Assignment 7
Testing with QuickCheck

Model-Based Testing
DIT848/GU and TDA260/Chalmers

May, 2012

1 Introduction

The goal of this assignment is for you to learn how to use QuickCheck generators to generate
more precise test cases. In this assignment you will be given an implementation of red-black
binary search trees (a type of balanced tree) in Haskell, and you will be required to write
and test QuickCheck properties that they should satisfy.

2 Submitting your work

If you want to have feedback on your assignment, check with Pablo Buiras (buiras #0#
chalmers.se) on how (and when) to submit. If you want to submit, please attach a .zip or
.tar.gz archive, containing your source code and a .txt or .pdf file describing your answers.
Please include the assignment number and your (last) name in the file name, as in the
following example: buiras_assignment07.zip.

3 Testing Red-Black trees

Red-black trees are binary search trees that enforce a balance property, which ensures that
elements are appropriately distributed among the branches. The goal of this “balancing”
is to make binary search in the tree perform better (close to logarithmic time in the size of
the tree), regardless of the order in which the elements are inserted into the tree.

Module RBBST includes an implementation of red-black binary search trees in Haskell.
The interface is similar to the one of the binary search trees from the previous assignment.
We introduce type Tree such that Tree ais a tree of as, along with the following operations:

insert :: Ord a => a -> Tree a -> Tree a
member :: Ord a => a -> Tree a -> Bool

merge :: Ord a => Tree a -> Tree a —-> Tree a
isEmpty :: Tree a -> Bool

empty :: Tree a

As usual, insert takes an element of type a and a RB tree, and returns a new RB tree
with the extra element in the correct position. Repeated elements are stored only once.
Moreover, member checks that a given element is present in the tree. The function merge
takes two RB trees and merges them together into one RB tree. The function isEmpty
checks whether the argument tree is empty, while the constant empty represents the empty
tree.



The Tree data type includes a colour for every node, which can be either Red or Black.
Colours will be used to enforce certain invariants that will guarantee that the tree is suffi-
ciently balanced.

The red-black property. Given a tree ¢, we say that it has the red-black property if
either of these conditions hold:

e t is empty;
e if ¢ is nonempty, then:

— the root of the tree is black;
— the immediate children of a red node cannot be red; and

— all paths from the root to a leaf have the same number of black nodes.

The function insert should preserve both the BST property (from Assignment 6) and
also the red-black property as an invariant. The function member should run faster now (at
the expense of a slower insert function) because of the red-black property.

A useful consequence of the red-black property is that the length of the longest path
from the root to a leaf is at most double the length of the shortest path form the root to a
leaf. This means the tree is not necessarily perfectly balanced, but it is still good enough
to speed up member.

Examples. Here are some examples of the trees that should be generated by insert:

e insert 3 (insert 1 (insert 4 empty)) ==

Node (Node Empty (1,Black) Empty) (3,Black) (Node Empty (4,Black) Empty)

e insert 1 (insert 4 (insert 3 empty)) ==

Node (Node Empty (1,Red) Empty) (3,Black) (Node Empty (4,Red) Empty)

e insert 3 (insert 3 empty) == Node Empty (3,Black) Empty

1. Write a QuickCheck property that checks the invariance of the red-black property in
this implementation. NB. In order to do this, you will have to write a generator for
Tree, that simply inserts some number of random elements into the empty tree.

2. Red-black trees have the following property: let N = 2¥ — 1 for some integer k > 0,
then the tree generated by inserting all integers from 1 to IV in sequence is a complete
tree, i.e. all of its leaves are at the same level. For example, if N = 3, we have that
insert 1 (insert 2 (insert 3 empty)) is complete.

Use a generator to write a QuickCheck property representing this proposition, check-
ing it for relatively small values of N so as to make it tractable.

3. Write four more properties that you think should hold for red-black trees. Try to
avoid repeating the same properties you checked for BST's in the previous assignment.
Think about suitable properties to test the new function, merge. If possible, use
generators to avoid evaluating unnecessary test cases.

4. Test all these properties using QuickCheck. Should any test fail, you are expected
to find and report the error, and tell whether it is in the implementation itself or in
your properties.



