
Objektorienterad programmering D2, förel. 12

DAT042, 12/13, lp 1 1

12 The MVC model

2Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Main concepts to be covered

• Design patterns
• The Observer design pattern
• The Model View Controller architecture

3Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Using design patterns

• Inter-class relationships are important,
and can be complex.

• Some relationship recur in different
applications.

• Design patterns help clarify relationships,
and promote reuse.

4Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Pattern structure

• A pattern name.
• The problem addressed by it.
• How it provides a solution:

– Structures, participants, collaborations.

• Its consequences.
– Results, trade-offs.

5Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Design pattern: Observer

• Supports separation of internal model from a
view of that model.

• Observer defines a one-to-many relationship
between objects
– publisher - subscriber

• The object-observed notifies all Observers of
any state change.

• Example SimulatorView in the foxes-and-
rabbits project.

6Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Observers

Objektorienterad programmering D2, förel. 12

DAT042, 12/13, lp 1 2

7Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Main classes of interest

• class java.util.Observable

– Subclasses inherit basic functionality for
reporting state changes to observing objects.

– Independent of the observer’s logic

• interface java.util.Observer

– Subclasses implement update funtionality.
– Many objects can connect to the same

observable object.

8Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Class relationships

Observable Observer
*

• No particular owner-owned relationship
– Observers do not own the observed objects.
– Observed objects are unaware of observers.
– The relation is navigable in both directions

• Observers know what they observe.
• Observables must be able to update observers

(weak dependency).

9Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Typical configuration

obj : Observable

o1 : Observer

o2 : Observer

o3 : Observer

...
10Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

class Observable

public class Observable {

- Add observer o to the set of observers for this object
public void addObserver(Observer o)

- Mark this object as changed
public void setChanged()

- If this object has changed, then notify all of it’s observers
public void notifyObservers()

}

11Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

interface Observer

public interface Observer {

An observable object calls it’s inherited notifyObservers method
to have all the object's observers notified of a state change.
notifyObservers then calls update for each observer.

Parameters:
o - the observable object who initiated the call.
arg - the argument that was passed to the

notifyObservers method by the observable object.
notifyObservers forwards this argument to update.

void update(Observable o, Object arg);
}

12Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Observer registration

obj : Observable

addObserver(o2)

addObserver(o3)

addObserver(o1)

o1 : Observer o2 : Observer o3 : Observer

Objektorienterad programmering D2, förel. 12

DAT042, 12/13, lp 1 3

13Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

An update scenario

obj : Observable

update(obj,x)

update(obj,x)

update(obj,x)

setChanged()

notifyObservers(x)

o1 : Observer o2 : Observer o3 : Observer

someStateChange()

14Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Typical Observable class

public class Obsrvbl extends Observable {
private SomeType x;

public void someMutator() {
...
x = ...; // x has changed, inform observers
setChanged();
notifyObservers(x.clone());
...

}
} Pass some information to the observers.

Maybe a copy of x, or something else.

15Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Typical Observer class

public class Obsrvr implements Observer {
...
public void update(Observable o,Object arg) {

if (o instanceof Obsrvbl &&
arg instanceof SomeType) {
SomeType x = (SomeType)arg;
// take some appropriate action
// based on the value of x

} else
...

}
}

Several objects of different types may be observed
by the same observer. Moreover, each observed

object may, depending on the situation, pass
arguments of different types to update. Hence a

case analysis may be necessary.

16Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Observer registration

Observable obj = new Obsrvbl();

Observer o1 = new Obsrvr();
Observer o2 = new Obsrvr();
Observer o3 = new Obsrvr();

obj.addObserver(o1);
obj.addObserver(o2);
obj.addObserver(o3);

Observer
registration

17Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Alternative observer registration

public class Obsrvr implements Observer {

public Obsrvr(Observable x) {
...
x.addObserver(this);
...

}

public void update(Observable o,Object arg) {
...

}
}

Observer
registration

18Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Observable obj = new Obsrvbl();

Observer o1 = new Obsrvr(obj);
Observer o2 = new Obsrvr(obj);
Observer o3 = new Obsrvr(obj);

Observer
registration

Alternative observer registration

Objektorienterad programmering D2, förel. 12

DAT042, 12/13, lp 1 4

19Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

The MVC architecture

• Reenskaug 1979 (Smalltalk-80)
• Model (content)
• View (appearance)
• Controller (user actions)

20Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Model

• Model classes take care of data storing
and processing
– business logic
– domain logic
– the “database”

21Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

View

• View classes take care of visual aspects
– Visualization
– User interface
– “Model rendering”
– A model can have many views

22Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Controller

• Controller classes take care of the
control flow between model and view
– User actions
– Event handling
– Control flow
– Communication

23Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Model (2)

• Model objects are
– observable
– unaware of controller and view part

• The model is decoupled from the view

24Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

View (2)

• View objects are
– observers of model objects
– weakly dependent on model and controller

Objektorienterad programmering D2, förel. 12

DAT042, 12/13, lp 1 5

25Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Controller (2)

• Controller objects
– update the model with information obtained

from the view
– manage over all control flow, timing, etc

• Example: control flow in a game

26Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Variations

• Variations of the MVC pattern are
possible.

• More or less coupling between model,
view and controller:
– View observes model directly.
– or: Controller mediates all communication

between model and view.

27Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

MVC architecture

Model

Con
troll
er

View

4. update

28Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

MVC class diagram

View

+update():void

<< interface >>

Observer

+update():voidController

Observable

+addObserver():void

+setChanged():void

+notifyObservers():void

Model

+computeSomething():void

MVC

<< update >>

29Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Consequences

+ Model is completely independent of view.

– View is more or less dependent of model
– the view must often have some domain knowledge.

Eg. Syntax checking in forms.

– Controllers are dependent of model (and
sometimes of view).

30Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Example: Number series calculator

• A (very) simple calculator for exploring
the prime number and Fibonacci number
series.

• Program design based on
the MVC pattern.

• Explore the mvc1 project!

Objektorienterad programmering D2, förel. 12

DAT042, 12/13, lp 1 6

31Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

The calculator GUI

next

29

reset

next

34

reset

:JButton

:JButton

:JTextField

:JPanel

:JFrame

:class NumberPane

:class UserInterface

:class NumberPane

32Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Control flow

next

reset

Model

:Number
generator

View:NextButton-
Controller

:ResetButton-
Controller

button pushed/
actionPerformed()computeNext()

reset()

update(digits)/setText(digits)

1
2

3

1
2

button pushed/
actionPerformed()

33Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Class design

<<abstract>>
NumberGenerator

+ computeNext()
+ reset()
+ getValue()

FibonacciGenerator

+ computeNext()
+ reset()
+ getValue()

PrimeGenerator

+ computeNext()
+ reset()
+ getValue()

Observable

34Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Class design (cont.)

NumberPane

+ update()

JPanel

JButton

JTextField

<<interface>>
Observer

+ update()

2
UserInterface

2

FibonacciGenerator

PrimeGenerator

JFrame

35Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Class design (cont.)

NumberPane JButton

JTextField

FibonacciGenerator

NextButtonController

ResetButtonController

ActionListener

update 2

36Lecture 12Object oriented programming, DAT042, D2, 12/13, lp 1

Review

• The degree of dependency between
components is called coupling.

• Aim for less coupling!
• The observer design pattern decreases

coupling.
• The MVC architectural pattern decouples

the business logic from GUI issues
– thus easy to modify or replace GUI!

