Rodsvarta trad

Koffman & Wolfgang
© kapitel 9, avsnitt 3

Réclsvarta tra

Ett rodsvart trad har foljande invarianter:
@ en nod ar antingen rod eller svart

@ roten ar alltid svart

© en rod nod har alltid svarta barn

© tomma barn kallas "1ov” och ar svarta

© antalet svarta noder ar alltid samma,
1 varje stig fran roten till ett lov

@ antalet roda noder i stigen ar aldrig fler an antalet svarta
@ darfor ar tradet balanserat

s/

s/

s/

Insattnin g | ett rodsvart trad

Forst soker vi efter insattningspunkten precis som
for alla binara soktrad

Det nya elementet ersatter ett 1ov och ges fargen rod

© den nya noden far tva svarta lov, sa antalet
svarta noder 1 lovstigarna ar oforandrat

© om foraldern ar svart, sa ar vi klara
© annars behover vi arrangera om tradet
© det finns tre mojliga fall som vi maste hantera

Hadanefter visar vi inte de svarta loven (de tomma
noderna), men de finns alltid dar

Insattning, fall 1

Invariants:
CASE 1 1. A node is either red or black

m 2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

Insattning, fall 1

Invariants:
CASE 1 1. A node is either red or black

™ 2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

lnsét’ming fall 1

If a parent is red, and its
sibling is also red, they can

both be changed to black,
and the grandparent to red

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét’ming fall 1

If a parent is red, and its
sibling is also red, they can

both be changed to black,
and the grandparent to red

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét‘ming fall 1

The root can be changed to

black and still maintain
invariant 4

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét’ming fall 1

The root can be changed to

black and still maintain
invariant 4

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét’ming fall 1

Balanced tree

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

Insattning, fall 2

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

10

Insattning, fall 2

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

11

lnsét’ming fall 2

If a parent is red (with no
sibling), it can be changed

to black, and the
grandparent to red

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

12

lnsét’ming fall 2

If a parent is red (with no
sibling), it can be changed

to black, and the
grandparent to red

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

%

lnsét’ming fall 2

There is one black node on
the right and none on the

left, which violates
invariant 4

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét’ming fall 2

2 o\

Rotate left around the
grandparent to correct this

Invariants:

1.
2.
3.

A node is either red or black
The root is always black

A red node always has black
children (a null reference is

considered to refer to a black
node)

The number of black nodes in any
path from the root to a leaf is the
same

lnsét‘ming fall 2

15

Rotate left around the

grandparent to correct this

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét‘ming fall 2

/

Balanced tree

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

CASE 3

i/

Insattning, fall 3 (Forsta forsoket)

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

Insattning, fall 3 (Forsta forsoket)

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

% / 4. The number of black nodes in any

CASE 3

path from the root to a leaf is the
same

18

*

Insattning, fall 5 (Forsta forsoket)

18

If a parent is red (with no
sibling), it can be changed

to black, and the
grandparent to red

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

*

Insattning, fall 5 (Forsta forsoket)

If a parent is red (with no
sibling), it can be changed

to black, and the
grandparent to red

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

20

Insattning, fall 5 (Forsta forsoket)

A rotation left does not fix

the violation of #4

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

21

*

Insattning, fall 5 (Forsta forsoket)

.. I
°

\

A rotation left does not fix

the violation of #4

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

CASE 3

22

Insattning, fall 3, korrekt version
&

Back-up to the beginning

(don't perform rotation or
change colors)

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

lnséttning fall %

25

Back-up to the beginning

(don't perform rotation or
change colors)

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnséttning fall %

24

Rotate right about the
parent so that the red child

is on the same side of the
parent as the parentis to
the grandparent

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnséttning fall %

25

Rotate right about the
parent so that the red child

is on the same side of the
parent as the parentis to
the grandparent

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnséttning fall %

26

NOW, change colors

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

lnsét’ming fall %

27

NOW, change colors

Invariants:

1.
2.
3.

A node is either red or black
The root is always black

A red node always has black
children (a null reference is

considered to refer to a black
node)

The number of black nodes in any
path from the root to a leaf is the
same

lnsét’ming fall %

and rotate left. ..

Invariants:

1.
2.
3.

A node is either red or black
The root is always black

A red node always has black
children (a null reference is

considered to refer to a black
node)

The number of black nodes in any
path from the root to a leaf is the
same

29

lnsét‘ming fall %

%
/
o

and rotate left. ..

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

50

lnsét’ming fall %

%
/
o

Balanced tree

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

bl

Insattning, sammanfattning

Wikipedias artikel om rodsvarta trad ar bra!
9 http://en.wikipedia.org/wiki/Red—black_tree
Fall o (case 21 Wikipedia):
¢ foraldern ar svart
Fall 1 (case 3 1 Wikipedia):
¢ bade foraldern och dess syskon ar roda
Fall 2 (case 51 Wikipedia):
¢ foraldern ar rod och dess syskon svart
© dessutom ar noden ett vanster-vansterbarn / hoger-hogerbarn
Fall 3 (case 4 1 Wikipedia):
¢ foraldern ar rod och dess syskon svart
© dessutom ar noden ett hoger-vansterbarn / vanster-hogerbarn

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

52

Insattning, fall 1

Bade foraldern (P) och dess syskon (U) ar roda:
© deras foralder (G) maste da vara svart
© byt farg pa dem (P, U) till svart
© byt farg pa deras foralder (G) till rod

@ fortsatt rekursivt uppat 1 tradet
med G som ny nod

by,

Insattning, fall 2

Foraldern (P) ar rod och dess syskon (U) ar svart:

© dessutom ar noden (N) ett vanster-vansterbarn
(eller ett hoger-hogerbarn)

© deras foralder (G) maste vara svart
@ rotera runt G
9 byt farg pa P till svart och pa G till rod

© nu ar P ny svart lokal rot, och vi ar klara!
(D P

%

Insattning, fal] 3

Foraldern (P) ar rod och dess syskon (U) ar svart:

© dessutom ar noden (N) ett vanster-hogerbarn
(eller ett hoger-vansterbarn)

© deras foralder (G) maste vara svart
@ rotera runt P

© nu ar P ett vanster-vansterbarn (eller hoger-
hogerbarn) och vi kan fortsatta med fall 2

>

Insattning, ett enkelt exc—:mpel

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

Insattning, ett enkelt exeml:)el

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

path from the root to a leaf is the
same

57

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

If a parent is red, and its
sibling is also red, they can

both be changed to black,
and the grandparent to red

58

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

If a parent is red, and its
sibling is also red, they can

both be changed to black,
and the grandparent to red

29

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

The problem has now
shifted up the tree

40

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

We cannot change 2 to black
because its sibling 14
is already black
(both siblings have to be red
to do the color change)

4]

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

We need to rotate left around
2 so that the red child is on the
same side of the parent as the
parent is to the grandparent

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in any
path from the root to a leaf is the
same

We need to rotate left around
2 so that the red child is on the
same side of the parent as the
parent is to the grandparent

42

lﬂsét’ming ett enkelt exemPel

Invariants:

1.
2.
3.

CASE 3

A node is either red or black
The root is always black

A red node always has black
children (a null reference is

considered to refer to a black
node)

The number of black nodes in any
path from the root to a leaf is the
same

Change colors

45

lﬂsét’ming ett enkelt exemPel

Invariants:

1.
2.
3.

CASE 3

A node is either red or black
The root is always black

A red node always has black
children (a null reference is

considered to refer to a black
node)

The number of black nodes in any
path from the root to a leaf is the
same

Change colors

4

lﬂsét’ming ett enkelt exemPel

T\

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)
4. The number of black nodes in any
path from the root to a leaf is the
same

Rotate right around 11 to
restore the balance

45

46

lﬂsét’ming ett enkelt exemPel

Invariants:
1. A node is either red or black
2. The root is always black
3. Ared node always has black
children (a null reference is

considered to refer to a black
node)

The number of black nodes in any
path from the root to a leaf is the
same

Rotate right around 11 to

restore the balance

1/

Insattning, ett enkelt exemPel

e

AN

Invariants:

1. A node is either red or black

2. The root is always black

3. Ared node always has black
children (a null reference is
considered to refer to a black
node)

4. The number of black nodes in any

Balanced tree

path from the root to a leaf is the
same

48

Ftt storre rodsvart exem Pel

Nu ska vi bygga ett rodsvart trad for orden 1

“The quick brown fox jumps over the lazy dog”

+9

The quick...

The

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in
any path from the root to a leaf
is the same

+9

The quick...

The

N

quick

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in
any path from the root to a leaf
is the same

50

The quick brown. ..

The

N

quick

/

brown

Invariants:

1.A node is either red or black

2.The root is always black

3.A red node always has black
children (a null reference is
considered to refer to a black
node)

4.The number of black nodes in
any path from the root to a leaf

is the same
CASE 3

50

The quick brown. ..

The

brown

Rotate so that the child
1s on the same side of its

parent as its parent is to
the grandparent

Invariants:

1.A node is either red or black

2.The root is always black

3.A red node always has black
children (a null reference is
considered to refer to a black
node)

4.The number of black nodes in
any path from the root to a leaf

is the same
CASE 3

o1

The quick brown. ..

Invariants:
The 1.A node is either red or black
\ 2.The root is always black
3.A red node always has black
brown children (a null reference is
\ considered to refer to a black
node)
4.The number of black nodes in
any path from the root to a leaf

is the same
CASE 3

quick

9l

The quick brown. ..

The

N

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black

brown children (a null reference is
\ considered to refer to a black
quick node)

Change colors

4.The number of black nodes in
any path from the root to a leaf

is the same
CASE 3

52

The quick brown. ..

The

N

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black

brown children (a null reference is
\ considered to refer to a black
quick node)

Change colors

4.The number of black nodes in
any path from the root to a leaf

is the same
CASE 3

55

The quick brown. ..

Invariants:
1.A node is either red or black

\ 2.The root is always black

Rotate left

3.A red node always has black
brown children (a null reference is

\ considered to refer to a black
node)
4. The number of black nodes in
any path from the root to a leaf

is the same
CASE 3

quick

54

The quick brown. ..

The

brown

N

quick

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in
any path from the root to a leaf
is the same

25

The quick brown fox. ..

The

brown
/ \
quick
/
fox

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in
any path from the root to a leaf
is the same

The quick brown fox. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

fox 4.The number of black nodes in

any path from the root to a leaf

is the same
CASE 1

fox's parent and its

parent's sibling are both
red. Change colors.

o7

The quick brown fox. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

fox 4.The number of black nodes in

any path from the root to a leaf

is the same
CASE 1

fox's parent and its

parent's sibling are both
red. Change colors.

58

The quick brown fox. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

fox 4.The number of black nodes in

any path from the root to a leaf

is the same
CASE 1

We can change brown's

color to black and not
violate #4

9

The quick brown fox. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

fox 4.The number of black nodes in

any path from the root to a leaf

is the same
CASE 1

We can change brown's

color to black and not
violate #4

60

The quick brown goxjumps. ..

The

brown
quick
fox
AN
jumps

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in
any path from the root to a leaf
is the same

6l

The quick brown Foxjuml:)s. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
considered to refer to a black
node)
fox

4.The number of black nodes in
\ any path from the root to a leaf

jumps is the same
CASE 3

Rotate so that red child
1s on same side of its

parent as its parent is to
the grandparent

62

The quick brown ?oxjuml:)s. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is

/ considered to refer to a black
jumps node)
4.The number of black nodes in
/ any path from the root to a leaf

is the same
CASE 3

fox

62

The quick brown Foxjuml:)s. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

4.The number of black nodes in
/ any path from the root to a leaf

is the same
CASE 3

Change fox's parent and

grandparent colors

The quick brown Foxjuml:)s. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

4.The number of black nodes in
/ any path from the root to a leaf

is the same
CASE 3

Change fox's parent and

grandparent colors

64

The quick brown Foxjuml:)s. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The quick children (a null reference is
/ considered to refer to a black
node)

4.The number of black nodes in
/ any path from the root to a leaf

is the same
CASE 3

Rotate right about quick

64

The quick brown Foxjuml:)s. ..

Invariants:
brown 1.A node is either red or black

/ Y\ 2.The root is always black
The quick

3.A red node always has black
children (a null reference is

considered to refer to a black

jumps node)
4.The number of black nodes in
' / any path from the root to a leaf
oX

is the same
CASE 3

Rotate right about quick

The quick brown Foxjuml:)s. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is
/ \ considered to refer to a black
node)

fox quick 4.The number of black nodes in

any path from the root to a leaf

is the same
CASE 3

Rotate right about quick

66

The quick brown Foxjumps over...

The

brown

N

jumps

/N

fox

quick

/

over

Invariants:
1.A node is either red or black
2.The root is always black
3.A red node always has black
children (a null reference is

considered to refer to a black
node)

4. The number of black nodes in
any path from the root to a leaf
is the same

The quick brown Foxjuml:)s over...

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
: 3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox quick node)
/ 4.The number of black nodes in

any path from the root to a leaf
over is the same

CASE 1

Change colors of parent,

parent's sibling and
grandparent

68

The quick brown goxjuml:)s over...

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
_ 3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox quick node)
/ 4.The number of black nodes in

any path from the root to a leaf
over is the same

CASE 1

Change colors of parent,

parent's sibling and
grandparent

The quick brown Foxjumps over the. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox uick hode)
} \ 4.The number of black nodes in

any path from the root to a leaf
over the is the same

The quick brown Foxjumps over the. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox uick node)
} \ 4.The number of black nodes in

any path from the root to a leaf
over the is the same

No changes needed

quick brown Foxjumps over the Iazg. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox uick hode)
} \ 4.The number of black nodes in

any path from the root to a leaf
over the is the same

/

lazy

/0

quick brown Foxjuml:)s over the lazg. .

7

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox uick node)
} \ 4.The number of black nodes in

any path from the root to a leaf
over the is the same

/

lazy

Because over and the are

both red, change parent,

parent's sibling and
grandparent colors

quick brown Foxjuml:)s over the Iazg. ..

Invariants:
brown 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox uick node)
} \ 4.The number of black nodes in

any path from the root to a leaf
over the is the same

/

lazy

CASE 2

yos

quick brown Foxjuml:)s over the Iazg. ..

Invariants:
m 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
The jumps children (a null reference is

/ \ considered to refer to a black

fox uick node)
} \ 4.The number of black nodes in

any path from the root to a leaf
over the is the same

/

lazy

CASE 2

quick brown Foxjuml:)s over the Iazy. ..

Vs

Invariants:
jumps 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
brown quick children (a null reference is

/\ / \ considered to refer to a black

™") node)
e ox 0)’9" the 4.The number of black nodes in

any path from the root to a leaf
lazy is the same

1ick brown Foxjumps over the |azg clog

Invariants:
jumps 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
brown quick children (a null reference is
/ \ / \ consi)dered to refer to a black
node
The fox over the 4.The number of black nodes in
/ / any path from the root to a leaf
dog lazy is the same

/>

ick brown Foxjumps over the Iazg clog!

Invariants:
jumps 1.A node is either red or black
/ \ 2.The root is always black
3.A red node always has black
brown quick children (a null reference is
/\ / \ considered to refer to a black
node)
The fox over the 4.The number of black nodes in
/ / any path from the root to a leaf
dog lazy is the same

Balanced tree

*

Rodsvarta trad, klasscliagram

Séar‘ch Tree BinaryTree % LOOT BinaryTree.Node
dd(E + getlLeftSubtree() ___~<:> # data
: zoniazns(E) + getRightSubtree() " o
tDat

+ find(E) + getData()

+ delete(E) '

+ remove(E) jﬁ left right

- BinarySearchTree

addReturn
deleteReturn
+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

T

BinarySearchTreeWithRotate

rotateLeft()
rotateRight()

T

RedBlackTree (I) £> RedBlackNode
+ add(E) - isRed
+ delete(E)

/8

Insattning, implementering

Insattning kan implementeras enkelt om noderna har en
referens till sin foralder

© det blir ungefar som en dubbellankad lista
© det kravs mer utrymme

Bokens algoritm satter in noden i barnbarnsloven
© dvs, "root” refererar till foralderns foralder (G)
© nar algoritmen ser en svart nod med tva barn pa
vag ner genom tradet, sa fargas noden rod och
barnen svarta
© om det blir fargproblem 1 slutandan sa fixas dem pa
vagen upp genom tradet

Algorithm for Red-Black Tree Insertion
1. ifthe root is null

2. Insert a new Red-Black node and color it black.
3. Return true.
4. else if the item is equal to root.data
5. The item is already in the tree; return false.
6. else if the item is less than root.data
7. if the left subtree is nul1l
8. Insert a new Red-Black node as the left subtree and color it red.
9. Return true.
10. else
11. if both the left child and the right child are red
12. Change the color of the children to black and change local
root to red.
13. Recursively insert the item into the left subtree.
14. if the left child is now red
15. if the left grandchild is now red (grandchild 1s an “out-
side™ node)
16. Change the color of the left child to black and
change the local root to red.
17. Rotate the local root right.
18. else 1if the right grandchild is now red (grandchild is an
“inside”™ node)
19. Rotate the left child left.
20. Change the color of the left child to black and
change the local root to red.
21. Rotate the local root right.
22. else
23. [tem is greater than root.data; process is symmetric and is left as an

exercise.
if the local root is the root of the tree
Force its color to be black.

2 2
TN

/9

Algorithm for Red-Black Tree Insertion

1.

AR Il ol o

p—
- O 0 o

—_—

13.
14.
15.

16.

if the root is null
Insert a new Red-Black node and color it black.

Return true. Fall 1: bada
foraldrarna ar roda

else 1if the item is equal to root.data
The item is already in the tree; return false.

else 1if the item is less than root.data
if the left subtree is nul1 p
Insert a new Red-Black node as the &ft subtree and color it red.

Return true. /

else

if both the left child and the right child are red

Change the color of the children to black and change local
root to red.
Recursively insert the item into the left subtree.
if the left child is now red
if the left grandchild is now red (grandchild 1s an “out-
side™ node)
Change the color of the left child to black and
change the local root to red.
Rotate the local root right.
else if the right grandchild is now red (grandchild is an
“inside”™ node)
Rotate the left child left.
Change the color of the left child to black and
change the local root to red.
Rotate the local root right.
else

[tem is greater than root.data; process is symmetric and is left as an
exercise.

if the local root is the root of the tree
Force its color to be black.

/9

Algorithm for Red-Black Tree Insertion

1.

b2

AR ol o

O o0

10.
11.

13.
14.
15.

16.

if the root is null
Insert a new Red-Black node and color it black.

Return true. Fall 1: bada

else if the item is equal to root.data
The item is already in the tree; return false.

foraldrarna ar roda

else 1if the item is less than root.data
if the left subtree is nul1 y
Insert a new Red-Black node as the £t subtree and color it red.

Return true. /

else Ny
if both the left child and the right child are red

Change the color of the children to black and change local
root to red.
Recursively insert the item into the left subtree. ="
if the left child is now red
if the left grandchild is now red (grandchild 1s an “out-
side™ node)
Change the color of the left child to black and
change the local root to red.
Rotate the local root right.
else 1if the right grandchild is now red (grandchild is an
“inside”™ node)
Rotate the left child left.
Change the color of the left child to black and
change the local root to red.
Rotate the local root right.

else

[tem is greater than root.data; process is symmetric and is left as an
exercise.

if the local root is the root of the tree
Force its color to be black.

Fall 2: vanster-
vansterbarn;
foralderns
syskon ar svart

\

J

/9

Algorithm for Red-Black Tree Insertion

1.

b2

Mok w

O oo

10.
11.

13.
14.
15.

16.

if the root is null
Insert a new Red-Black node and color it black.

Return true. Fall 1: bada

else if the item is equal to root.data
The item is already in the tree; return false.

foraldrarna ar roda

else 1if the item is less than root.data
if the left subtree is nul1 y
Insert a new Red-Black node as the £t subtree and color it red.

Return true. /

else 4
if both the left child and the right child are red

Change the color of the children to black and change local
root to red.
Recursively insert the item into the left subtree - -

if the left child is now red

-
Fall 2: vanster-
vansterbarn;
foralderns

if the left grandchild is now red qgrandchnld is an “out-

syskon ar svart

~

side™ node) \- J/
Change the color of the left child to black and
change the local root to red.
Rotate the local root right.
else 1if the right grandchild is now red ngndghlld isan [)
“inside™ node) ' Fall 3: vanster-
Rotate the left child left. - hbgerbarn;
Change the color of the left child to black and s e
changi the local root to red. foral(}erns
Rotate the local root right. Sy'SkOIl ar svart
else ~ J
[tem is greater than root.data; process is symmetric and is left as an
exercise.

if the local root is the root of the tree
Force its color to be black.

80

Bortta gni ng, fran ett rodsvart tra

Om noden har tva icke-tomma barn:
9 ersatt noden med inorder-foregangaren
© ta bort inorder-foregangarens nod istallet
© (precis som for vanliga soktrad)

Alltsa kan vi anta att noden har max ett icke-tomt barn:

© om noden ar rod sa har den inga barn och vi
behover inte gora nagot mer

© om noden ar svart och har ett rott barn sa flyttar
vi upp det roda barnet och fargar det svart

© om noden ar svart och inte har nagra barn sa
maste tradet balanseras

8l

Etfektivitet hos rodsvarta trad

Hojden pa ett rodsvart trad har en ovre grans:
© maximalt ar héjden 2 - lng n + 2, vilket ar
logaritmiskt, O(log n)
© precis om med AVL-trad sa det i medeltal
mycket battre an sa

© empiriska studier har visat att medelkostnaden
for att soka 1 ett sSlumpmassigt rodsvart trad ar
1,002 - logs n

Javas API har klasserna TreeMap och TreeSet som
ar implementerad med rodsvarta trad

