Programming Languages

Lecture 9 — Operational Semantics

UIf Norell

February 15, 2006

Programming Languages — Lecture 9 Ulf Norell, 2006

Syntax versus Semantics

» Syntax

® Which are the elements of the language?
® How can they be composed (to form programs or sentences)?

» Semantics

® What does (a syntactically correct) program mean?

» Examples

Syntax
Syntax:
Type system:

Semantics:
Semantics:

Which are the keywords of the language?

What can you write to the left of an assignment?

Can you use an integer as the condition in an if-
statement?

In which order does (+) evaluate its arguments?

Does program A produce the same result as program

B?

Programming Languages — Lecture 9 1 Ulf Norell, 2006

Specifying Semantics

» There are three ways to specify semantics:

® By giving an implementation

= Not a good way.
m Bugs in the compiler become part of the language.

® [nformally
s Using natural language.
® Formally
s Using some mathematical notation.

Programming Languages — Lecture 9 2 Ulf Norell, 2006

Informal Semantics

» Example:

To execute while e do s, first evaluate e. If the result is true, execute s.
Repeat this procedure until e no longer evaluates to true.

» Advantages
® Well-known notation.
» Disadvantages

® Hard to get right.

® Easy to misunderstand, due to unclear language. Different compilers
might make different interpretations.

Programming Languages — Lecture 9 3 Ulf Norell, 2006

Formal Semantics

» Exact mathematical description of the language.

» Example: (e,a) |l true (s,0) | o’ (while e dos,d’) | o”
(while e do s,0) || 0”

(e,0) || false
(while e do s,0) || o

» Advantages

® No ambiguities.
® Programs can be executed by hand (e.g. to verify the compiler).
® Can be used to prove properties of programs.

» Disadvantages

® Yet another notation to learn.
® A lot of work.

» Most larger languages does not have a formal semantics.
® ML does. Haskell doesn't.

Programming Languages — Lecture 9 4 Ulf Norell, 2006

Different Types of Formal Semantics

» There are three major categories of formal semantics:

® Operational semantics

m How is the program executed?
s What operations does it perform?

® Denotational semantics

s What does the program mean?
s What mathematical object does it denote?

® Axiomatic semantics

s Which logical propositions hold for a program?
s Example:

Ix=4}x=x+1{x =5}
If x =4 holds before executing x := x + 1 then x = 5 holds after.

» We will concentrate on operational semantics, and mostly ignore
denotational and axiomatic semantics.

Programming Languages — Lecture 9 5 Ulf Norell, 2006

Operational Semantics

» Specifies how a program is executed.
» Defines an abstract machine (or abstract interpreter) that can run programs.
» We can do this in two different ways:

® Small step semantics
m Define one step of the abstract machine.
s Example: (1+(2+3),0) > (1 +5,0)
® Big step semantics
m Describe how the abstract machine computes the final result.

m Example: (1+(2+3),0) | 6.

» In the examples o is the state of the abstract machine. It can contain, for
instance, the values of the variables.

Programming Languages — Lecture 9 6 Ulf Norell, 2006

An Example Language

» Remember our small imperative language from lecture 6:

e = x| n|b|e+e

s = whileedos | if e then s else s
| x=e | s;5 | skip

v == n|b

» For reasons that will soon be revealed we add a statement skip that does
nothing.

» We also add a category of values that represents expressions that cannot be
further evaluated.

» To construct an abstract machine we first need to define its state:

® The state is a set of variable-value pairs.
® |Looking up the value of a variable: o(x).
® Updating the state: o[x — 7]

Programming Languages — Lecture 9 / Ulf Norell, 2006

Small Step Semantics for Expressions

» For expressions we define a rewrite relation:

(e,0) — (¢’,0)
meaning that in the state o, e can be rewritten to ¢’ in one step.
g P

» The rules:

&, 0y = (o@), 0y

e1,0) — (€ ,0 .
Cn=lao) L e @ .
(e1 +ep,0) — <€1 + ey, a> (v+e,0) > (v+¢€,0)

v is the sum of v1 and vy
(01 +03,0) = (v,0)

(ADD.3)

» Remarks:

® Rewriting stops when it reaches a value.

® [t isn't obvious from the form of the rules that expressions don't change

the state. We have to check the individual rules to verify this,
Programming Languages — Lecture 9 8 Ulf Norell, 2006

Small Step Semantics for Statements

» Statements are allowed to change the state: (s,0) — (s’,0")
» The rules:

(e,0) — (€’,0)
(x:=e,0) > {(x:=¢€,0)

(ASsIGN.1) (ASSIGN.2)

(x :=v,0) — (skip, o[x — v])

(e,0) = (¢, 0)
(if e then s; else s,,0) — (if ¢’ then s; else s,,0)

(IF)

IrT
(if true then s; else s,,0) — (s1,0) (F RUE)

IFF
(if false then s; else sy, 0) — (s, 0) (IFFALSE)

(51,0) = <Si,a’> ($8Q)
EQ
(51;82,0) — <si;52, g/> (skip;s,) — (5, 0) (SEQSKIP)

(while e do s,0) — (if e then s; while e do s else skip, o) (WHILE)

» A program terminates when it reaches (skip, o).

Programming Languages — Lecture 9 9 Ulf Norell, 2006

Evaluation Contexts

» We had lots of rules of the form

(t,0) = (', 0")
(...t...,0) > (.. t'...,0")

» These are called context rules, and control the order of evaluation.

» A more compact way of writing these rules is by defining valid evaluation
contexts:
® An evaluation context is a term with a hole (e) in it.
® Example: if o then x =0 else x :=1
® The hole tells you where it is allowed to do rewriting.

» Evaluation contexts for our language:

E =

e | E+e | v+ E
S 1= e

| if Ethenselses | x:=E | §;s

Programming Languages — Lecture 9 10 Ulf Norell, 2006

Complete Small Step Semantics

» Evaluation contexts:

E::=e | E+e | v+E
S = e | if Ethenselses | x:=E | S;s
» Rules:
v is the sum of v; and v,
(x,0) = (o(x),0) (VAR) (01 + V5, 0% — (v,0) (ADD)
(x :=1v,0) — (skip, o[x — v]) (ASSIGN) (skip;s, a) — (s, a) (SEQ)
(if true then s; else s,,0) — (s1,0) (IFTRUE)
(if false then s; else s,,0) — (s7,0) (IFFALSE)
(WHILE)

(while e do s,0) — (if e then s; while ¢ do s else skip, o)

Programming Languages — Lecture 9 11 Ulf Norell, 2006

Small Step Example

< wh11e x do x := false; T true}>
f x then x:=false; while x do x := false
(WHILE) — < else skip; , {x true}>
if true then x := false; while x do x := false
(VAR) — < else skip; , {x— true}>
Y=
x = false;
(IFTRUE) — < wh11e x do x := false; , {x — true}>

(ASSIGN), (SEQ) s < while x do x = false;

yi=0 , {x r—>false}>
(WHILE), (VAR), (IFFALSE) —* (skip; y =0, {x > false})
(SEQ) — (y:=0, {x > false})

(ASSIGN) — (skip, {x > false,y — 0})
Programming Languages — Lecture 9 12 Ulf Norell, 2006

Big Step Semantics

» Focus: the relation between the start state and the final state.

» We write
(Poy | o

to say that the program P terminates in the final state ¢’ when run in the
state O.

» Corresponds to (P, o) —* (skip, ¢’) in the small step semantics.

» For expressions we say
(¢,0) | v

meaning that the expression e evaluates to v in the state o (corresponding
to (e,0) =" (v,0)).

» We skip all the bothersome intermediate steps and jump directly to the
conclusion (hence the name big step).

Programming Languages — Lecture 9 13 Ulf Norell, 2006

Our Example—Expressions

» The rules for expressions:

INT

BooL) VAR)

oy in™ By ib &0y I o(x) |

(e1,0) J v1 (ex,0) !l v v isthe sum of v; and vy
(e1 +ex,0) v

(PLus)

» We need rules for integers and booleans, saying that they evaluate to
themselves.

» It's not clear in which order the arguments to (+) are evaluated (in truth it
doesn’t matter, since expressions don't have side effects).

Programming Languages — Lecture 9 14 Ulf Norell, 2006

Our Example—Statements

» The rules for statements:

(e,0) v

(x:=e,0) | o[x — v]

<51/ G) U o’ <52/ ,> U 0"

(s1;82,0) |} 0”

(e,0) || false (sp,0) | 0

(if e then s; else s,0) || 0’

(ASSIGN)

(SEQ)

(e,0) || true <{(s1,0) | o’
(if e then s; else s,,0) || 0’

(IFTRUE)

(IFFALSE)

(e,0) | true <(s,o) | 0 (whilee do s,0’) || 0”
(while e do s,0) || 0”

(WHILETRUE)

(e, o) || false
(while e do s,0) || 0

(WHILEFALSE) (SKi1P)

(skip,0) | o

» Note that the (WueTrur)-rule is recursive (not surprisingly).

Programming Languages — Lecture 9 15 Ulf Norell, 2006

Example Derivation

» Let's revisit the example from the small step semantics

(0, {x > false}) | 0
(1) (y :=0,{x > false}) | {x — false, y — 0}
< ;vh:ﬂg x do x = false; x> true}> U {x + false, y — 0}

(false, {x — true}) || false
(x,{x ¥ true}) || true (x = false, {x — true}) | {x — false} (2)

< W};i;li }; chlg x> true}> U {x > false}

1)

(x,{x ¥ false}) || false

2 o
@ < Wl;l}: };lcsl; x |—>false}> U {x ¥ false}

» This is less readable (and harder to write down) than the small step
derivation.

Programming Languages — Lecture 9 16 Ulf Norell, 2006

Abstract Interpretations

» Let's change notation slightly:

otel v instead of {e,0) | v

» Looks familiar?

» Compare the typing rule for addition with the evaluation rule:

I'te;:int T'Fer:int al—eﬂlvl Gl-ezuvz
I'Fey+ep:int (7|—€1+€2U01+02

» The only difference is how precise the rule is (remember when | said that
the type system could be seen as an approximation of what would happen
when a program was executed?).

» These kinds of rules are called abstract interpretations.

Programming Languages — Lecture 9 17 Ulf Norell, 2006

Interpreters

» The judgement
(P,o) | ¢

means that running the program P in state o terminates in the state o’.

» We can see the || relation as a function

|| € Program X State — State

» If we implement this function we get an interpreter for our language!
» This is possible because the semantics is deterministic.

® There is at most one rule applicable at any given time.

® Moreover, we can tell which one by looking at the structure of the
program.

® This was not the case for some of our advanced type systems.

Programming Languages — Lecture 9 18 Ulf Norell, 2006

Implementing an Interpreter

» First we have to define the abstract syntax:

typeVar = String
data Expr = VarVar | Int Int | Bool Bool | Plus Expr Expr
data Stmt = Assign Var Expr
| IfExpr Stmt Stmt
| While Expr Stmt
| Seq Stmt Stmt
| Skip
data Value = VInt Int | VBool Bool

» Next we define the state:
type State = [(Var, Value)]

lookupVar :: State — Var — Value — lookupVar o x = o(x)
updateState :: State — Var — Value — State — updateStateoxv = o[x = 0]

» We need two interpretation functions:

eval :: Expr — State —» Value — ecevaleoc = v if{e,0) | v
exec :: Stmt — State — State — execso = o’ if (s,0) | o’

Programming Languages — Lecture 9 19 Ulf Norell, 2006

Implementing eval

» Evaluating expressions

eval (Var x) o = lookupVar o x (x,0) | o(x)
eval (Int n) 0 = VInt n (n,o) I n
eval (Bool b) 0 = VBool b (b,o) I b

(er,0) Y v1 (ep,0) | v
(e1 +e,0) | v+,

eval (Plus e e;) 0 = plus (eval e; o) (eval e, 0)

where plus (VInt ny) (VInt np) = VInt (1 + nyp)

» Note the differences between the syntactic and semantic plusses (Plus vs.

plus).

Programming Languages — Lecture 9 20 Ulf Norell, 2006

Implementing exec

exec (Assign x e) o = (e,0) | v
updateState o x (eval e o) (x:=e,0) | o[x — v]

(e,0) | true <{(s1,0) | o’
(if e then s; else s,,0) || 0’

exec (Ifes; sy) o=
case cval e o of

VBool True — execs; o (e,0) | false (s5,0) |l 0’
VBool False — execs, o

(if e then s, else s,,0) || 0’

exec (While e s) o = (e,0) || true <{(s,o) | o’ (whilee dos,o’) | o”
case eval e 0 of (while e do s,0) || 0”
VBool True — exec (While e s)
(exec s 0) (e,0) || false
VBool False — o (while e do s,0) || 0
exec (Seq s1 $p) 0 = (s1,0) J 0’ (sy,0") | 0"
exec s, (exec s1 0) (s1;82,0) | 0”
exec Skipo =0 (skip,o0) | o

Programming Languages — Lecture 9 21 Ulf Norell, 2006

Input/Output

» There are basically two ways of handling 1/O in the semantics.
» Model it in the state

® State = Input X Output X P(Var X Value)
® Example:

(e,{t,0,0)) v
(print e, (1,0,0)) | {t,0-v,0)

(PRINT)

(read x, (v - 1,0,0)) | {1,0,0[x — v]) (READ)

» Labelled transition systems

® Most often used with small step semantics (works for big step as well).

® Each rewrite step can be labelled with an action.
® Example:

. T (PRINT) o (READ)
(print v,0) — (skip, o) (read x, o) — (skip, o[x — 0v])

Programming Languages — Lecture 9 22 Ulf Norell, 2006

Summary

» Three kinds of formal semantics

® Operational semantics
s How to execute a program.
® Denotational semantics
s What a program means.
® Axiomatic semantics
s What properties a program satisfies.

» Operational semantics

® Small step

m Step-by-step rewriting rules.
® Big step

m Corresponds to an interpreter.

Programming Languages — Lecture 9 23

UIf Norell, 2006

