QuviQ

Properties and
Generators

course material 2012 © Quviq AB

Objectives Q

Objectives

Get familiar with basic and constructing your own
generators.

Change your mind about

- value of failing test case
- searching for small test cases

course material 2012 © Quviq AB

From Unit test to Property Q

Most developers agree that writing unit tests is useful

.... but also quickly gets boring ...

An example: the Erlang function lists:seq

course material 2012 © Quviq AB

From Unit test to Property Q

Unit tests in Erlang shell:

Manual inspection
needed
21> lists:seq(l,5).

[1,2,3,4,5]

22> lists:seq(-3,12).
[-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12]
23> lists:seq(3,3).
[3]

24> lists:seq(3,2) ﬁiﬁ;ﬂi@‘.’;’tzgt@?&s
[]

course material 2012 © Quviq AB

From Unit test to Property Q

Automated Unit tests:

seq test() ->
?assert([1,2,3,4,5],1lists:seq(1l,5)),
?assert
(r-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12],

lists:seq(-3,12)),
. Execution gives test value...
zassert([3],l1sts:seq(3,3)), Implementgtion determines
?assert([],lists:seq(3,2)). | Whatiscorrect

What is so specific for these values?
How many tests shall we write?

course material 2012 © Quviq AB

From Unit test to Property Q

Properties... Try to spot patterns in your tests

seq test() ->
?assert([1,2,3,4,5],1lists:seq(l1,5)),
?assert
(r-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,1271,
lists:seq(-3,12)),
?assert([3],1lists:seq(3,3)),

Length of the
created list seems
tobe5=5-1+1
16 =12 --3 +1
1=3-3+1
0=3-2+1

?assert([],lists:seq(3,2)).

course material 2012 © Quviq AB

From Unit test to Property Q

A property for the lists:seq function

prop_seq() ->
?FORALL({From,To}, {int(),int ()},
length(listss‘/eq(From,To)) ==
To — From + 1).

int() is a generator for
an arbitrary integer
value.

course material 2012 © Quviq AB

From Unit test to Property Q

A QuickCheck module

-module(lists_eqc).
-include lib("eqc/include/eqgc.hrl").

-compile(export_all).

prop seq() ->
?FORALL({From,To}, {int(),int ()},
length(lists:seq(From,To)) == To - From + 1).

course material 2012 © Quviq AB

From Unit test to Property Q

Running QuickCheck

1> c(lists_eqc).

{ok,lists_eqc}

2> eqgc:quickcheck(lists_eqgc:prop seq()).
....Failed! Reason:

{'EXIT',function clause}

After 5 tests.

{1,-1}

false

3> lists:seq(1,-1).

** exception error: no function clause matching lists:seq

(1-1)

course material 2012 © Quviq AB

From Unit test to Property Q
A property with positive and negative testing
prop_seq() ->

?FORALL ({From,To},{int(),int ()},
try List = lists:seq(From,To),

length(List) == To - From + 1
catch
error: ->
(To - From + 1) < 0
end).

course material 2012 © Quviq AB

Process Q

Practical use of QuickCheck

1. Consider which property should hold (not which test
should pass)

2. Check the property (100 tests)

false true

course material 2012 © Quviq AB

Generators Q

GENERATORS

course material 2012 © Quviq AB

Generators Q

Generators randomly generate data for the test case
and have built-in shrinking behavior

Examples:
int () generates a random integer
bool () randomly generates true or false

list (int ()) generates a list of random length with
randomly chosen integers

Basic generators are defined in egc _gen module

course material 2012 © Quviq AB

Generators Q

Test data generators.
— Define a set of values for test data...
— ...plus a probability distribution over that set.

Test data generators are defined by designers, defined
by basic generators with generator constructors

-record (person, {name, gender, age}).

person () ->
#person{name = name (),
gender = oneof ([male, female]),
age = choose (0,120) }.

course material 2012 © Quviq AB

Generators Q

Test data generators.
— Define a set of values for test data...
— ...plus a probability distribution over that set.

Test data generators are defined by designers, defined
by basic generators with generator constructors

-record(person, {name, gender, age}).

person () -> User defined
enerator
#person{name = name (), 9
gender = oneof ([male, femalel]),
age = choose(O,lZO)}.\\\\\\\
Basic generators
(oneof / choose)
course material 2012 © Quviq AB

Generators Q

Test data generators.
— Define a set of values for test data...
— ...plus a probability distribution over that set.

Test data generators are defined by designers, defined
by basic generators and generator constructors

-record (person, {name, gender, age}).

A record with generators is a
person () -> generator itself

#person{name = name (),
gender = oneof ([male, female]),
age = choose (0,120) }.

course material 2012 © Quviq AB

Generators Q

Generators are defined in terms of other generators

For example, positive integers

Wrong:
nat () —->
N = int (), abs(N).

course material 2012 © Quviq AB

Generators Q

Generators are defined in terms of other generators

For example, positive integers
Right:

nat () ->
?LET (N, int () ,abs (N)) .

course material 2012 © Quviq AB

See generated data

The function egqc_gen:sample (Generator)
produces a sample of the given generator

Eg: 1> eqc_gen:sample (eqc _gen:int ()) .
=9
=il
6
12
0
-6
3
15
6
=dl
4
ok

course material 2012 © Quviq AB

See generated data

The function egqc_gen:sample (Generator)
produces a sample of the given generator

E . 1> N = eqgc_gen:int().

g #Fun<eqc_gen.13.4230413>
2> eqc_gen:sample ({N,N}) .
{-9,-1}

{5,10}
{0,-5}
{3,11}
{5,-1}
{3,-11}
{-10,7}
{-12,2}
(=1, =2}
(=8,=19}
{3,-1}
ok

course material 2012 © Quviq AB

Calendar Example Q

An example from the calendar module:

day_of the week(Date) -> daynum()

Types:
Date = date()

This function computes the day of the week given Year, Month and Day. The
return value denotes the day of the week as 1: Monday, 2: Tuesday, and so

on. °
o

©)

Let us check for
Type Correctness

course material 2012 © Quviq AB

Calendar Example Q

Straightforward translation
(brute force random testing)

prop day of the week() ->
?FORALL (Date, ,
begin
D = calendar:day of the week(Date),
(1=<D) and (D=<T7)

end) .

course material 2012 © Quviq AB

Calendar Example Q

We need a generator for date.

date() = {year(), month(), day()}
year() = integer() >= 0

Year cannot be abbreviated. Example: 93 denotes year
93, not 1993. Valid range depends on the underlying OS. The
date tuple must denote a valid date.

month() = 1..12

day() = 1..31
course material 2012 © Quviq AB
Building your own generators Q

Several ways of creating a generator for years, i.e.,
positive integers

year () —-> This may generate a lot of ’
integers that are ignored
?SUCHTHAT (I,int (), I>=0).
year () —-> Many small numbers are ’
. generated
?LET (I,int () ,abs (I)).

year () -> nat ().
year () -> choose(1586,2100).

year () —-> choose(1800,2200) . °°0 (€ \Whatis the
use-case?

course material 2012 © Quviq AB

Calendar Example Q

Specify more precise
(guided random testing)

date () ->
{ ' ’ }.

prop day of the week() ->
?FORALL (Date,
begin
D = calendar:day of the week(Date),
(1=<D) and (D=<7)
end) .

course material 2012 © Quviq AB

Calendar Example Q

Run QuickCheck

2> eqc:quickcheck(calendar eqc:prop day of the week3()).
.............................. Failed! Reason:

{'EXIT', {if clause, [{calendar,date to gregorian days,3},..1}}
After 31 tests.

{1949,2,29}

Shrinking.. (2 times)

Reason:

{'EXIT', {if clause, [{calendar,date to gregorian days,3},..1}}
{1800,2,29}

false

course material 2012 © Quviq AB

Calendar Example Q

Specify more precise
Verify whether a date is valid before evaluating the
function

prop day of the week() ->
?FORALL (Date,date(),
?IMPLIES (calendar:valid date(Date) ‘o
begin C>C>
D = calendar:day of the week (D4 but..we don't

(1=<D) and (D=<7) like to trust the
module we test
end)) .

course material 2012 © Quviq AB

Calendar Example Q

Run Quickcheck

3> eqc:quickcheck(calendar eqc:prop day of the week4()).

OK, passed 100 tests
true

course material 2012 © Quviq AB

Building your own generators Q

How to make generator for dates more advanced?

1. Only a few of the generated samples are invalid, use a
function to filter them, or

2. Put effort in specifying the number of days per month

Solution 1.
calender date2() ->
?SUCHTHAT (Date,
{year (), choose(1,12),choose(1,31)},

calendar:valid date(Date)).

course material 2012 © Quviq AB

Building your own generators Q
eoeo

Solution 2.

calendar date() ->
?LET ({Y,M}, {year(),choose(1,12)},

{Y,M,dayinmonth (Y, M) }) .

dayinmonth (Y,M) ->
oneof (<1,..,28>,<1,..,29>,<1,..,31>,<1,..,30>) .

NN
E = E =

course material 2012 © Quviq AB

Trick: Degenerate List Comprehensions Q

* Problem: we want to include a choice in some
cases, but not others

* Trick: list comprehensions with no generator include
an element if a condition is true
- [1 || true] == [1]
- [1 || false] == []

« Solution: append (++) such a list comprehension to
argument of oneof

— oneof ([choose(...,...)
| | condition to include it] ++

rest)
course material 2012 © Quviq AB
Building your own generators Q

How to make generator for dates more advanced?

dayinmonth (Y,M) ->
oneof (
[choose (1,28)

| (M==2) and not calendar:is leap year(Y)] ++
[choose (1,29) |

|

|

(M==2) and calendar:is leap year(Y)] ++
lists:member (M, [4,6,9,11])] ++
lists:member (M, [1,3,5,7,8,10,12]1)]1) .

[choose (1, 30)
[choose (1, 31)

Given that calendar:is leap year is correct, our
calendar date() isa generator for dates.

course material 2012 © Quviq AB

Calendar Example Q

Idea: test is_leap_year! Look into the manual:

“The notion that every fourth year is a leap year is not completely true. By the
Gregorian rule, a year Y is a leap year if either of the following rules is

valid:
Y is divisible by 4, but not by 100; or Only 3 test gﬂsg’:ttge‘xe”- We can
Y is divisible by 400. '

Accordingly, 1996 is a leap year, 1900 is not, but 2000 is.”

prop leap year () ->
?FORALL (Y, year (),
calendar:is leap_ year(Y) ==
(divisible (Y, 4) and not divisible(Y,100))
or divisible(Y,400)).

divisible(N,M)-> N rem M ==

course material 2012 © Quviq AB

Summary Q

Testing calendar module summary:

Fine-tune generators for the basic data type (date) in
the module

Type correctness is a simple property to formulate
QuickCheck specification precise documentation

Preferably at least one property per function in the
module

course material 2012 © Quviq AB

QuviQ

Symbolic Test Cases

course material 2012 © Quviq AB

Objectives Q

Objectives

Learn about symbolic test cases
Learn to define recursive generators

course material 2012 © Quviq AB

Queues Q

Erlang contains a queue data structure
(see stdlib documentation)

We want to test that these queues behave as expected

What is “expected” behaviour?

We have a mental model of
queues that the software should
conform to.

course material 2012 © Quviq AB

Queue Q

Mental model of a fifo queue

st || [][|[tast |
Remove from head Insert at tail

course material 2012 © Quviq AB

Queue Q

[N N J
Unit tests could look like:
Q0 = queue:new(),
Q1 = queue:cons(1,Q0),
Q2 = gqueue:cons(2,01),
1 = queue:head(Q2).
Q0 = queue:new(),
Q1 = queue:cons(8,Q00),
Q2 = queue:cons (0,01),
0 = queue:last(Q2),
course material 2012 © Quviq AB
QuickCheck property Q
[N N J

We want to know that for any element, when we add it,
it's there

prop itsthere() ->
?FORALL (I, int (),
I == queue:last(
queue:cons (I,
queue:new()))) .

course material 2012 © Quviq AB

QuickCheck Q

Run QuickCheck

1> eqgc:quickcheck (queue eqc:prop itsthere()).

OK, passed 100 tests
true
2>

but we want more variation in our test data...

course material 2012 © Quviq AB

QuickCheck property Q

We want to know that for any element, when we add it,
it's there

prop itsthere() ->
?FORALL (I, int (),
I == queue:last(
queue:cons (I,

queue:new()))) .

Any queue, not only a
new queue

course material 2012 © Quviq AB

Queue Q

Generating random queues

queue () ->
oneof ([queue:new(),

queue:cons (int () ,queue())]) .

NO GOOD! Why?
* generators as argument of normal function
infinite recursion

course material 2012 © Quviq AB

Queue Q

Generating random queues

queue () —->
oneof ([queue:new(),
?LET({I,Q},{int () ,queue()},queue:cons(I,Q))]).

Still infinite recursion!

course material 2012 © Quviq AB

Queue

Generating random queues

queue () —->

queue (0) ->
queue:new () ;
queue (N) ->
oneof ([queue:new (),
?LET({I,Q}, {int () ,queue (N-1)},queue:cons(I,Q))]).

generator for
smaller queues

course material 2012 © Quviq AB

Queue

Generating random queues

queue () —->

queue (0) ->
queue:new () ;
queue (N) ->
oneof ([queue:new (),
?LET({I,Q},{int(),queue(N-1)},queue:cons(I,Q))]).

course material 2012 © Quviq AB

Queue Q

Generating random queues

{01,10-41}
{01,101}

{1,011

{1,011
{01,"\t"}
{[-8],18,5,-14]}
{"\b", [5]}

{01, 0-131}
{01,013}
{[51,[51}
{01,113

course material 2012 © Quviq AB

Queue Q

Check newly added element is last in queue

prop last cons () —->
?FORALL ({I,Q}, {int (), queue()},

qgueue:last (queue:cons (I,Q)) == I).

eqc:quickcheck (queue eqc:prop last cons()).
...Failed! After 4 tests.

(=1, {01,[11}}
Shrinking. (1 times)
{0, {I1,[11}}

false

course material 2012 © Quviq AB

Symbolic Queue Q

Build a for a queue

This representation can be used to both create the
queue and to inspect queue creation

Q0 = {call,queue,new, []}

Ql = {call,queue,cons, [1,0Q00]}

Q2 = {call,queue,cons, [2,01]}

{111,021} = (02) eval function provided by QuickCheck

in eqc_gen

course material 2012 © Quviq AB
Generating random Queues Q
Build a for a queue

This representation can be used to both create the
queue and to inspect queue creation

Why Symbolic?

1. We want to be able to see how a value is created as well as
its result

2. We do not want tests to depend on a specific representation
of a data structure

3. We want to be able to manipulate the test itself

course material 2012 © Quviq AB

Symbolic Queue Q

Generating random symbolic queues

queue () —->
?SIZED(Size,queue(Size)) .

queue (0) ->
{call,queue,new, []};
queue (N) ->
oneof ([queue (0),

{call,queue,cons, [int () ,queue(N-1)]1}]) .

We can now add generators to
the arguments

course material 2012 © Quviq AB

Symbolic Queue Q

Erlang evaluates all arguments first!
We compute unnecessarily much

oneof ([queue (0),
{call,queue, cons, [int () ,queue(N-1)11}1)

course material 2012 © Quviq AB

Symbolic Queue

Generating random symbolic queues

eqgc_gen:sample (queue eqc:queue()) .
{call, queue,cons, [-8, {call,queue,new, []}]}
{call, queue,new, []}
{call, queue,
cons,
[12,
{call, queue,
cons,
[-5,
{call, queue,
cons,
[-18, {call, queue,cons, [19, {call,queue,new, []1}]1}1}]1}]}
{call, queue,

cons,

[-18,
{call, queue,cons, [-11, {call, queue, cons,
[-18, {call,queue,new, [1}1}1}1}
course material 2012 © Quviq AB

Symbolic Queue

Generating random symbolic queues

prop_ last cons () ->
?FORALL ({I,Q}, {int (), queue() },

queue:last (queue:cons (I, Q))) == 1I).

eqc:quickcheck (queue eqc:prop last cons()).
...Failed! After 4 tests.

{0, {call, queue,cons, [-1, {call,queue,new, []1}]}}
Shrinking. (1 times)

{0, {call,queue,cons, [1,{call,queue,new, []1}]1}}

false .
clear how queue is created

course material 2012 © Quviq AB

Symbolic Queue Q

Symbolic representation helps to understand test data

Symbolic representation helps in manipulating test data
(e.g. shrinking)

But, in order to understand the behaviour,
we need a MODEL = ;1’;-;1

= o

N o o
\

'

course material 2012 © Quviq AB

Model Queue Q

Compare to traditional test cases:

REAL DATA MODEL
00 = queue:new(), []
Q1 = queue:cons(1,0Q0), [1]
Q2 = gqueue:cons(2,01), [1,2]
1 = queue:head(Q2). 1 (inspect)
00 = queue:new(), []
Q1 = queue:cons(8,0Q0), [8]
Q2 = queue:cons (0,Q1), [8,0]
0 = queue:last(Q2);. 1 (inspect)

course material 2012 © Quviq AB

Model Queue Q

Do we understand queues correctly: what is first and
what last?
prop_cons () —>

?FORALL ({I,Q}, {int () ,queue ()},

queue:cons (I,eval (Q))) == eval (Q)) ++ [I]).

Write a model function from queues to list

(or use the function queue:to_list, which is already present in the
library)

course material 2012 © Quviq AB

Model Queue property Q

eqgc:quickcheck (queue eqc:prop cons()) .
...Failed! After 4 tests.
{0, {call,queue,cons, [1,{call,queue,new, []1}]}}

false

course material 2012 © Quviq AB

Queue manual page

cons(ltem, Q1) -> Q2

Types: Item = term(), Q1 = Q2 = queue()
Inserts Item at the head of queue Q1. Returns the new queue Q2.

head(Q) -> Item

Types: Item = term(), Q = queue()
Returns Item from the head of queue Q.
Fails with reason empty if Q is empty.

last(Q) -> Item

Types: Item = term(), Q = queue()
Returns the last item of queue Q. This is the opposite of head(Q).
Fails with reason empty if Q is empty.

course material 2012 © Quviq AB

Queue

Mental model of a fifo queue

e @

tail head taihead

course material 2012 © Quviq AB

Model Queue Q

Change property to express new understanding

prop cons () —>
?FORALL ({I,Q}, {int (),queue() },
queue:cons (I,eval(Q))) == [I | eval (Q)) .

eqc:quickcheck (queue eqgc:prop cons()) .

OK, passed 100 tests

true

course material 2012 © Quviq AB

Queue Q

Add properties

prop_cons () —>
?FORALL ({I,Q}, {int (),queue()},
queue:cons (I,eval(Q))) == [I | eval(Q))).
prop head() ->
?FORALL (Q, queue (),
begin

Qval = eval(Q),
queue:is empty(QVal) orelse
queue:head (QVal) == hd(Qval))

end) .

similar queue:last(Qval) == lists:last(model(Qval))

course material 2012 © Quviq AB

Queue Q

There are more constructors for queues, e.g., tail,
sonc, in, out, etc. All constructors should respect
queue model

Tail removes last added element from the queue

queue (N) ->
?LAZY (
oneof ([queue (0),

{call, queue, cons, [int () ,queue (N-1)1},

{call, queue,tail, [queue (N-1)]11}1]1)).

course material 2012 © Quviq AB

Queue Q

Check properties again

eqgc:quickcheck (queue eqc:prop cons()) .
...Failed! Reason:
{'EXIT', {empty, [{queue, tail, [{[], [1}]},

{queue eqc, '-prop cons2/0-fun-0',1},

After 4 tests.
{0, {call, queue,tail, [{call, queue,new, []}]}}
false

cause immediately clear: advantage of
symbolic representation

course material 2012 © Quviq AB

Queue Q

Only generate well defined queues (See eqc_symbolic)

queue () ->
?SIZED (Size, queue (Size))) .

well_defined part of
QuickCheck library
Only generate symbolic
terms for which evaluation
does NOT crash

course material 2012 © Quviq AB

Summary Q

Testing a queue data structure

« symbolic representation make counter examples
readable

* recursive generators require size control and lazy
evaluation

» Define property for each queue operation: compare
result operation on real queue and model

model(queue:operator(Q)) == model_operator(model(Q))

course material 2012 © Quviq AB

