

Operating Systems
EDA092/DIT400

Lab 1 – Discussion

By: Bhavishya Goel (Bhavi)

Shell: A Quick Recap

● Definition: a command line interpreter that
provides user interface for operating system

● Basic task:
– Get input command/s from the user
– Execute commands and display output

● Note: Shell itself doesn't understand commands
(with few exceptions); it only searches for the
binary for the given command and executes it
with given arguments

Lab 1

● Develop a basic shell program 'lsh'
● 'lsh' should be able to replicate the

functionality of UNIX shell programs like sh,
bash, csh, etc.

Prerequisites for Lab 1

● C programming skills
– You should know how to handle strings, data structures, pointers,

recursive functions, linked lists

● OS Concepts:
– Parent and child processes

– Zombie/Defunct processes

– Background process

– UNIX signals and signal-handling

– System calls like fork, exec, execvp, clone, etc. (for full list, look at
lab 1 preparation report questionnaire)

● Basic familiarity with simple linux commands.

Lab 1 Specifications: 1

● Allow users to enter commands to execute
programs installed on the system

● lsh should be able to execute any binary found
in the PATH environment variable

● Example 1: Commands without any argument
– 'ls', 'date', 'ps', etc.

● Example 2: Commands with argument
– 'ls -l', 'date -R', 'ps aux', etc.

Lab 1 Specifications: 2

● Should be able to execute commands in
background

● Example:
$ sleep 20 &

● The '&' sign will spawn the 'sleep' process in
background and the lsh will be immediately
ready to take next user input

Lab 1 Specifications: 3

● Should support the use of pipes
● Example:
$ ls | wc -w

● The above command outputs the number of
files in folder

Lab 1 Specifications: 4

● Should allow redirection of stdin and stdout to
files

● Example:
$ wc -l < /etc/passwd > antalkonton

● The above command creates a new file
"anatalkonton" containing the number of
accounts on a machine

Lab 1 Specifications: 5 & 6

● cd and exit are provided as built in
functions

● Pressing Ctrl-C should terminate the
execution of a program running on your shell,
but not the execution of the shell itself.
(Preferably Ctrl-C should not terminate any
background jobs, either.)

Optional Specifications

● Add the built in commands setenv and
unsetenv such that one can add and remove
environment variables

● Globalising, i.e. one can write
$ rm -r *

● Job-control as in csh

Optional Specifications (contd.)

● A real shell language supporting to write shell
scripts

$ foreach i {1 2 3 4} {

 echo $i

 }

How to get started?

● Complete the preparation report
● Download the tarball of source code template

from course webpage
– Basic skeleton

– Parser to parse command string and prepare
command data structure

– Prints the command entered

Parser Data Structures

Parser

● parse("ls -l | wc > apa", &cmd);

Testing

● Implement and test the specifications one and
a time and in the order given

● Use the test commands listed on the course
webpage

● NEVER test your code on a remote server

Demo/Delivery

● Give the demo in the lab
● Upload the code on Fire
● Code quality:

– Indentation

– Comments

– Clean

– Proper variable names

● Remember...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

