Model-Based Testing

(DIT848 / DAT260)
Spring 2012

Lecture 10
EFSMs and Executable Tests
(in ModelJUnit)

Gerardo Schneider
Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Summary of previous lecture

The Qui-Donc example
Modeling Qui-Donc with an FSM

Some simple techniques on how to generate tests from
the Qui-Donc model

EFSM
The ModelJUnit library

A Java “implementation” of an EFSM for the Qui-Donc
example

® Offline testing (not executable)

Outline

* Interactive exercises on building an EFSM
® Partial solution to the 1st part of Assignment 5

® Executable tests

® Online testing with ModelJUnit

EFSM for Calculator (v.1)

Write an EFSM for a calculator accepting (positive) integers,
different operators (*, +, -, /), a reset operation, and
parenthesis

Assume numbers are full integers (not a string of digits)

Assume that there is no need to check for division by zero

The result is given when entering “=" (no need to “calculate” the
result)

After pressing “=" the result should be given and the calculator
IS reset

® Te,itisnot Fossible enter an expression “1+2=+4" and expect to
get 7 as result (computing 1+2 first and adding 4 to the result)

For this first version: Assume that inputs with only one
erator between two operands is accepted (i.e. somethi
" is not accepted) |

EFSM for Calculator (v.1)

Iparen/c++

EFSM for Calculator (v.2)

® Modify the previous EFSM to allow any number of
operators between two operands

® The last operator is the one being considered, all the
others being discarded

EFSM for Calculator (v.2)

Iparen/c++

EFSM for Calculator (v.3)

® Modify the previous calculator by replacing “full integers”
by entering digit by digit

® The EFSM should handle digits individually to “build” the
intfeger

EFSM for Calculator (v.3)

Iparen/c++

EFSM for Calculator (v.4)

® Write a more concrete EFSM expressing more operational
properties so the evaluation of expressions are done more

explicitly

® You should be able to check for division by zero

® Hint: You might use a stack to store operands and fo store
partial results

EFSM for Calculator (v.4) - sketch

® (Operands are pushed into a stack as they are read
® The 'current' operator is stored in a variable lastOp
® The operation calcOp pops two elements off the stack and performs the operation in lastOp

® Both push and calcOp need to be sensitive to the
current nesting level (which is the counter c), so this
implies we should keep a separate stack for every
nesting level, and calcOp should push its result in the
stack of the outer level (c-1) except for the N -> Op and
N -> R transitions, where the result should be pushed in
the current stack

Iparen/c++

Remark: In the assignment
you need a different EFSM
(The solution shown here is
very much linked to an
implementation using stack,
and doesn’t explicit address
division by zero)

Making your tests executable

® Usually tests extracted from an (E)FSM are quite
abstract -> need to make them executable

® The API of the model doesn't match the API of the SUT

® Some common abstractions making difficult such match
® Model one aspect of SUT, not whole behavior
® Omit inputs and outputs which are not relevant
® Simplify complex data structures
® Assume SUT is in the correct state for the test
® Define one action as representing a sequence of SUT actions

® We must initialize the SUT, add missing details and fix
mistmatches between the APIs

tization phase may take as much fti

How to Concretize Abstract Tests

* We must either:
® Transform the expected outputs from the model into
concrete values

® Get concrete outputs from the SUT and transform them
into abstract values at the model

Some issues:
® Objects in SUT -> must keep track of identity (not only values)

® Need to maintain a map between abstract and concrete
objects

® Each time model creates a new abstract value A -> SUT
creates a concrete object C (add pair (A,C) o the m

How to Concretize Abstract Tests

® Adaptation: Write a wrapper (adaptor) around the SUT to
provide a more abstract view of SUT

®* Transformation: Transform abstract tests into concrete
test scripts

A
Abstract Test
Cases

Level of
Abstraction Adaptor

Adaptor

Concrete y

(a) Adaptation (b) Transformation

The Adaptation Approach

® The adaptor code act as an interpreter for abstract

operation calls of model, executing them in SUT (on-the-
fly while abstract tests are generated)

Adaptors responsible for:
® Setup: configuring and initializing the SUT

® Concretization: translate model abstract operation call
(and inputs) into SUT concrete calls (and inputs)

® Abstraction: translate back concrete results into
abstract values to the model

down: shut down SUT at end of each test sui

The Transformation Approach

® Test scripts are produced in the transformation approach
to transform each abstract test into an executable one

What is needed:

® Setup and teardown code at the beginning and end of
each test sequence

® A complex template: many SUT operations to implement 1
abstract operation; trap exceptions, etc

® A mapping from each abstract value to a concrete one

® A complex test script with conditionals to check SUT
ts when non-determinism

Which Approach is Better?

® Adaptation better for online testing

® Tightly integrated, two-way connection between MBT tool
and SUT

® Transformation has the advantage of producing tests
scripts in the same language (same naming, structure) as
used in manual tests

® Good for offline testing (less disruption)

® For offline testing good to combine both (mixed)

® Abstract tests transformed into executable test scripts
which call an adapter layer to handle low-level SUT
operations

Online Testing in ModelJUnit
Example: set<strings

Implementation of Set<String> (see assignment 4)
Note: In the following

; i slides we do not include
¢ StringSet.java the “import” packages -
* A simple implementation of a set of strings 2ae the distribution for

* SimpleSet.java
® A simplified model of a set of elements

® Only the model (no adaptor): could be used to generate
of fline tests

® The model assumes a set with maximum two elements

© SimpleSetWithAdaptor.java
® Like SimpleSet but with adaptor code
® Allow to do online testing of a Set<String> implementation

Online Testing in ModelJ Unit
Implementation: StringSet

public class StringSet extends AbstractSet<String> @Override
{ private ArrayList<String> contents = new ArrayList<String>(); public boolean contains(Object arg0)
{for (int i = contents.size() - 1; i >=0; i--) {

@Override if (contents.get(i).equals(arg0))
public Iterator<String> iterator() return true; } // return immediately
{ return contents.iterator(); } return false; } // none match

. Override
@Ov.er.nde. Szlblic boolean isEmpty()
public int size() { return contents.size() == 0; }
{ return contents.size(); }

@Override

@Override public boolean add(String e)
public boolean equals(Object arg0) {if (e ==null) {

throw new NullPointerException(); }
if (contents.contains(e)) {

return false; }
else {

{ boolean same = false;
if (arg0 instanceof Set) {
Set<String> other = (Set<String>) arg0;

same = size() == other.size(); .
for (int i = contents.size() - 1; same && i >= 0; i-) { return contents.add(e); } } // always adds to end
if (lother.contains(contents.get(i))) @Override
same = false; } } public boolean remove(Object o)
return same; } { if (contents.isEmpty())
return false;

else
return contents.remove

}

Online Testing in ModelJUnit
EFSM (2-elem set)

® Set: S={sl,s2}

removeS1

® RCPI"CSCHTGﬂOH: removeS2
S = <x,y>, where x=T if sl in ‘, ’
Sandy=Tif s2in S @
removeS1
° 4 states: oves?
® FF -> S is empty

® FT -> S contains s2 emoves? removeS1
® TF -> S contains s1 ’
e TT -> S contains both @ @
sl and s2

® Actions: removeS1, addS1,
removeS2, addS2, reset

ot added the "reset” action

Online Testing in ModelJUnit
EFSM: simpleSet

So, in the ModelJUnit implementation of the set, instead
of changing state explicitly, actions simply states how the
“internal” variables change

® addS1() -> is applicable only from a state where sl becomes
true

® removeS1() -> is only enable from a state where after
applying the action s1 becomes false

Online Testing in ModelJUnit
EFSM: simpleSet

public class SimpleSet implements FsmModel 4 states: TT,

{ protected boolean s1, s2; TF, FT, FF
public Object getState() reset transition
{return (s1? "T" : "F") + (s2 ? "T" : "F"); } from all states

to FF

public void reset(boolean testing)

— ce) = c Define action
{s1 =false; s2 =false; } siotaddtelfem
0 set: from
@Action public void addS1() {s1 = true;} any state to

@Action public void addS2() {s2 = true;} the state TX
@Action public void removeS1() {s1 = false;}
@Action public void removeS2() {s2 = false;}

Example to
public static void main(String[] args) generate
{ Tester tester = new GreedyTester(new SimpleSet()); tests from the
tester.addListener(new Verboselistener()); model

tester.generate(100); }
}

* Examples and source codes from the ModelJUnit distribution (under
subdirectory “examples2.0")- Copyright (C) 2007 Mark Utting

Online Testing in ModelJ Unit
EFSM with Adaptor: simpleSetWithAdaptor

public class SimpleSetWithAdaptor implements FsmModel
{ Test data for the SUT

protected Set<String> sut_;
protected boolean s1, s2;

protected String strl = "some string"; Tests a StringSet implementation
protected String str2 =""; // empty string (sut_)

public SimpleSetWithAdaptor()

{ sut_ = new StringSet(); } Concrete operation in
SUT for the abstract
public Object getState() (EFSM) operation

{ return (51 'p IITII . ||F||) + (52 ? IITII . "F"); } reset

public void reset(boolean testing
{ s1 = false;
s2 = false;
sut_.clear(); }

Concrete operation in

SUT for the abstract

gEFSM) operation
‘addS1”

@Action public void addS1() f{;‘ig" SUT in right

{s1=true;
sut_.add(strl);
checkSUT(); }

* Examples and source codes from the ModelJUnit distribution (under
subdirectory “examples2.0")- Copyright (C) 2007 Mark Utting

Online Testing in ModelJUnit
EFSM with Adaptor: simpleSetWithAdaptor

@Action public void addS2()
{ Assert.assertEquals(!s2, sut_.add(str2)); //sut_.add(str2);

s2 =true;

checkSUT(); } How to test the result

. of sut_.add(...)

@Action public void removeS1() Concrete operation in
{s1 = false; SUT for the abstract

sut_.remove(strl); LEFSM) ogf,[atlon

. remove

SrsaSSRY Check SUT in

@Action public void removeS2() expected state

{ Assert.assertEquals(s2, sut_.remove(str2)); //sut_.remove(str2):
s2 = false;
checkSUT(); } X

Check size of model
protected void checkSUT/() and implementaion is

{intsize=(s1?1:0)+(s2?1:0); the the same
Assert.assertEquals(size, sut_.size());
Assert.assertEquals(s1, sut_.contains(strl)); .
Assert.assertEquals(s2, sut_.contains(str2)); If EFSM In state where
Assert.assertEquals(!s1 && !s2, sut_.isEmpty()); 52'.T' then impl. should
Assert.assertEquals(!s1 && s2, sut_.equals(Collections.singleton(str2))); } .be. in state where str2

is in the set

public static void main(String[] args)

{ Set<String> sut = new StringSetBuggy(); // StringSetBuggy();
Tester tester = new GreedyTester_(new SimpleSetWithAdaptor(sut)); Example of generating
tester.addListener(new \{erboseLlster]ez_r()); tests from tEis model
tester.addCoverageMetric(new TransitionCoverage());

tester.generate(50); ou R—
5 . Examples and source codes from the ModelJUnit distribution (under
tester.printCoverage(); } } subdirel:c,:for*y “examples2.0")- Copyright (C) 2007 Mark Utting

Online Testing in ModelJUnit
Additional Remarks

, , _ ® You can add code to
® ModelJUnit, an iterative measure coverage, fraverse
process: the model using specific
algorithms, etfc
getstate() ->
evaluate guard ->
execute action ->

® The code is automatically
added when using the “Test
Configuration” in

update internal state ->... ModelJUnit

° At egch moment it is ® In some applications you
possible to relate with the have to modify the code too
SUT and check its state (not in the StringSet

through the adaptor example)

Assignment 5

You will have to:

* Define the EFSM of a complex calculator
® Encode it in ModelJUnit

® Write an adaptor

® Execute online tests to find errors, using some of
ModelJUnit traversal algorithms

® Define (and measure) state and transition coverage

References

® M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007

® Sections 5.3 and 8.1

