Programming Languages Lecture 9 – Operational Semantics

Ulf Norell

February 15, 2006

Syntax versus Semantics

- ► Syntax
 - Which are the elements of the language?
 - How can they be composed (to form programs or sentences)?
- Semantics
 - What does (a syntactically correct) program mean?
- Examples
 - Syntax Which are the keywords of the language?
 - Syntax: What can you write to the left of an assignment?
 - Type system: Can you use an integer as the condition in an if
 - statement?
 - Semantics: In which order does (+) evaluate its arguments?
 - lacktriangle Semantics: Does program A produce the same result as program

B?

Specifying Semantics

- ▶ There are three ways to specify semantics:
 - By giving an implementation
 - Not a good way.
 - Bugs in the compiler become part of the language.
 - Informally
 - Using natural language.
 - Formally
 - Using some mathematical notation.

Informal Semantics

Example:

To execute **while** e **do** s, first evaluate e. If the result is true, execute s. Repeat this procedure until e no longer evaluates to true.

- Advantages
 - Well-known notation.
- Disadvantages
 - Hard to get right.
 - Easy to misunderstand, due to unclear language. Different compilers might make different interpretations.

Formal Semantics

- ► Exact mathematical description of the language.
- **Example:**

$$\frac{\langle e, \sigma \rangle \Downarrow true \quad \langle s, \sigma \rangle \Downarrow \sigma' \quad \langle \mathbf{while} \ e \ \mathbf{do} \ s, \sigma' \rangle \Downarrow \sigma''}{\langle \mathbf{while} \ e \ \mathbf{do} \ s, \sigma \rangle \Downarrow \sigma''}$$

$$\frac{\langle e, \sigma \rangle \Downarrow false}{\langle \mathbf{while} \ e \ \mathbf{do} \ s, \sigma \rangle \Downarrow \sigma}$$

- Advantages
 - No ambiguities.
 - Programs can be executed by hand (e.g. to verify the compiler).
 - Can be used to prove properties of programs.
- Disadvantages
 - Yet another notation to learn.
 - A lot of work.
- ▶ Most larger languages does not have a formal semantics.
 - ML does. Haskell doesn't.

Different Types of Formal Semantics

- ▶ There are three major categories of formal semantics:
 - Operational semantics
 - How is the program executed?
 - What operations does it perform?
 - Denotational semantics
 - What does the program mean?
 - What mathematical object does it denote?
 - Axiomatic semantics
 - Which logical propositions hold for a program?
 - Example:

$${x = 4} x := x + 1 {x = 5}$$

If x = 4 holds before executing x := x + 1 then x = 5 holds after.

▶ We will concentrate on operational semantics, and mostly ignore denotational and axiomatic semantics.

Operational Semantics

- ► Specifies *how* a program is executed.
- ▶ Defines an abstract machine (or abstract interpreter) that can run programs.
- ▶ We can do this in two different ways:
 - Small step semantics
 - Define one step of the abstract machine.
 - Example: $\langle 1 + (2+3), \sigma \rangle \rightarrow \langle 1 + 5, \sigma \rangle$
 - Big step semantics
 - Describe how the abstract machine computes the final result.
 - Example: $\langle 1 + (2+3), \sigma \rangle \downarrow 6$.
- ▶ In the examples σ is the state of the abstract machine. It can contain, for instance, the values of the variables.

An Example Language

▶ Remember our small imperative language from lecture 6:

- \blacktriangleright For reasons that will soon be revealed we add a statement \mathbf{skip} that does nothing.
- ▶ We also add a category of *values* that represents expressions that cannot be further evaluated.
- ▶ To construct an abstract machine we first need to define its state:
 - The state is a set of variable-value pairs.
 - Looking up the value of a variable: $\sigma(x)$.
 - Updating the state: $\sigma[x \mapsto v]$

Small Step Semantics for Expressions

► For expressions we define a rewrite relation:

$$\langle e, \sigma \rangle \rightarrow \langle e', \sigma \rangle$$

meaning that in the state σ , e can be rewritten to e' in one step.

► The rules:

$$\overline{\langle x, \sigma \rangle \to \langle \sigma(x), \sigma \rangle}$$
 (VAR)

$$\frac{v \text{ is the sum of } v_1 \text{ and } v_2}{\langle v_1 + v_2, \sigma \rangle \rightarrow \langle v, \sigma \rangle}$$
 (ADD.3)

- Remarks:
 - Rewriting stops when it reaches a value.
- It isn't obvious from the form of the rules that expressions don't change the state. We have to check the individual rules to verify this.

 Programming Languages Lecture 9

Small Step Semantics for Statements

- ▶ Statements are allowed to change the state: $\langle s, \sigma \rangle \rightarrow \langle s', \sigma' \rangle$
- ► The rules:

$$\frac{\langle e,\sigma\rangle \to \langle e',\sigma\rangle}{\langle x := e,\sigma\rangle \to \langle x := e',\sigma\rangle} \text{ (Assign.1)} \qquad \overline{\langle x := v,\sigma\rangle \to \langle \text{skip},\sigma[x \mapsto v]\rangle} \text{ (Assign.2)}$$

$$\frac{\langle e,\sigma\rangle \to \langle e',\sigma\rangle}{\langle \text{if } e \text{ then } s_1 \text{ else } s_2,\sigma\rangle \to \langle \text{if } e' \text{ then } s_1 \text{ else } s_2,\sigma\rangle} \text{ (If)}$$

$$\overline{\langle \text{if } true \text{ then } s_1 \text{ else } s_2,\sigma\rangle \to \langle s_1,\sigma\rangle} \text{ (IfTrue)}$$

$$\overline{\langle \text{if } false \text{ then } s_1 \text{ else } s_2,\sigma\rangle \to \langle s_2,\sigma\rangle} \text{ (IfFALSE)}$$

$$\frac{\langle s_1,\sigma\rangle \to \langle s'_1,\sigma'\rangle}{\langle s_1;s_2,\sigma\rangle \to \langle s'_1;s_2,\sigma'\rangle} \text{ (SEQ)}$$

$$\overline{\langle \text{skip};s,\sigma\rangle \to \langle s,\sigma\rangle} \text{ (SEQSKIP)}$$

$$\overline{\langle \text{while } e \text{ do } s,\sigma\rangle \to \langle \text{if } e \text{ then } s; \text{while } e \text{ do } s \text{ else skip},\sigma\rangle} \text{ (While)}$$

 \triangleright A program terminates when it reaches $\langle \mathbf{skip}, \sigma \rangle$.

Evaluation Contexts

▶ We had lots of rules of the form

$$\frac{\langle t, \sigma \rangle \to \langle t', \sigma' \rangle}{\langle \dots t \dots, \sigma \rangle \to \langle \dots t' \dots, \sigma' \rangle}$$

- ▶ These are called context rules, and control the order of evaluation.
- ► A more compact way of writing these rules is by defining valid evaluation contexts:
 - An evaluation context is a term with a hole (●) in it.
 - Example: if then x := 0 else x := 1
 - The hole tells you where it is allowed to do rewriting.
- ► Evaluation contexts for our language:

$$E ::= \bullet \mid E + e \mid v + E$$
 $S ::= \bullet \mid \text{if } E \text{ then } s \text{ else } s \mid x := E \mid S; s$

Complete Small Step Semantics

Evaluation contexts:

$$E ::= \bullet \mid E + e \mid v + E$$
 $S ::= \bullet \mid \text{if } E \text{ then } s \text{ else } s \mid x := E \mid S; s$

► Rules:

$$\frac{v \text{ is the sum of } v_1 \text{ and } v_2}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Add)}$$

$$\frac{v \text{ is the sum of } v_1 \text{ and } v_2}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Add)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v_1, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v_2, \sigma \rangle} \text{ (Seq)}$$

$$\frac{\langle v_1 + v_2, \sigma \rangle \to \langle v_1, \sigma \rangle}{\langle v_1 + v_2, \sigma \rangle \to \langle v_2, \sigma \rangle} \text{ (Seq)}$$

Small Step Example

Big Step Semantics

- ▶ Focus: the relation between the start state and the final state.
- ▶ We write

$$\langle P, \sigma \rangle \Downarrow \sigma'$$

to say that the program P terminates in the final state σ' when run in the state σ .

- ▶ Corresponds to $\langle P, \sigma \rangle \rightarrow^* \langle \mathbf{skip}, \sigma' \rangle$ in the small step semantics.
- ► For expressions we say

$$\langle e, \sigma \rangle \downarrow v$$

meaning that the expression e evaluates to v in the state σ (corresponding to $\langle e, \sigma \rangle \rightarrow^* \langle v, \sigma \rangle$).

▶ We skip all the bothersome intermediate steps and jump directly to the conclusion (hence the name big step).

Our Example—Expressions

► The rules for expressions:

$$\frac{\langle n,\sigma\rangle \Downarrow n}{\langle n,\sigma\rangle \Downarrow v_1} \xrightarrow{\langle b,\sigma\rangle \Downarrow b} \xrightarrow{(Bool)} \frac{\langle a,\sigma\rangle \Downarrow \sigma(x)}{\langle x,\sigma\rangle \Downarrow \sigma(x)} \xrightarrow{(VAR)} \frac{\langle e_1,\sigma\rangle \Downarrow v_1 \quad \langle e_2,\sigma\rangle \Downarrow v_2 \quad v \text{ is the sum of } v_1 \text{ and } v_2}{\langle e_1+e_2,\sigma\rangle \Downarrow v}$$
(PLUS)

- ▶ We need rules for integers and booleans, saying that they evaluate to themselves.
- ▶ It's not clear in which order the arguments to (+) are evaluated (in truth it doesn't matter, since expressions don't have side effects).

Our Example—Statements

► The rules for statements:

$$\frac{\langle e, \sigma \rangle \Downarrow v}{\langle x \coloneqq e, \sigma \rangle \Downarrow \sigma[x \mapsto v]} \text{ (Assign)} \qquad \frac{\langle s_1, \sigma \rangle \Downarrow \sigma' \quad \langle s_2, \sigma' \rangle \Downarrow \sigma''}{\langle s_1; s_2, \sigma \rangle \Downarrow \sigma''} \text{ (Seq)}$$

$$\frac{\langle e, \sigma \rangle \Downarrow true \quad \langle s_1, \sigma \rangle \Downarrow \sigma'}{\langle \mathbf{if} \ e \ \mathbf{then} \ s_1 \ \mathbf{else} \ s_2, \sigma \rangle \Downarrow \sigma'} \text{ (IFTRUE)} \qquad \frac{\langle e, \sigma \rangle \Downarrow false \quad \langle s_2, \sigma \rangle \Downarrow \sigma'}{\langle \mathbf{if} \ e \ \mathbf{then} \ s_1 \ \mathbf{else} \ s_2, \sigma \rangle \Downarrow \sigma'} \text{ (IFFALSE)}$$

$$\frac{\langle e, \sigma \rangle \Downarrow true \quad \langle s, \sigma \rangle \Downarrow \sigma' \quad \langle \mathbf{while} \ e \ \mathbf{do} \ s, \sigma' \rangle \Downarrow \sigma''}{\langle \mathbf{while} \ e \ \mathbf{do} \ s, \sigma \rangle \Downarrow \sigma''} \ (\mathbf{WHILETRUE})}$$

$$\frac{\langle e, \sigma \rangle \Downarrow false}{\langle \mathbf{while} \ e \ \mathbf{do} \ s, \sigma \rangle \Downarrow \sigma} \text{(WhileFalse)} \qquad \frac{\langle \mathbf{skip}, \sigma \rangle \Downarrow \sigma}{\langle \mathbf{skip}, \sigma \rangle \Downarrow \sigma}$$

▶ Note that the (WHILETRUE)-rule is recursive (not surprisingly).

Example Derivation

▶ Let's revisit the example from the small step semantics

$$\frac{\overline{\langle 0, \{x \mapsto false\}\rangle \downarrow 0}}{\overline{\langle y \coloneqq 0, \{x \mapsto false\}\rangle \downarrow \{x \mapsto false, y \mapsto 0\}}}$$

$$\frac{\mathbf{while} \ x \ \mathbf{do} \ x \coloneqq false;}{y \coloneqq 0}, \{x \mapsto true\} \downarrow \{x \mapsto false, y \mapsto 0\}$$

(1)
$$\frac{\langle false, \{x \mapsto true\} \rangle \Downarrow false}{\langle x := false, \{x \mapsto true\} \rangle \Downarrow \{x \mapsto false\}}$$
$$\left\langle \begin{array}{c} \mathbf{while} \ x \ \mathbf{do} \\ x := false \end{array} \right., \{x \mapsto true\} \right\rangle \Downarrow \{x \mapsto false\}$$

(2)
$$\frac{\langle x, \{x \mapsto false\} \rangle \Downarrow false}{\left\langle \begin{array}{c} \mathbf{while} \ x \ \mathbf{do} \\ x := false \end{array}, \{x \mapsto false\} \right\rangle \Downarrow \{x \mapsto false\}}$$

► This is less readable (and harder to write down) than the small step derivation.

Abstract Interpretations

► Let's change notation slightly:

$$\sigma \vdash e \Downarrow v$$
 instead of $\langle e, \sigma \rangle \Downarrow v$

- ► Looks familiar?
- ► Compare the typing rule for addition with the evaluation rule:

$$\frac{\Gamma \vdash e_1 : \mathbf{int} \quad \Gamma \vdash e_2 : \mathbf{int}}{\Gamma \vdash e_1 + e_2 : \mathbf{int}} \qquad \frac{\sigma \vdash e_1 \Downarrow v_1 \quad \sigma \vdash e_2 \Downarrow v_2}{\sigma \vdash e_1 + e_2 \Downarrow v_1 + v_2}$$

- ► The only difference is how precise the rule is (remember when I said that the type system could be seen as an approximation of what would happen when a program was executed?).
- ▶ These kinds of rules are called *abstract interpretations*.

Interpreters

► The judgement

$$\langle P, \sigma \rangle \Downarrow \sigma'$$

means that running the program P in state σ terminates in the state σ' .

▶ We can see the ↓ relation as a function

$$\Downarrow \in Program \times State \rightarrow State$$

- ▶ If we implement this function we get an interpreter for our language!
- ▶ This is possible because the semantics is deterministic.
 - There is at most one rule applicable at any given time.
 - Moreover, we can tell which one by looking at the structure of the program.
 - This was not the case for some of our advanced type systems.

Implementing an Interpreter

First we have to define the abstract syntax:

▶ Next we define the state:

```
type \, \text{State} \, = \, [(\text{Var}, \, \text{Value})] lookup \, Var \, :: \, \text{State} \, \to \, \text{Var} \, \to \, \text{Value} \qquad \qquad - \, lookup \, Var \, \sigma \, x \, = \, \sigma(x) update \, State \, :: \, \text{State} \, \to \, \text{Var} \, \to \, \text{Value} \, \to \, \text{State} \qquad - \, update \, State \, \sigma \, x \, v \, = \, \sigma[x \mapsto v]
```

▶ We need two interpretation functions:

```
eval :: Expr \rightarrow State \rightarrow Value - eval \ eval
```

Implementing eval

Evaluating expressions

eval (Var x)
$$\sigma = lookupVar \sigma x$$

$$\overline{\langle x, \sigma \rangle \Downarrow \sigma(x)}$$
eval (Int n) $\sigma = VInt n$
$$\overline{\langle n, \sigma \rangle \Downarrow n}$$
eval (Bool b) $\sigma = VBool b$
$$\overline{\langle b, \sigma \rangle \Downarrow b}$$
eval (Plus $e_1 e_2$) $\sigma = plus$ (eval $e_1 \sigma$) (eval $e_2 \sigma$)
$$\frac{\langle e_1, \sigma \rangle \Downarrow v_1 \quad \langle e_2, \sigma \rangle \Downarrow v_2}{\langle e_1 + e_2, \sigma \rangle \Downarrow v_1 + v_2}$$
where $plus$ (VInt n_1) (VInt n_2) = VInt $(n_1 + n_2)$

► Note the differences between the syntactic and semantic plusses (Plus vs. plus).

Implementing exec

$$exec \ (\text{Assign } x \ e) \ \sigma = \\ updateState \ \sigma \ x \ (eval \ e \ \sigma) \qquad \qquad \frac{\langle e,\sigma\rangle \Downarrow v}{\langle x := e,\sigma\rangle \Downarrow \sigma[x \mapsto v]}$$

$$exec \ (\text{If } e \ s_1 \ s_2) \ \sigma = \\ \text{case } eval \ e \ \sigma \ \text{of} \qquad \qquad \frac{\langle e,\sigma\rangle \Downarrow true \ \langle s_1,\sigma\rangle \Downarrow \sigma'}{\langle \text{if } e \ \text{then } s_1 \ \text{else } s_2,\sigma\rangle \Downarrow \sigma'}$$

$$\text{VBool True} \ \rightarrow \ exec \ s_2 \ \sigma \qquad \qquad \frac{\langle e,\sigma\rangle \Downarrow true \ \langle s_1,\sigma\rangle \Downarrow \sigma'}{\langle \text{if } e \ \text{then } s_1 \ \text{else } s_2,\sigma\rangle \Downarrow \sigma'}$$

$$exec \ (\text{While } e \ s) \ \sigma = \\ \text{case } eval \ e \ \sigma \ \text{of} \qquad \qquad \langle e,\sigma\rangle \Downarrow true \ \langle s,\sigma\rangle \Downarrow \sigma' \ \langle \text{while } e \ \text{do } s,\sigma'\rangle \Downarrow \sigma''$$

$$\text{VBool True} \ \rightarrow \ exec \ (\text{While } e \ \text{so} \ s,\sigma\rangle \Downarrow \sigma''$$

$$\text{VBool False} \ \rightarrow \ \sigma \qquad \qquad \langle e,\sigma\rangle \Downarrow true \ \langle s,\sigma\rangle \Downarrow \sigma'' \ \langle \text{while } e \ \text{do } s,\sigma\rangle \Downarrow \sigma''$$

$$\text{vhile } e \ \text{do } s,\sigma\rangle \Downarrow \sigma''$$

$$\text{exec } (\text{Seq } s_1 \ s_2) \ \sigma = \\ exec \ s_2 \ (exec \ s_1 \ \sigma) \qquad \qquad \langle s_1,\sigma\rangle \Downarrow \sigma' \ \langle s_2,\sigma'\rangle \Downarrow \sigma'' \ \langle s_1;s_2,\sigma\rangle \Downarrow \sigma'' \ \langle s_1;s_2,\sigma\rangle \Downarrow \sigma''$$

$$\text{exec } (\text{Skip},\sigma) \Downarrow \sigma'' \qquad \langle s_1;s_2,\sigma\rangle \Downarrow \sigma''$$

Input/Output

- \triangleright There are basically two ways of handling I/O in the semantics.
- Model it in the state
 - $State = Input \times Output \times \mathcal{P}(Var \times Value)$
 - Example:

$$\frac{\langle e, \langle \iota, o, \sigma \rangle \rangle \Downarrow v}{\langle \mathbf{print} \ e, \langle \iota, o, \sigma \rangle \rangle \Downarrow \langle \iota, o \cdot v, \sigma \rangle} \ (\text{Print}) \ \frac{\langle \mathbf{read} \ x, \langle v \cdot \iota, o, \sigma \rangle \rangle \Downarrow \langle \iota, o, \sigma[x \mapsto v] \rangle}{\langle \mathbf{read} \ x, \langle v \cdot \iota, o, \sigma \rangle \rangle \Downarrow \langle \iota, o, \sigma[x \mapsto v] \rangle} \ (\text{Read})$$

- ► Labelled transition systems
 - Most often used with small step semantics (works for big step as well).
 - Each rewrite step can be *labelled* with an action.
 - Example:

$$\frac{}{\langle \mathbf{print} \ v, \sigma \rangle \xrightarrow{\mathbf{out}(v)} \langle \mathbf{skip}, \sigma \rangle} (PRINT) \xrightarrow{} \frac{}{\langle \mathbf{read} \ x, \sigma \rangle \xrightarrow{\mathbf{in}(v)} \langle \mathbf{skip}, \sigma[x \mapsto v] \rangle} (READ)$$

Summary

- ► Three kinds of formal semantics
 - Operational semantics
 - How to execute a program.
 - Denotational semantics
 - What a program means.
 - Axiomatic semantics
 - What properties a program satisfies.
- Operational semantics
 - Small step
 - Step-by-step rewriting rules.
 - Big step
 - Corresponds to an interpreter.