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14 Handling errors

Main concepts to be covered

« Defensive programming.

- Anticipating that things could go wrong.
< Exception handling and throwing.
 Error reporting.
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Some causes of error situations

* Incorrect implementation.
- Does not meet the specification.

* Inappropriate object request.
- E.g., invalid index.

* Inconsistent or inappropriate object
state.

- E.g. arising through class extension.
example in slides 4-11 >
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Example: Class extension

public class Point {
private int x,y;
public Point (int x,int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }

1

}

public class Rectangle extends Point {
private int width,height;
public Rectangle (int x,int y,int width,int height) {
super (x,y) ;
setWidth (width); setHeight (height);
}
public int getWidth() { return width; }
public int getHeight () { return height; }
public void setWidth(int width) { this.width = width; }
public void setHeight (int height) { this.height = height; }

}
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Class extension (2)

* Want more subclasses ...

e A square is a rectangle with equal sides.
A circle is an ellipse with equal axis.

* |déa:

- Define Square as a subclass to Rectangle,
Circle as a subclass to Ellipse, etc.

* |s this idéa good or bad?
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A Square IS A Rectangle (?)

Rectangle

public class Square extends Rectangle {
public Square(int x,int y,int size) ({
super (x,y,size,size);
}

public int getSize() { return getWidth(); }
public void setSize(int size) {
setWidth(size) ;
setHeight (size) ;
}
public int getArea() {
return getSize () *getSize() ;
}

}
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Class extension (4) Class extension (5)
Square sq = new Square(12,34,100); * If a Square really IS A Recangle, then the
System.out.println(sq.getSize()); // 100  OK! following equalities should hold for any
5q.setWidth(200) ; Square s:
System.out.println(sq.getSize()); // 200 OK! -s.getWidth() == s.getHeight()
sq.setHeight (300) ; - s.getWidth() == s.getSize()
System.out.println(sq.getSize()); // 200 OK!...? - s.getHeight () == s.getSize()
System.out.println(sqg.getArea()); // 40000 OK! = Square haS to Override ReCtaI’]g|e
e L0y et ) methods in order to enforce those

sq.getHeight()); // 60000 #@+! equalities!
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Class extension (6)
Override critical Rectangle methods Class extension (7)

public class Square extends Rectangle {
public Square (int x,int y,int size) {
, mmareeaa e Concl. A square IS NOT A Rectangle
. - because a Rectangle cannot be guaranteed

:ugzz-z:g:sigﬁétéeg to behave (conceptually) as a square.

;):ublic int getArea() { return getSize()*getSize(); } * The baSIC phllosophy 'S that Inherltance
s should extend a class with additional
@override o , , _ properties, not restrict a class from
public void setHeight (int height) { setSize(height); } it i i
eoverride having certain properties.
public void setWidth(int width) { setSize(width); } . . .

}  So this extension was a bad idéa ...

* Does this feel as a clean extension?
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Alternative solution: Aggregation

- A Square HAS A Rectangle Not always programmer error

public class Square { ¢ Errors often arise from the environment:
i te Rect 1 t;
T e - Incorrect URL entered.

public Square(int x,int y,int size) {

) rect = new Rectangle(x,y,size,size); _ Network interruption.

ublic int getSize() { retu t.getWidth(); } H H H H -

S eieng el b * File processing is particular error-prone:
rect.setWidth(size); _ Missing files

) .

public int getarea() i - Lack of appropriate permissions.

rect.getWidth() ;

}

}

e Square uses a Rectangle for implementation purposes.
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Exploring errors

e Explore error situations through the
address-book projects.

* Two aspects:
- Error reporting.
- Error handling.
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Defensive programming

 Client-server interaction.
- Should a server assume that clients are well-
behaved?
- Or should it assume that clients are
potentially hostile?
« Significant differences in implementation
required.
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Issues to be addressed

e How much checking by a server on
method calls?

* How to report errors?
e How can a client anticipate failure?
How should a client deal with failure?

L]
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An example

e Create an AddressBook object.
e Try to remove an entry.
¢ A runtime error results.

- Whose “fault’ is this?

< Anticipation and prevention are
preferable to apportioning blame.
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Argument values

e Arguments represent a major
‘vulnerability’ for a server object.
- Constructor arguments initialize state.
- Method arguments often contribute to
behavior.
» Argument checking is one defensive
measure.
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Checking the key

public void removeDetails(String key)

if (keyInUse (key)) {
ContactDetails details = book.get (key);
book.remove (details.getName()) ;
book.remove (details.getPhone()) ;
numberOfEntries--;
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Server error reporting

e How to report illegal arguments?
- To the user?
 Is there a human user?
« Can they solve the problem?
- To the client object?
« Return a diagnostic value.
* Throw an exception.
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Returning a diagnostic

public boolean removeDetails(String key)

if (keyInUse (key)) {
ContactDetails details = book.get (key) ;
book.remove (details.getName()) ;
book.remove (details.getPhone()) ;
numberOfEntries--;
return true;

else {
return false;
}
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Client responses

e Test the return value.

- Attempt recovery on error.

- Avoid program failure.
* Ignore the return value.

- Cannot be prevented.

- Likely to lead to program failure.
e Exceptions are preferable.
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Exception-throwing principles

A special language feature.
* No ‘special’ return value needed.

 Errors cannot be ignored in the client.
- The normal flow-of-control is interrupted.
« Specific recovery actions are encouraged.
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Throwing an exception

J**
* Look up a name or phone number and return the
* corresponding contact details.
* @param key The name or number to be looked up.
* @return The details corresponding to the key,
* or null if there are none matching.
* @throws NullPointerException if the key is null.
*/
public ContactDetails getDetails(String key)
{
if (key == null) {
throw new NullPointerException (
"null key in getDetails");
}

return book.get (key) ;
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Throwing an exception

* An exception object is constructed:

-new ExceptionType("...");
e The exception object is thrown:
- throw

 Javadoc documentation:
- @throws ExceptionType reason
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The exception class hierarchy

Thi bl
l:' standard library classes

S
l:l user defined classes

Error Exception

]

MyUncheckedException

-
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Exception categories

e Checked exceptions

- Subclass of Exception

- Use for anticipated failures.

- Where recovery may be possible.
¢ Unchecked exceptions

- Subclass of RuntimeException

- Use for unanticipated failures.

- Where recovery is unlikely.
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The effect of an exception

e The throwing method finishes
prematurely.

¢ No return value is returned.

* Control does not return to the client’s
point of call.

- So the client cannot carry on regardless.
< A client may ‘catch’ an exception.
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Unchecked exceptions

« Use of these is ‘unchecked’ by the
compiler.

e Cause program termination if not caught.
- This is the normal practice.

e IllegalArgumentException is a
typical example.
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Argument checking

public ContactDetails getDetails(String key)

if (key == null) {
throw new NullPointerException (
"null key in getDetails");

if (key.trim() .length() == 0) {
throw new IllegalArgumentException (
"Empty key passed to getDetails");

return book.get (key) ;
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Preventing object creation

public ContactDetails(String name, String phone, String address)

if (name == null) {
name = "";

if (phone == null) {
phone = "";
}

if (address == null) {
address = "";
}

this.name = name.trim();
this.phone = phone.trim();
this.address = address.trim();

if (this.name.length() == 0 && this.phone.length() == 0) {
throw new IllegalStateException (
"Either the name or phone must not be blank.");
}
}
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Exception handling

e Checked exceptions are meant to be
caught.

e The compiler ensures that their use is
tightly controlled.
- In both server and client.

e Used properly, failures may be
recoverable.
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The throws clause

* Methods throwing a checked exception
must include a throws clause:

public void saveToFile(String destinationFile)
throws IOException
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The try statement

« Clients catching an exception must
protect the call with a try statement:

try {
Protect one or more statements here.

catch (Exception e) {
Report and recover from the exception here.
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The try statement

‘1. Exception thrown from here

try {
addressbook.saveToFile (filename) ;

tryAgain = false;
} /l 2. Control transfers to here
catch (IOException e) {

System.out.println("Unable to save to " + filename);
tryAgain = true;
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Catching multiple exceptions

try {

ref.process();

catch (EOFException e) {
// Take action on an end-of-file exception.

}
catch (FileNotFoundException e) {
// Take action on a file-not-found exception.
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Defining new exceptions

e Extend RuntimeException for an
unchecked or Exception for a
checked exception.

 Define new types to give better
diagnostic information.

- Include reporting and/or recovery
information.
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public class NoMatchingDetailsException extends Exception
private String key;

public NoMatchingDetailsException(String key)

{
}

this.key = key;

public String getKey ()

return key;

public String toString()

return "No details matching '" + key +
"' were found.";

}
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Assertions

 Used for internal consistency checks.
- E.g. object state following mutation.

e Used during development and normally
removed in production version.
- E.g. via a compile-time option.

e Java has an assert statement.
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Java Assertion Statement

e Two forms available:
- assert boolean-expression
- assert boolean-expression :
expression
e The boolean-expression expresses
something that should be true at this
point.

¢ An AssertionError is thrown if the
assertion is false.
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Assert Statement

public void removeDetails(String key)

{
if (key == null){
throw new IllegalArgumentException("...");
}
if (keyInUse (key)) {
ContactDetails details = book.get (key);
book.remove (details.getName()) ;
book.remove (details.getPhone()) ;
numberOfEntries--;
}
assert !keyInUse (key);
assert consistentSize() :
"Inconsistent book size in removeDetails";
}
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Guidelines for Assertions

e They are not an alternative to throwing
exceptions.

 Use for internal checks.
e Remove from production code.

e Don’t include normal functionality:
// Incorrect use:
assert book.remove (name) != null;

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 41

Error recovery

¢ Clients should take note of error
notifications.

- Check return values.
- Don’t ‘ignore’ exceptions.

* Include code to attempt recovery.
- Will often require a loop.
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Attempting recovery

// Try to save the address book.
boolean successful = false;
int attempts = 0;
do {
try {
addressbook.saveToFile (filename) ;
successful = true;

catch (IOException e) {
System.out.println("Unable to save to " + filename);

attempts++;
if (attempts < MAX ATTEMPTS) {
filename = an alternative file name;

}

} while(!successful && attempts < MAX ATTEMPTS) ;
if (1successful) {
Report the problem and give up;

}
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Error avoidance

« Clients can often use server query
methods to avoid errors.

- More robust clients mean servers can be
more trusting.

- Unchecked exceptions can be used.
- Simplifies client logic.
e May increase client-server coupling.
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Avoiding an exception

// Use the correct method to put details
// in the address book.
if (book.keyInUse (details.getName()) ||
book.keyInUse (details.getPhone()) {
book.changeDetails (details) ;

else {
book.addDetails (details);
}

The addDetails method could now throw an
unchecked exception.
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Exceptions and overriding

Requirement of the substitution principle:

« It should always be safe to replace an object of
a base class with an object of a sub class.

« In particular, exception handlers for base class
method calls should work equally well for calls
to overriding methods of the sub class.

< All checked exceptions thrown by calls to
overriding methods must be type compatible
with exceptions that could be thrown by calls
to overridden methods in the base class.
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Exceptions and overriding

Type compatibility rule for throws clauses:

« The set of exceptions A declared in the throws
clause in an overriding method must be type
compatible with the set of exceptions B
declared in the throws clause in the overridden
method.

< Als type compatible with B if for every
exception type E, in A, there is an exception
type E, in B such that E, is a subtype of E,.
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Exceptions and overriding
Example

public class El extends Exception {}
public class E2 extends E1 {}
public class E3 extends Exception {}

public class Base {
public void £() throws E1 {}
public void g() throws E1,E3 {}
public void h() throws E2 {}

}

public class Sub extends Base {
... see the following slides
}
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Example

public class Sub extends Base {

Exceptions and overriding

Exceptions and overriding
Example

public class Sub extends Base {

public void £() {}

public void £() throws E1 {}
public void f() throws E2 {}
public void £() throws E1,E2 {}

Any of these is a
correct overring
of f

public void g() {}

public void g() throws E1 {}
public void g() throws E2 {}
public void g() throws E3 {} correct overring
public void g() throws E1,E2 {} ofg
public void g() throws E1,E3 {}
public void g() throws E2,E3 {}
public void g() throws E1,E2,E3 {}

,
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Any of these is a

public void £() throws E3 {}
public void £() throws E1,E3 {}

. . ... but NONE
public void £() throws E2,E3 {} of these
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Exceptions and overriding

Example Review

public class Sub extends Base { * Runtime errors arise for many reasons.

- An inappropriate client call to a server
object.

- A server unable to fulfill a request.
- Programming error in client and/or server.

Any of these is a
correct overring
of h

public void h() {}
public void h() throws E2 {}

public void h() throws E1 {}

public void h() throws E3 {}

public void h() throws E1,E2 {}
public void h() throws E1,E3 {} of these
public void h() throws E2,E3 {}

public void h() throws E1,E2,E3 {}

}
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Review

e Runtime errors often lead to program
failure.

» Defensive programming anticipates errors
- in both client and server.

« Exceptions provide a reporting and
recovery mechanism.
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