A LARGE SCALE EXPERIMENT IN N-VERSION PROGRAMMING*

John C. Knight

Department of Computer Science
University of Virginia
Charlottesville, Virginia, 22903

ABSTRACT

N-version programming has been proposed as a method of
incorporating fault tolerance into software. Multiple versions
of a program (i.e. “N”) are prepared and executed in parallel.
Their outputs are collected and examined by a voter, and, if
they are not identical, it i1s assumed that the majority is
correct. This method depends for its rehability improvement
on the assumption that programs that have been developed
independently will fail independently. In this paper an
experiment is described in which the fundamental axiom is
tested.

A total of twenty seven versions of a program were prepared
independently from the same specification and then subjected
to one million tests. The results of the tests revealed that the
programs were individually extremely reliable but that the
number of tests in which more than one program failed was
substantially more than expected. A statistical test of
independence of the versions was applied and the hypothesis
of 1ndependence was rejected.

The conclusion from this result is that N-version
programming must be used with care and that analysis of its
reliability must include the effect of dependent errors.

1. INTRODUCTION

N-version programming’ has been proposed as a method
of providing fault tolerance in software. The approach
requires the independent preparation of several (ie. “N”)
versions of a piece of software for some apphication, usually
from the same requirements specifications (although, see
Kelly?). These versions are executed 1n parallel in the
application environment; each receives identical inputs and
each produces its version of the required outputs. The outputs
are collected by a voter and, in principle, they should all be
the same. In practice there may be some disagreement. If this
occurs, the results of the majority (assuming there is one) are
assumed to be the correct output and this is the one used by
the system.

N-version programming is faced with several practical
difficulties in its implementation such as isolation of the
versions and design of voting algorithms. These difficulties
have been summarized comprehensively by Anderson and Lee®
and will not be discussed here.

“This work was sponsored in part by NASA grant number NAG1-242
and 1n part by a MICRO grant cofunded by the state of California and Hughes
Aircraft Company. It has been cleared for publication by the sponsoring or-
ganizauons.

0731-3071/85/0000/0135$01.00 © 1985 IEEE

Nancy G. Leveson

Department of Computer Science
University of California
Irvine, California, 92717

135

Lois D. St.Jean

Department of Computer Science
University of Virginia
Charlottesville, Virginia, 22903

The great benefit that N-version programming is
intended to provide is a substantial improvement in
reliability. It is assumed in the analysis of the technique that
the N different versions will fail independently; that is, faults
in the different versions occur at random and are unrelated.
Thus the probability of two or more versions failing on the
same input is very small. Under this assumption, the
probability of failure of an N-version system, to a first
approximation, 1s proportional to the N’th power of the
probability of failure of the independent versions. If the
assumption is true, systems with extremely high levels of
reliability could be built with components that are
individually of only average quality.

We are concerned that this assumption might be false.
Our intuition 1indicates that when solving a difficult
intellectual problem (such as writing a computer program),
people tend to make the same mistakes even when they are
working independently. Some parts of a problem may be
inherently more difficult than others. In this experiment, the
subjects were asked in a questionnaire to state the parts of the
problem that caused them the most difficulty. The responses
were surprisingly similar.

If the assumption of independence 1s not born out in
practice, it would cause the analysis to overestimate the
reliability of an N-version system. This could be an
important practical problem since N-version programming is
being used in existing crucial systems’ and is planned for
others.

It is interesting to note that, even in mechanical systems
where redundancy 1s an important technique for achieving
fault tolerance, common design errors are a source of serious
problems. An aircraft crashed recently because of a common
vibration mode that adversely affected all three parts of a
triply redundant system®. Common Failure Mode Analysis is
used in critical hardware systems in an attempt to determine
and minimize common failure modes.

To test this underlying assumption of independence, we
have carried out a large scale experiment in N-version
programming. A statistically rigorous test of independence was
the major goal of the experiment and all of the design
decisions that were taken were dominated by this goal.

In section two we describe the experiment ijtself. The
preliminary results obtained so far are described in section
three and section four is a discussion of the issues in the
experiment. Our conclusions are presented in section five.

2. DESCRIPTION OF EXPERIMENT

In graduate and senior level classes in computer science at
the University of Virginia (UVA) and the University of
California at Irvine (UCD), students were asked to write
programs from a single requirements specification. The result
was a total of twenty seven programs (nine from UVA and
eighteen from UCD all of which should theoretically produce
the same output from the same input. Each of these programs
was then subjected to one million randomly-generated test
cases.

In order to make the experiment realistic, an attempt was
made to choose an application that would normally be a
candidate for the inclusion of fault tolerance. The problem
that was selected for programming is a simple (but realistic)
anti—missile system that came originally from an aerospace
company. The program is required to read some data that
represents radar reflections and, using a collecuon of
conditions, has to decide whether the reflections come from an
object that 1s a threat or otherwise. If the decision is made
that the object 1s a threat, a signal to launch an interceptor has
to be generated. The problem is known as the “launch
interceptor” problem and the various conditions upon which
the decision depends are referred to as “launch interceptor
conditions” (LIC’s). The conditions are heavily parameterized.
For example, one condition asks whether a set of reflections
can be contained within a circle of given radius; the radius is a
parameter.

The problem has been used in other software engineering
experiments®. It has also been used in a study of software
reliability that was carried out by the Research Triangle
Institute (RTI) for NASA Langley Research Center. We chose
this problem because of its suitability and because we were
able 1o use the lessons learned in the NASA/RTI experiment to
modify our own experiment. RTI had prepared a requirements
specification and had experienced some difficulties with
unexpected ambiguities and similar problems. We were able to
rewrite the requirements specification in the light of this
experience. Thus the requirements specification had been
carefully “debugged” prior to use in this experiment.

The requirements specification was given to the students
and they were asked to prepare software to comply with it.
No overall software development methodology was imposed
on them. They were required to write the program in Pascal
and to use only a specified compiler and associated operating
system. At UVA these were the University of Hull V-mode
Pascal compiler for the Prime computers using PRIMOS, and at
UCI these were the Berkeley PC compiler for the VAX 11/750
using UNIX. No other software tools were permitted.

The students were given a brief explanation of the goals
of the experiment and the principles of N-version
programming. The need for independent development was
stressed and students were carefully instructed not to discuss
the project amongst themselves. However, we did not impose
any restriction on their reference sources. Since the
application requires some knowledge of geometry, it was
expected that the students would consult reference texts and
perhaps mathematicians in order to develop the necessary
algorithms. We felt that the possibility of two students using
the same reference material was no different from two
separate organizations using the same reference sources in a
commercial development environment.

136

As would be expected during development, questions
arose about the meaning of the requirements. In order to
prevent any possibility of information being inadvertently
transmitted by an informal verbal response, these few
questions were submitted and answered by electronic mail. If
a question revealed a general flaw in the specifications, the
response was broadcast to all the programmers.

Each student was supplied with twelve input data sets
and the expected outputs for use in debugging. Once a program
was debugged using these tests and any other tests the student
developed, it was subjected to an acceptance test. The
acceptance test was a set of two hundred randomly—generated
test cases; a different set of two hundred tests were generated
for each program. This procedure was used to prevent a
general “filtering” of common faults by the use of a common
acceptance test. An acceptance test was used since it was felt
that in a real software production environment potential
programs would be submitted to extensive testing and would
not be used unless they demonstrated a high level of
reliability. Once a program passed 1ts acceptance test, it was
considered complete and was entered into the collection of
VErsions.

One result of the earlier NASA/RTI experiment was
some difficulty with machine precision differences between
versions. Although two programs computed what amounted to
the same result, different orders of computation yielded minor
differences which gave the impression that onme or more
versions had failed. To prevent this, all programmers in this
experiment were supplied with a function to perform
comparison of real quantities with limited precision. The
programmers were instructed to use this supplied function for
all real-number comparisons.

Once all the versions had passed their acceptance tests,
the versions were subjected to the experimental treatment
which consisted of simulation of a production environment. A
test driver was built which generated random radar reflections
and random values for all the parameters in the problem. All
twenty seven programs were executed on these test cases and
the determination of success was made by comparing their
output with a twenty—eighth version, referred to as the gold
program. This program was originally written in FORTRAN
for the NASA/RTI expertment and was rewritten in Pascal for
this experiment. As part of the NASA/RTI experiment, the
gold program has been subjected to several million test cases
and we have considerable confidence in its accuracy. It was
also subjected to an extensive structured walkthrough at UVA
after translation to Pascal.

A total of one million tests were run on the twenty
seven versions written for this experiment and the gold
program. Although testing was not continuous on any of the
machines, a total of fifteen computers were used in performing
these tests between May and September of 1984; five Primes
and a dual processor CDC Cyber 730 at UV A, and seven VAX
11/750’s and two CDC Cyber 170’s at NASA Langley Research
Center.

3. EXPERIMENTAL RESULTS

The quality of the programs written for this experiment
is remarkably high. Table 1 shows the observed failure rates
of the twenty seven versions. Of the twenty seven, no
failures were recorded by six versions and the remainder were
successful on more than 99% of the tests.

Table 1 — Version Failure Data

Table 3 — Correlated Failures Between UVA And UCI

Version Failures Reliability Version Failures Reliability
1 2 0.999998 15 0| 1.000000
2 0{ 1000000 16 62| 0.999938
3 2297| 0.997703 17 269 0.999731
4 0{ 1.000000 18 115 0.999885
5 0| 1.000000 19 264 0.999736
6 1149 0.998851 20 936 | 0.999064
7 711 0.999929 21 92} 0.999908
8 323 0.999677 22 9656 | 0.990344
9 531 0.999947 23 80| 0.999920

10 0| 1000000 24 260} 0.999740
11 5541 0.999446 25 97} 0.999903
12 4271 0.999573 26 883 0.999117
13 41 0.99999 27 0| 1000000
14 1368 0.998632

Table 2 shows the number of test cases in which more
than one version failed on the same nput. We find 1t
surprising that test cases occurred in which eight of the
twenty seven versions failed.

Where multiple failure occurred on the same input, 1t 1s
natural to suspect that the failures occurred in the versions
supplied by only one of the universities involved. It might be
argued that students at the same university have a similar
background and that this would tend to cause dependencies.
However, the exact opposite has been found. Table 3 shows a
correlation matrix of common failures between the versions
supplied by the two universities. For table 3, and for table 1,
versions numbered 1 through 9 came from UVA and versions
numbered 10 through 27 came from UCI. A table 3 entry at
location 1,) shows the number of times versions 1 and) failed
on the same input. In table 3, the rows are labeled with UCI
version numbers and the columns with UVA version numbers.
Thus, a non—zero table entry show the number of common
failures experienced by a UVA version and a UCI version. In
the preliminary analysis of common faults, all were found to
involve versions from both schools.

Table 2 — Occurrences of Multiple Failures

Number Probability _Occurrences
2 0.00055100 551
3 0.00034300 343
4 0.00024200 242
S 0.00007300 73
6 0.00003200 32
7 0.00001200 12
8 0.00000200 2

137

UVA Versions
1 2 3 4 S 6 7 8 9
10 0 0 0 0 0 0 0 0 0
1 0 0 58 0 0 2 1 58 0
12 0 0 1 0 0 0o n 1 0
13 0 0 0 0 0 0 0 0 0
14 0 0o 28 0 0 3 71 26 0
15 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 1 0 0 0
17 2 0 95 0 0 0 1 29 0
ucCI 18 0 0 2 0 0 1 0 0 0
Versions 19 0 0 1 0 0 0 0 1 0
20 0 0 325 0 0 3 2 323 0
21 0 0 0 (4] 0 4] 0 0 0
22 0 0 52 0 0 15 0 36 2
23 0 o 72 0 0 0 0o 7 0
24 0 0 0 0 0 0 0 0 0
25 0 0 94 0 0 0 1 94 0
26 0 0 15 0 0 5 0 110 0
27 0 0 0 0 0 0 0 0 0

4. MODEL OF INDEPENDENCE

Separate versions of a program may fail on the same
input even if they are independent. Indeed, i1f they did not
they would be dependent. We base our probabilistic model for
this experiment on the statistical definition of independence:

Two events, A and B, are independent if pr(AlB) =
pr(A) and pr(BIA) = pr(B). Intuitively, A and B are
independent if knowledge of the occurrence of A in
no way influences the occurrence of B, and vice versa.

The null hypothesis that we wish to test is derived from this
statement.

By examining the faults (i.e. the flaws in the program
logic) that have been revealed by testing, we could determine
whether any set of programs contain correlated faults. For
this experiment we intend to do that as part of a more
extensive analysis. However, from an operational viewpoint,
it does not matter why programs fail on the same input, it
merely matters that they do. Thus in examining the
hypothesis of independence, we examine the observed behavior
of the programs during execution. In this paper, our analysis
of the hypothess of independence 1s based on the results of the
tests that have been carried out with no evaluation of the
faults 1n the programs’ source text.

The null hypothesis that we wish to test is that the
programs fail independently. If the programs fail
independently, then, given the individual probabilities of
failure py, py, .., py for N versions, the probability that there
are no failures on a given test case is:

Py= (l—p 1)(l—p2)...(1—pN)

The probability that only one version fails on a given test case

is:
Pop,
1-p,

Popy

_ Popi +
1-py

Pi= 1-p;

Finally, the probability that more than one of the N versions
fails on any particular test case is:

Ppore =1=Po—P,

If a total of n test cases are executed, let K be the number
of times two or more versions fail on the same input data.
Under the hypothesis of independent failures, the quantity K
has a binomial distribution. Thus:

PR =2) = (1] Paare Y A=Ppre? ™

where

nl _ n!
x} " xin—x)

Since the value of n is very large, the central lLimit
theorem can be applied and a normal approximation to this
binomial distribution used in the hypothesis test. If this 1s
done, the quantity:

_ K —nP,,.
“= (anore (I_Pmore))]/2

has a distribution that is closely approximated by the
standardized normal distribution.

For this experiment, we can estimate the probabilities of
failure for the individual versions from the observed
probabilities of failure shown in table 1. There were twenty
seven versions (i.e. N = 27), one million tests were executed (i.e.
n = 1,000,000), and the number of tests in which more than
one version failed was 1255 (ie. K = 1255). With these
parameters, the statistic z has the value 100.51. This is greater
than 2.33 which is the 99% point in the the standard normal
distribution, and so we reject the null hypothesis with a
confidence level of 99%.

5. DISCUSSION

An important problem in performing experiments at
universities is obtaining programmers with a realistic
experience level. An experiment of this size would be
extremely expensive to undertake if professional programmers
were used as the experimental subjects. Our use of students
could be criticized as being unrealistic but we point out that
all of the versions were written by graduate students or by
seniors with high grade point averages, many of whom had
returned to the university after having worked as professional
programmers, and all of whom would be entering the
professional programming workforce at high levels after
graduation. Of the twenty seven programmers, twelve had
less than Two years programming experience outside their
degree programs, ten had between two and five years, and five
had more than five years programming experience. We note
that the program written for this experiment by the most
experienced real-time programmer (who has worked at the Jet
Propulsion Laboratory and the Los Alamos National
Laboratory) contained multiple faults in common with other
programs.

138

It could also be argued that our results are biased by the
fact that the experimental subjects came from similar
backgrounds. This in fact is not the case. There is a
considerable diversity of education and experience in the
students backgrounds. However, the use of two geographically
separate universities also contributes to the diversity amongst
the subjects.

It might be argued that this experiment does not reflect
realistic program development in industry and that one
million test cases does not reflect very much operational time
for programs of this type. In fact, the acceptance test is the
equivalent of a very elaborate testing process for production
programs of this type. Each of our test cases represents an
“unusual” event seen by the radar. Most of the time the radar
echoes will be identical from one scan to the next with only
an occasional change due to the entry of an object into the field
of view. Producing realistic unusual events to test a
production tracking program is clearly an expensive
undertaking and we feel that two hundred such events would
indeed be a realistic number.

One million test cases (several hundred hours of computer
time per version) corresponds to dealing with one million
unusual cases during production use. In practice once again,
these one million events will be separated by a much larger
number of executions for usual events. If the program is
executed once per second and unusual events occur every ten
minutes, then one million tests correspond to about twenty
years of operational use.

6. CONCLUSIONS

For the particular problem that was programmed for this
experiment, we conclude that the assumption of independence
that is fundamental to the analysis of N-version programming
does not hold. Using a fairly simple probability model of
independence, our data indicates that the hypothesis of
independence has to be rejected at the 99% confidence level.

It is important to understand the meaning of this
statement. First, it is conditional on the application that we
used. The result may or may not extend to other programs, we
do not know. Other experiments must be carried out to gather
data similar to ours in order to be able to draw general
conclusions. Second, the statement above does not mean that
N-version programming does not work or should not be used.
It means that the reliability of an N-version system may not
be as high as theory predicts under the assumption of
independence. If the implementation issues can be resolved for
a particular N-version system, the required reliability might
be achieved by using a larger value for N, if this is
economically feasible.

Based on a preliminary analysis of the faults in the
programs, we have found that approximately one half of the
total software faults found involved TWO OT mOTe programs.
This is surprisingly high and implies that either programmers
make a large number of similar errors or, alternatively, that
the common errors are more likely to remain after debugging
and testing. Several alternative hypotheses are possibie and
need to be further explored. One is that certain parts of any
problem are just more difficult than others and will lead to the
same errors by different programmers. Thus the error
distribution is an artifact of the problem itself. Another
possible hypothesis is that unique (random) errors tend to be
those most likely to be caught by a compiler or by testing.

Common errors may reflect inherently difficult semantic
aspects of the problem or typical human misconceptions which
are not easily detected through standard verification and
validation efforts. Finally, common errors may reflect flaws in
the requirements specification document. We do not think this
is the case in this experiment since great care went into its
preparation and the requirements had been debugged through
use in an earlier experiment. However, we plan to conduct
further experiments on comprehension of these particular
requirements.

Given that common errors (as shown by this and other
experiments) are possible and perhaps even likely in separately
developed multiple versions of a sof tware system, then relying
on random chance to get diversity in programs and eliminate
design errors may not be effective. However, this does not
mean that diversity is not a possible solution to the software
fault tolerance problem. What 1t does imply is that further
research on common errors may be useful. Hardware designers
do not rely on simple redundancy or independently generated
diverse designs to get rid of common design errors. Instead,
they use sophisticated techniques to determine common failure
modes and systematically alter their designs to attempt to
eliminate common failure modes or to minimize their
probability. Perhaps we need equivalent technmiques for
sof tware. Unfortunately, this will not be simple but perhaps a
simple solution just does not exist for what is undoubtedly a
very difficult problem.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the students who wrote
the versions that were tested in this experiment; P. Ammann,
C. Finch, N. Fitzgerald, M. Heiss, D. Irwin, L. Lauterbach, S.
Samanta, J. Watts, P. Wilson from UVA, and R. Bowles, D.
Duong, P. Higgins, A. Milne, S. Musgrave, T. Nguyen, J. Peck,
P. Ratter, R. Sargent, R. Schmaltz, A. Schoonhoven, T.
Shimeall, G. Stoermer, J. Stolzy, D. Taback, J. Thomas, C.
Thompson, L. Wong from UCIL We are also pleased to
acknowledge the Academic Computer Center at the University
of Virginia, the AIRLAB facility and the Central Computer
Complex at NASA Langley Research Center for providing
computer time tc allow the programs to be tested. Much of
the design of the experiment is due to Lois StJean, and Susan
Brilliant and Paul Ammann were responsible for much of the
testing activities. We are indebted to Janet Dunham and Earl
Migneault for allowing us to learn from the experience gained
in an earlier version of this experiment. This work was
supported in part by NASA grant number NAG1-242, and in
part by a MICRO grant cofunded by the University of
California and Hughes Aircraft Company. Finally, none of
this work would have been possible and this paper could not
have been written without the excellent facilities provided by
the ARPA and CSNET computer networks.

REFERENCES

(1) Chen, L. and A. Avizienis, "N-Version Programming: A
Fault-Tolerance Approach to Reliability of Software
Operation', Digest of Papers FTCS-8: Eighth Annual
International Conference on Fault Tolerant Computing,
Toulouse, France, June, 1978, pp. 3-9.

(2) Kelly, JP.J., "Specification of Fault-Tolerant Multi—
Version Software: Experimental Studies of a Design

Diversity Approach”, Ph.D. dissertation, University of

139

)

(4)

(%)

(6)

California, Los Angeles, 1982.

Anderson T. and P.A. Lee, Fault Tolerance: Principles
and Practice, Prentice Hall International, 1981.

Martin, D.J., "Dissimilar Software In High Integrity
Applications In Flight Controls", Software for Avionics,
AGARD Conference Proceedings, No. 330, January, 1983,
pp. 36-1 - 36-9.

Bonnet, B. Panel Presentation, COMPCON

Washington D.C., September 1984.

84,

Nagel, P.M,, and J.A. Skrivan, Software Reliability:
Repetitive Run Experimentation and Modeling, prepared
for National Aeronautics and Space Administration at
Boeing Computer Services Company, Seattle, Washington,
1982.

