
Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 1

19 Designing applications

2Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Main concepts to be covered

• OOA and OOD
• Discovering classes
• CRC cards
• Designing interfaces
• Development process models
• Modeling languages
• Modeling in UML

3Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

OOA and OOD

• Object Oriented Analysis
– Identifies the entities (objects) of a system,

their relationships, and cooperation.
– Focus on “what” rather than “how”.

• Object Oriented Design
– Detailed design

• Data representation, method signatures,…

– System design
• Platforms, languages, environment, hardware,…

4Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Object oriented analysis

• A large and complex area.
• The verb/noun method is suitable for

relatively small problems.
• CRC cards support the analysis.

5Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

The verb/noun method

• The nouns in a description refer to
‘things’.
– A source of classes and objects.

• The verbs refer to actions.
– A source of interactions between objects.
– Actions are behavior, and hence methods.

6Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

A problem description

The cinema booking system should store seat bookings for
multiple theatres.
Each theatre has seats arranged in rows.
Customers can reserve seats and are given a row number
and seat number.
They may request bookings of several adjoining seats.
Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).
Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.
The system stores the customers’ telephone number.

Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 2

7Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Nouns and verbs

Cinema booking system
Stores (seat bookings)
Stores (telephone number)

Seat booking

Theatre
Has (seats)

Seat

Row

Customer
Reserves (seats)
Is given (row number, seat number)
Requests (seat booking)

Row number

Seat numberShow
Is scheduled (in theatre)

Movie

DateTime

Telephone number

8Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Using CRC cards

• First described by Kent Beck and Ward
Cunningham.

• Each index card records:
– A class name.
– The class’s responsibilities.
– The class’s collaborators.

9Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

A CRC card

Class name Collaborators

Responsibilities

10Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Scenarios

• An activity that the system has to carry
out or support.
– Sometimes known as use cases.

• Used to discover and record object
interactions (collaborations).

• Can be performed as a group activity.

11Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

A partial example

CinemaBookingSystem Collaborators
Can find shows by title and Show
day.
Stores collection of shows. Collection
Retrieves and displays show
details.
...

12Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Scenario analysis

• Scenarios serve to check the problem
description is clear and complete.

• Sufficient time should be taken over
the analysis.

• The analysis will lead into design.
– Spotting errors or omissions here will

save considerable wasted effort later.

Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 3

13Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Class design

• Scenario analysis helps to clarify
application structure.
– Each card maps to a class.
– Collaborations reveal class

cooperation/object interaction.

• Responsibilities reveal public
methods.
– And sometimes fields; e.g. “Stores

collection ...”

14Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Designing class interfaces

• Replay the scenarios in terms of method
calls, parameters and return values.

• Note down the resulting signatures.
• Create outline classes with public-

method stubs.
• Careful design is a key to successful

implementation.

15Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Documentation

• Write class comments.
• Write method comments.
• Describe the overall purpose of each.
• Documenting now ensures that:

– The focus is on what rather than how.
– That it doesn’t get forgotten!

16Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Cooperation

• Team-working is likely to be the norm not
the exception.

• Documentation is essential for team
working.

• Clean O-O design, with loosely-coupled
components, also supports cooperation.

17Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Prototyping

• Supports early investigation of a system.
– Early problem identification.

• Incomplete components can be
simulated.
– E.g. always returning a fixed result.
– Avoid random behavior which is difficult to

reproduce.

18Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Development process models

• Waterfall model
– Analysis
– Design
– Implementation
– Unit testing
– Integration testing
– Delivery

• No provision for iteration.

Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 4

19Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Development process models (2)

• Iterative incremental development
– Use early prototyping.
– Frequent client interaction.
– Iteration over:

• Analysis
• Design
• Prototype
• Client feedback

• A growth model is the most realistic.

20Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Graphical modeling languages

• A modeling language has a graphical syntax
(and a more or less well defined semantics).

• Graphical modeling focus on conceptual aspects
of a design.

• OMT = Object Modeling Technique (Michael
Blaha,Jim Rumbaugh, William Premerlani)

• Booch (Grady Booch)
• UML = Unified Modeling Language (Jacobson,...)

21Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

UML diagram types

• Static design view
– Class diagrams (static relations)
– Component diagrams (modularization)
– Deployment diagrams (run-time config.)

• Dynamic design view
– Use case diagrams (user level behavior)
– Scenario diagrams (object cooperation)
– State diagrams (individual object behavior)

22Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Class diagrams

• Class icons
• Type relationships

– Inheritance (“is a”)
– Implementation

• Object relationships
– Dependency
– Association (“knows”)
– Aggregation (“has”)
– Composition (“contains”)

ClassName

23Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Inheritance relationships

Class extension

Superclass

Subclass

Superinterface

Subinterface

Interface

Implementation

Interface
extension

Interface
implementation

24Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Class icons

<<abstract>>
Thing

- size : int

+ getSize() : int
setSize(n:int) : void

Class name

Access modifier
Private –
Protected #
Public +

Methods

Variables

Stereotype

Return type

Parameter

Class icon

Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 5

25Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Object relation properties

* update

ownedowner

Navigability

Role

Name

Role

Multiplicity
Exactly x x
Zero or more *
Range x to y x..y
x or more x..

26Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Aggregation and composition

Aggregate

Component

Aggregation

Aggregate

Component

Composition

part

whole

27Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Aggregation and composition (2)

University StudentDepartment* *11

A department belongs
to a university.
The life time of a
department is bounded
by the life time of the
university to which it
belongs.
(strong aggregation)

The life time of a student
is independent of the life
time of the department.
(weak aggregation)

28Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Aggregation vs inheritance
• Aggregation is often a natural alternative

to inheritance.
• Ask the question:

– Which is most natural to say, that an A has a B
or, that an A is a B?

ListQueue

ListQueue

The list is an internal
implementation
detail of this queue.

Is a queue really a list?
Do we want a queue
to provide general list
operations?

29Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Aggregation, association and
dependency relationships

Internal state Utility

Client

*

1

Server

someMethod(Utility x) : void

Many clients share
a server. No client
owns the server.

A server owns it’s
internal state. It is not
shared by others.

A dependency is more
volatile than an association. A
server uses the utility
temporarily.

30Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Use case modeling

• Use case view
– Captures the behavior of a system as it appears to a

user outside the system boundary.
– Main inventor - Ivar Jacobson

• Actor
– External part that interacts with the system.
– Idealized user: human, other system, process, ...

• Use case
– External system behavior, meaningful to an actor.
– A piece of interactive functionality as a sequence of

messages between an actor and a system.

Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 6

31Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Use case diagrams

• Use case icons

• Actor icons

• Use case relationships
– Generalization
– Inclusion
– Extension
– Participation

use case name

<<include>>

<<extend>>

actor name

32Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

University system

Use case diagram for a university

registration

course activities

examination

report credits

view credits

student teacher

secretary

System boundary

33Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Use case parts

Whole use case

do home work

course activities

Use case fragment

attend lab supervision attend lectures

<<include>> <<include>> <<include>>

34Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Generalization – specialization
and extension

examination

Generalization

do written exam do oral exam

do examsubmit labs

<<include>><<include>>

Specialization

One of the special use cases may be
substituted for the general use case.

submit bonus

<<extend>>

Use case extension

35Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Scenario diagrams

• A scenario diagram visualizes how
cooperating objects implement a use
case, or part of a use case.

• There are two main types of scenario
diagrams
– Cooperation diagrams

• Focus on object cooperation aspects.

– Sequence diagrams
• Visualize the temporal orderings of messages sent

between cooperating objects.

36Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Sequence diagrams

: Client server : Server
external

actor

t i m
 e

requestX()

Destruction

Time line

select(x)

Message

System boundary

Activation

Class
Instance name

Instance

Return

Objektorienterad programmering D2, förel. 19

DAT042, 12/13, lp1 7

37Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Ex. A cash machine scenario

: CardUnit : CPU

customer

check(card)
insert(card)

: Keyboard : GUI : BillFeader : ReceiptPrinter

print(receipt)

msg(”type PID”)

type(PID)

msg(”select amount”)

check()

type(amount)

req(amount)

deliver($)
Return arrows

omitted in
lower part

38Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Review

• Class collaborations and object
interactions must be identified.
– CRC analysis supports this.

• An iterative approach to design, analysis
and implementation can be beneficial.
– Regard software systems as entities that will

grow and evolve over time.

39Lecture 19Object oriented programming, DAT042, D2, 12/13, lp 1

Review

• Work in a way that facilitates
collaboration with others.

• Design flexible, extendible class
structures.
– Being aware of existing design patterns will

help you to do this.

• Continue to learn from your own and
others’ experiences.

