Objektorienterad programmering D2, forel.

14

14 Handling errors

Main concepts to be covered

« Defensive programming.

- Anticipating that things could go wrong.
< Exception handling and throwing.
 Error reporting.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14

2

Some causes of error situations

* Incorrect implementation.
- Does not meet the specification.

* Inappropriate object request.
- E.g., invalid index.

* Inconsistent or inappropriate object
state.

- E.g. arising through class extension.
example in slides 4-11 >

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14

3

Example: Class extension

public class Point {
private int x,y;
public Point (int x,int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }

1

}

public class Rectangle extends Point {
private int width,height;
public Rectangle (int x,int y,int width,int height) {
super (x,y) ;
setWidth (width); setHeight (height);
}
public int getWidth() { return width; }
public int getHeight () { return height; }
public void setWidth(int width) { this.width = width; }
public void setHeight (int height) { this.height = height; }

}

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14

4

Class extension (2)

* Want more subclasses ...

e A square is a rectangle with equal sides.
A circle is an ellipse with equal axis.

* |déa:

- Define Square as a subclass to Rectangle,
Circle as a subclass to Ellipse, etc.

* |s this idéa good or bad?

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14

5

A Square IS A Rectangle (?)

Rectangle

public class Square extends Rectangle {
public Square(int x,int y,int size) ({
super (x,y,size,size);
}

public int getSize() { return getWidth(); }
public void setSize(int size) {
setWidth(size) ;
setHeight (size) ;
}
public int getArea() {
return getSize () *getSize() ;
}

}

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14

6

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel. 14

Class extension (4) Class extension (5)
Square sq = new Square(12,34,100); * If a Square really IS A Recangle, then the
System.out.println(sq.getSize()); // 100 OK! following equalities should hold for any
5q.setWidth(200) ; Square s:
System.out.println(sq.getSize()); // 200 OK! -s.getWidth() == s.getHeight()
sq.setHeight (300) ; - s.getWidth() == s.getSize()
System.out.println(sq.getSize()); // 200 OK!...? - s.getHeight () == s.getSize()
System.out.println(sqg.getArea()); // 40000 OK! = Square haS to Override ReCtaI’]g|e
e L0y et) methods in order to enforce those

sq.getHeight()); // 60000 #@+! equalities!

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 7 Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 8

Class extension (6)
Override critical Rectangle methods Class extension (7)

public class Square extends Rectangle {
public Square (int x,int y,int size) {
, mmareeaa e Concl. A square IS NOT A Rectangle
. - because a Rectangle cannot be guaranteed

:ugzz-z:g:sigﬁétéeg to behave (conceptually) as a square.

;):ublic int getArea() { return getSize()*getSize(); } * The baSIC phllosophy 'S that Inherltance
s should extend a class with additional
@override o , , _ properties, not restrict a class from
public void setHeight (int height) { setSize(height); } it i i
eoverride having certain properties.
public void setWidth(int width) { setSize(width); } . . .

} So this extension was a bad idéa ...

* Does this feel as a clean extension?

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 9 Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 10

Alternative solution: Aggregation

- A Square HAS A Rectangle Not always programmer error

public class Square { ¢ Errors often arise from the environment:
i te Rect 1 t;
T e - Incorrect URL entered.

public Square(int x,int y,int size) {

) rect = new Rectangle(x,y,size,size); _ Network interruption.

ublic int getSize() { retu t.getWidth(); } H H H H -

S eieng el b * File processing is particular error-prone:
rect.setWidth(size); _ Missing files

) .

public int getarea() i - Lack of appropriate permissions.

rect.getWidth() ;

}

}

e Square uses a Rectangle for implementation purposes.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 11 Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 12

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel.

14

Exploring errors

e Explore error situations through the
address-book projects.

* Two aspects:
- Error reporting.
- Error handling.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 13

Defensive programming

 Client-server interaction.
- Should a server assume that clients are well-
behaved?
- Or should it assume that clients are
potentially hostile?
« Significant differences in implementation
required.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 14

Issues to be addressed

e How much checking by a server on
method calls?

* How to report errors?
e How can a client anticipate failure?
How should a client deal with failure?

L]

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 15

An example

e Create an AddressBook object.
e Try to remove an entry.
¢ A runtime error results.

- Whose “fault’ is this?

< Anticipation and prevention are
preferable to apportioning blame.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 16

Argument values

e Arguments represent a major
‘vulnerability’ for a server object.
- Constructor arguments initialize state.
- Method arguments often contribute to
behavior.
» Argument checking is one defensive
measure.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 17

Checking the key

public void removeDetails(String key)

if (keyInUse (key)) {
ContactDetails details = book.get (key);
book.remove (details.getName()) ;
book.remove (details.getPhone()) ;
numberOfEntries--;

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 18

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel. 14

Server error reporting

e How to report illegal arguments?
- To the user?
 Is there a human user?
« Can they solve the problem?
- To the client object?
« Return a diagnostic value.
* Throw an exception.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 19

Returning a diagnostic

public boolean removeDetails(String key)

if (keyInUse (key)) {
ContactDetails details = book.get (key) ;
book.remove (details.getName()) ;
book.remove (details.getPhone()) ;
numberOfEntries--;
return true;

else {
return false;
}

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 20

Client responses

e Test the return value.

- Attempt recovery on error.

- Avoid program failure.
* Ignore the return value.

- Cannot be prevented.

- Likely to lead to program failure.
e Exceptions are preferable.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 21

Exception-throwing principles

A special language feature.
* No ‘special’ return value needed.

 Errors cannot be ignored in the client.
- The normal flow-of-control is interrupted.
« Specific recovery actions are encouraged.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 22

Throwing an exception

J**
* Look up a name or phone number and return the
* corresponding contact details.
* @param key The name or number to be looked up.
* @return The details corresponding to the key,
* or null if there are none matching.
* @throws NullPointerException if the key is null.
*/
public ContactDetails getDetails(String key)
{
if (key == null) {
throw new NullPointerException (
"null key in getDetails");
}

return book.get (key) ;

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 23

Throwing an exception

* An exception object is constructed:

-new ExceptionType("...");
e The exception object is thrown:
- throw

 Javadoc documentation:
- @throws ExceptionType reason

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 24

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel.

14

The exception class hierarchy

Thi bl
l:' standard library classes

S
l:l user defined classes

Error Exception

]

MyUncheckedException

-

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 25

Exception categories

e Checked exceptions

- Subclass of Exception

- Use for anticipated failures.

- Where recovery may be possible.
¢ Unchecked exceptions

- Subclass of RuntimeException

- Use for unanticipated failures.

- Where recovery is unlikely.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 26

The effect of an exception

e The throwing method finishes
prematurely.

¢ No return value is returned.

* Control does not return to the client’s
point of call.

- So the client cannot carry on regardless.
< A client may ‘catch’ an exception.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 27

Unchecked exceptions

« Use of these is ‘unchecked’ by the
compiler.

e Cause program termination if not caught.
- This is the normal practice.

e IllegalArgumentException is a
typical example.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 28

Argument checking

public ContactDetails getDetails(String key)

if (key == null) {
throw new NullPointerException (
"null key in getDetails");

if (key.trim() .length() == 0) {
throw new IllegalArgumentException (
"Empty key passed to getDetails");

return book.get (key) ;

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 29

Preventing object creation

public ContactDetails(String name, String phone, String address)

if (name == null) {
name = "";

if (phone == null) {
phone = "";
}

if (address == null) {
address = "";
}

this.name = name.trim();
this.phone = phone.trim();
this.address = address.trim();

if (this.name.length() == 0 && this.phone.length() == 0) {
throw new IllegalStateException (
"Either the name or phone must not be blank.");
}
}

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 30

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel.

14

Exception handling

e Checked exceptions are meant to be
caught.

e The compiler ensures that their use is
tightly controlled.
- In both server and client.

e Used properly, failures may be
recoverable.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 31

The throws clause

* Methods throwing a checked exception
must include a throws clause:

public void saveToFile(String destinationFile)
throws IOException

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 32

The try statement

« Clients catching an exception must
protect the call with a try statement:

try {
Protect one or more statements here.

catch (Exception e) {
Report and recover from the exception here.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 33

The try statement

‘1. Exception thrown from here

try {
addressbook.saveToFile (filename) ;

tryAgain = false;
} /l 2. Control transfers to here
catch (IOException e) {

System.out.println("Unable to save to " + filename);
tryAgain = true;

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 34

Catching multiple exceptions

try {

ref.process();

catch (EOFException e) {
// Take action on an end-of-file exception.

}
catch (FileNotFoundException e) {
// Take action on a file-not-found exception.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 35

Defining new exceptions

e Extend RuntimeException for an
unchecked or Exception for a
checked exception.

 Define new types to give better
diagnostic information.

- Include reporting and/or recovery
information.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 36

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel.

14

public class NoMatchingDetailsException extends Exception
private String key;

public NoMatchingDetailsException(String key)

{
}

this.key = key;

public String getKey ()

return key;

public String toString()

return "No details matching '" + key +
"' were found.";

}

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 37

Assertions

 Used for internal consistency checks.
- E.g. object state following mutation.

e Used during development and normally
removed in production version.
- E.g. via a compile-time option.

e Java has an assert statement.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 38

Java Assertion Statement

e Two forms available:
- assert boolean-expression
- assert boolean-expression :
expression
e The boolean-expression expresses
something that should be true at this
point.

¢ An AssertionError is thrown if the
assertion is false.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 39

Assert Statement

public void removeDetails(String key)

{
if (key == null){
throw new IllegalArgumentException("...");
}
if (keyInUse (key)) {
ContactDetails details = book.get (key);
book.remove (details.getName()) ;
book.remove (details.getPhone()) ;
numberOfEntries--;
}
assert !keyInUse (key);
assert consistentSize() :
"Inconsistent book size in removeDetails";
}

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 40

Guidelines for Assertions

e They are not an alternative to throwing
exceptions.

 Use for internal checks.
e Remove from production code.

e Don’t include normal functionality:
// Incorrect use:
assert book.remove (name) != null;

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 41

Error recovery

¢ Clients should take note of error
notifications.

- Check return values.
- Don’t ‘ignore’ exceptions.

* Include code to attempt recovery.
- Will often require a loop.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 42

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel.

14

Attempting recovery

// Try to save the address book.
boolean successful = false;
int attempts = 0;
do {
try {
addressbook.saveToFile (filename) ;
successful = true;

catch (IOException e) {
System.out.println("Unable to save to " + filename);

attempts++;
if (attempts < MAX ATTEMPTS) {
filename = an alternative file name;

}

} while(!successful && attempts < MAX ATTEMPTS) ;
if (1successful) {
Report the problem and give up;

}

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 43

Error avoidance

« Clients can often use server query
methods to avoid errors.

- More robust clients mean servers can be
more trusting.

- Unchecked exceptions can be used.
- Simplifies client logic.
e May increase client-server coupling.

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 44

Avoiding an exception

// Use the correct method to put details
// in the address book.
if (book.keyInUse (details.getName()) ||
book.keyInUse (details.getPhone()) {
book.changeDetails (details) ;

else {
book.addDetails (details);
}

The addDetails method could now throw an
unchecked exception.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 45

Exceptions and overriding

Requirement of the substitution principle:

« It should always be safe to replace an object of
a base class with an object of a sub class.

« In particular, exception handlers for base class
method calls should work equally well for calls
to overriding methods of the sub class.

< All checked exceptions thrown by calls to
overriding methods must be type compatible
with exceptions that could be thrown by calls
to overridden methods in the base class.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 46

Exceptions and overriding

Type compatibility rule for throws clauses:

« The set of exceptions A declared in the throws
clause in an overriding method must be type
compatible with the set of exceptions B
declared in the throws clause in the overridden
method.

< Als type compatible with B if for every
exception type E, in A, there is an exception
type E, in B such that E, is a subtype of E,.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 47

Exceptions and overriding
Example

public class El extends Exception {}
public class E2 extends E1 {}
public class E3 extends Exception {}

public class Base {
public void £() throws E1 {}
public void g() throws E1,E3 {}
public void h() throws E2 {}

}

public class Sub extends Base {
... see the following slides
}

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 48

DATO042, 12/13,1p 1

Objektorienterad programmering D2, forel. 14

Example

public class Sub extends Base {

Exceptions and overriding

Exceptions and overriding
Example

public class Sub extends Base {

public void £() {}

public void £() throws E1 {}
public void f() throws E2 {}
public void £() throws E1,E2 {}

Any of these is a
correct overring
of f

public void g() {}

public void g() throws E1 {}
public void g() throws E2 {}
public void g() throws E3 {} correct overring
public void g() throws E1,E2 {} ofg
public void g() throws E1,E3 {}
public void g() throws E2,E3 {}
public void g() throws E1,E2,E3 {}

,

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1

Any of these is a

public void £() throws E3 {}
public void £() throws E1,E3 {}

. but NONE
public void £() throws E2,E3 {} of these

Forel. 14 49

Object oriented programming, DAT042, DAIZ, 12/13, Ip 1 Forel. 14 50

Exceptions and overriding

Example Review

public class Sub extends Base { * Runtime errors arise for many reasons.

- An inappropriate client call to a server
object.

- A server unable to fulfill a request.
- Programming error in client and/or server.

Any of these is a
correct overring
of h

public void h() {}
public void h() throws E2 {}

public void h() throws E1 {}

public void h() throws E3 {}

public void h() throws E1,E2 {}
public void h() throws E1,E3 {} of these
public void h() throws E2,E3 {}

public void h() throws E1,E2,E3 {}

}

Object oriented programming, DAT042, DAI2, 12/13, Ip 1

Forel. 14 51 Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 52

Review

e Runtime errors often lead to program
failure.

» Defensive programming anticipates errors
- in both client and server.

« Exceptions provide a reporting and
recovery mechanism.

Object oriented programming, DAT042, DAI2, 12/13, Ip 1 Forel. 14 53

DATO042, 12/13,1p 1

