours Mean to You?” Proc. Fifth
Usenix Conf. File and Storage Technologies (FAST '07), 2007.

[22] D. Tang, RK. Iyer, and S.S. Subramani, “Failure Analysis and
Modelling of A VAX Cluster System,” Proc. Int'l Symp. Fault-
Tolerant Computing (FTCS), 1990.

[23] T. Tannenbaum and M. Litzkow, “The Condor Distributed
Processing System,” Dr. Dobbs ]., 1995.

[24] N.H. Vaidya, “A Case For Two-Level Distributed Recovery
Schemes,” Proc. ACM SIGMETRICS, 1995.

[25] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson, “Self-
Similarity Through High-Variability: Statistical Analysis of Ether-
net LAN Traffic at the Source Level,” IEEE/ACM Trans. Network-
ing, vol. 5, no. 1, pp. 71-86, 1997.

[26] KF. Wong and M. Franklin, “Checkpointing in Distributed
Computing Systems,” . Parallel and Distributed Computing,
vol. 35, no. 1, pp. 67-75, May 1996.

[27] J. Xu, Z. Kalbarczyk, and RK. Iyer, “Networked Windows NT
System Field Failure Data Analysis,” Proc. 1999 Pacific Rim Int’l
Symp. Dependable Computing, 1999.

[28] Y. Zhang, M.S. Squillante, A. Sivasubramaniam, and R.K. Sahoo,
“Performance Implications of Failures in Large-Scale Cluster
Scheduling,” Proc. 10th Workshop Job Scheduling Strategies for
Parallel Processing, 2004.

Bianca Schroeder received the doctorate de-
gree from the Computer Science Department,
Carnegie Mellon University in 2005 under the
direction of Mor Harchol-Balter. She is currently
an assistant professor in the Computer Science
Department, University of Toronto (UofT). Before
joining UofT, she was a postdoc for two years at
Carnegie Mellon University working with Garth
Gibson. She is a two-time winner of the IBM PhD
fellowship and has won three best paper awards.
Her recent work on system reliability has been featured in articles at a
number of news sites, including Computerworld, Slashdot, PCWorld,
StorageMojo, and eWEEK.

Garth A. Gibson received the PhD degree in
computer science from the University of
California at Berkeley in 1991. He is a currently
a professor of computer science and electrical
and computer engineering at Carnegie Mellon
University (CMU) and co-founder and chief
technology officer at Panasas, Inc. While at
Berkeley, he did the groundwork research and
co-wrote the seminal paper on redundant
arrays of inexpensive disks (RAID). Joining
CMU’s faculty in 1991, he founded CMU’s Parallel Data Laboratory
(www.pdl.cmu.edu), academia’s premiere storage systems research
center, and co-led the network-attached secure disks (NASD)
research project that became the basis of the T10 (SCSI) object-
based storage devices (OSD) command set for storage. At Panasas
(www.panasas.com), he led the development of the ActiveScale
storage cluster in use in government and commercial high-perfor-
mance computing sites, including the world’s first petaflop computer,
Roadrunner, at Los Alamos National Laboratory. Panasas products
provide scalable performance using a simply managed, blade server
platform. Through Panasas, he co-instigated the IETF’s emerging
open standard for parallelism in the next generation of the network file
system (NFSv4.1). He is also the principal investigator of the
Department of Energy’s Petascale Data Storage Institute (www.pdsi-
scidac.org) in the Scientific Discovery through Advanced Computing
program and co-director of the Institute for Reliable High Performance
Information Technology, a joint effort with Los Alamos. Gibson has
been on a variety of academic and industrial service committees
including the Technical Council of the Storage Networking Industry
Association and the program and steering committee of the USENIX
Conference on File and Storage Technologies (FAST). He received
the 1999 IEEE Reynold B. Johnson Information Storage Award for
outstanding contributions in the field of information storage. He is a
member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



