Objektorienterad programmering D2, forel. 19

19 Designing applications

Main concepts to be covered

e OOA and OOD

 Discovering classes

* CRC cards

« Designing interfaces

« Development process models
* Modeling languages

e Modeling in UML

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19

2

OOA and OOD

* Object Oriented Analysis

- ldentifies the entities (objects) of a system,
their relationships, and cooperation.

- Focus on “what” rather than “how”.
¢ Object Oriented Design

- Detailed design
« Data representation, method signatures, ...
- System design
« Platforms, languages, environment, hardware,...

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19

Object oriented analysis

* A large and complex area.

* The verb/noun method is suitable for
relatively small problems.

e CRC cards support the analysis.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19

4

The verb/noun method

e The nouns in a description refer to
“things’.
- A source of classes and objects.

» The verbs refer to actions.
- A source of interactions between objects.
- Actions are behavior, and hence methods.

nted programming, DAT042, D2, 12/13, Ip 1 Lecture 19

A problem description

The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

nted programming, DAT042, D2, 12/13, Ip 1 Lecture 19

DATO042, 12/13, Ipl

Objektorienterad programmering D2, forel. 19

Nouns and verbs

Cinema booking system
Stores (seat bookings)
Stores (telephone number)

Theatre Movie
Has (seats)

Using CRC cards

« First described by Kent Beck and Ward
Cunningham.

Class name Collaborators

Responsibilities

Object oriented programming, DAT042, D2, 12/13, Ip 1

Lecture 19 9

* An activity that the system has to carry
out or support.

- Sometimes known as use cases.

 Used to discover and record object
interactions (collaborations).

e Can be performed as a group activity.

Object oriented programming, DAT042, D2, 12/13, Ip 1

Customer Time| [Date e Each index card records:
Reserves (seats)
Is given (row number, seat number) - A class name.
Requests (seat booking) Seat bookin y T
9 - The class’s responsibilities.
‘Show [seat] |[seat number | - The class’s collaborators.
Is scheduled (in theatre)
(Row] [Row namber]
Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture19 7 Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture19 8
A CRC card Scenarios

Lecture 19 10
A partial example Scenario analysis

CinemaBookingSystem Collaborators ¢ Scena:rlo_s se_rve to check the problem
Can find shows by title and | Show description is clear and complete.
day. .. .
Stores collection of shows. Collection * Sufficient _tlme should be taken over
Retrieves and displays show the analysis.
details. « The analysis will lead into design.

- Spotting errors or omissions here will

save considerable wasted effort later.
Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 11 Object oriented programming, DAT042, D2, 12/13, Ip 1

Lecture 19 12

DATO042, 12/13, Ipl

Objektorienterad programmering D2, forel. 19

Class design

» Scenario analysis helps to clarify
application structure.
- Each card maps to a class.
- Collaborations reveal class
cooperation/object interaction.

» Responsibilities reveal public

Designing class interfaces

Replay the scenarios in terms of method
calls, parameters and return values.

Note down the resulting signatures.

Create outline classes with public-
method stubs.

Careful design is a key to successful

methods.)) implementation.
- And sometimes fields; e.g. “Stores
collection ...”
Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 13 Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 14
Documentation Cooperatlon

* Write class comments.
* Write method comments.
 Describe the overall purpose of each.

« Documenting now ensures that:
- The focus is on what rather than how.
- That it doesn’t get forgotten!

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture19 15

e Team-working is likely to be the norm not
the exception.

e Documentation is essential for team
working.

e Clean O-0O design, with loosely-coupled
components, also supports cooperation.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 16

Prototyping

» Supports early investigation of a system.
- Early problem identification.

* Incomplete components can be
simulated.
- E.g. always returning a fixed result.

- Avoid random behavior which is difficult to
reproduce.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 17

Development process models

* Waterfall model
- Analysis
- Design
- Implementation
- Unit testing
- Integration testing
- Delivery

< No provision for iteration.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture19 18

DATO042, 12/13, Ipl

Objektorienterad programmering D2, forel. 19

Development process models (2)

* |terative incremental development
- Use early prototyping.
- Frequent client interaction.
- Iteration over:
= Analysis
« Design
= Prototype
= Client feedback

* A growth model is the most realistic.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 19

Graphical modeling languages

* A modeling language has a graphical syntax
(and a more or less well defined semantics).

» Graphical modeling focus on conceptual aspects
of a design.

e OMT = Object Modeling Technique (Michael
Blaha,Jim Rumbaugh, William Premerlani)

» Booch (Grady Booch)
e UML = Unified Modeling Language (Jacobson,...)

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 20

UML diagram types

« Static design view
- Class diagrams (static relations)
- Component diagrams (modularization)
- Deployment diagrams (run-time config.)
» Dynamic design view
- Use case diagrams (user level behavior)
- Scenario diagrams (object cooperation)
- State diagrams (individual object behavior)

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 21

Class diagrams

« Class icons

e Type relationships

- Inheritance (“is a”") —>

- Implementation = - >
* Object relationships

- Dependency 0 o >

- Association (“knows™) _—

- Aggregation (“has”) >—

- Composition (“contains”) &———

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 22

Inheritance relationships

‘ Superclass Superinterface‘ ‘ Interface ‘
I
I
I
1
1
1
1
‘ Subclass Subinterface llmplementation

Class extension Interface Interface
extension implementation

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 23

Class icons

q

Class name

Stereotype

<<abstract>>

Thin
9 Variables
—

- size :int

Access modifier
Private -
Protected #
Public +

+ getSize() : int T
setSize(n:int) : void

Parameter

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 24

DATO042, 12/13, Ipl

Objektorienterad programmering D2, forel. 19

Object relation properties

Navigability
* update -

Multiplicity
Exactly x X
Zero or more *
Range xtoy Xx.y
X or more X..

owner owned
Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 25

Aggregation and composition

whole
‘ Aggregate ‘ I Aggregate ‘
‘ Component ‘ Component

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 26

Aggregation and composition (2)

A department belongs
to a university.

The life time of a
department is bounded
by the life time of the
university to which it
belongs.

(strong aggregation)

The life time of a student
is independent of the life
time of the department.

(weak aggregation)

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 27

Aggregation vs inheritance

» Aggregation is often a natural alternative
to inheritance.
e Ask the question:

- Which is most natural to say, that an A has a B
or, thatan Ais a B?

o{ o]

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 28

The list is an internal
implementation
detail of this queue.

Is a queue really a list?
Do we want a queue

to provide general list
operations?

Aggregation, association and
dependency relationships

Client

*

Many clients share
a server. No client
owns the server.

1

Server
Internal state

someMethod(Utility x) : void

A dependency is more
volatile than an association. A
server uses the utility
temporarily.

A server owns it's
internal state. It is not
shared by others.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 29

Use case modeling

* Use case view

- Captures the behavior of a system as it appears to a
user outside the system boundary.

- Main inventor - Ivar Jacobson
e Actor

- External part that interacts with the system.

- ldealized user: human, other system, process, ...
* Use case

- External system behavior, meaningful to an actor.

- A piece of interactive functionality as a sequence of
messages between an actor and a system.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 30

DATO042, 12/13, Ipl

Objektorienterad programmering D2, forel. 19

Use case diagrams

use case name

¢ Use case icons

¢ Actor icons

actor name
» Use case relationships
- Generalization >
- Inclusion _ scinclude>>
- Extension _ ssextend>>
- Participation
Object oriented programming, DAT042, D2, 12/13, Ip 1 —

Use case diagram for a university

University system System boundary
registration

course activities

student

teacher
report credits
secretary
view credits
Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 32

Use case parts

course activities

7 A
| \\

7

, ! .
|

N
7z
e <<include>> <<include>> “g<include>>
| \

A
attend lab supervision attend lectures

Use case fragment

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 33

Generalization - specialization
and extension

w
/ \
<<include>>/ \\ <<include>> Generalization
/ \

do exam
Specialization
7
/<<extend>>
do oral exam

/
One of the special use cases may be

substituted for the general use case.

do written exam

Use case extension

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 34

Scenario diagrams

A scenario diagram visualizes how
cooperating objects implement a use
case, or part of a use case.

e There are two main types of scenario
diagrams
- Cooperation diagrams
= Focus on object cooperation aspects.
- Sequence diagrams

= Visualize the temporal orderings of messages sent
between cooperating objects.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 35

Sequence diagrams

% : Client
T

external
actor

select(x)

requestX()

Message

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 36

DATO042, 12/13, Ipl

Objektorienterad programmering D2, forel. 19

Ex. A cash machine scenario

% Review
: CardUnit :CPU : Keyboard :GUI : BillFeader : ReceiptPrinter
: | r;
. | | I 1 . -
L P ! ! « Class collaborations and object
— interactions must be identified.
]
[<-—--- ;r - CRC analysis supports this.
|

type(PID)

H—=

msg("select amount”’
T

R b

L e(amount; T
|
| req(amount)

and implementation can be beneficial.

- Regard software systems as entities that will
grow and evolve over time.

|
|
|
|
i < An iterative approach to design, analysis
|
|
|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
1
L-l print(receipt;
T
i

T
deliver($,
Return arrows : :)
omitted in | |
lower part | LJ T
'
Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 37 Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 38

Review

e Work in a way that facilitates
collaboration with others.

 Design flexible, extendible class
structures.
- Being aware of existing design patterns will

help you to do this.

e Continue to learn from your own and

others’ experiences.

Object oriented programming, DAT042, D2, 12/13, Ip 1 Lecture 19 39

DATO042, 12/13, Ipl

