

Algorithms TIN092

Yet another exercise session

From lectures:
“...Break up a problem into a series of overlapping sub-problems, and
build up solutions to larger and larger sub-problems.”

What is a Dynamic Programming?

Shorter:
Recurrences, recurrences and yet another time recurrences.

Q: Recurrence for what?
A: Optimization problem assumes there is a function that has to be
minimized/maximized, recurrence is written for this function values on
different subproblems.

Q: I don't know how to solve a recurrence! What should I do???
A: That's what you need algorithms for, crybaby

Q: Why “Dynamic Programming”, then?
A: Historical issue. Never mind.

1. Write a recurrence for optimal value function.

2. Write an algorithm to calculate the optimal value of a function

2.1 Top-down (memoization)
2.2 Bottom-up (iterative)

3. Recover solution if needed

(Optimal value ≠ Solution that reaches optimal value)

How do I apply Dynamic Programming?

Find an independent set (IS) of maximum weight on a path
Path = Graph G(V,E) (undirected) s.t.
V=[1:n], E={(i,j)|i-j=1}={(1,2),(2,3),(3,4),...,(n,n-1)}

Independent Set = subset V' of V, s.t. no two vertices of V' are
connected

Weight: a function w, that assigns each node v, some numeric
value v(e)

Example 1: KT6.1

3.53.5 2 2

(Solution
is {1,3})

(8 ISs. Can
you find all
of them?)

1. OPT(n) = (OPT(n-2)+w(v
n
), OPT(n-1)),

 OPT(0) = 1, OPT(1) = w(v
1
)

 OPT(n) – max weight independent set for subpath on [1:n-1]
vertices

2.1 As usual: M[n] for storage

M[1]=w(v[1]);M[0]=0;
OPT(x) {

if (M[x] is empty) then
 M[x]=max(OPT(x-2)+w(V[x]),OPT(x-1));
fi
return M[x];

}
return OPT(n);

How do I apply Dynamic Programming?

2.2. Iterative:

M[1]=w(v[1]);M[0]=0;
For i=2:n do
 M[i]=max(M[i-2]+w(v[i]),M[i-1]);
od
return M[n]

3. We need to output the vertices of our choice in top-bottom approach:

How do I apply Dynamic Programming?

...
M[x]=max(OPT(x-2)+w(V[x]),OPT(x-1));
if (OPT(x-2)+w(V[x])>=OPT(x-1))

output w(V[x])
fi
...

1 vertex might be
lost. Which one?
How to deal with
it?

Correctness argument:
Inductive,
Claim: recurrence is giving the correct value of optimal value function.
Proof: Base: correct for n=0,1 (obvious),

 Step: correct fo n<k, n=k?
Split ISs into two classes,

one with vertex v[n] (I),
another one without v[n] (J).

Any IS from I can be represented as union of an IS for
problem of size k-2 (subpath v[1],...,v[k-2]]) and v[k] and vice versa,
thus best and reachable solution for this class is OPT(k-2)+w(v

k
).

Any IS from J can be represented as an IS for problem
of size k-1 (subpath v[1],...,v[k-1]) and vice versa, thus best and
reachable solution for this class is OPT(k-1).

Conclusion: best and reachable solution for union of I and J
is given by max(OPT(k-1),OPT(k-2)+w(v

k
)).

That concludes the proof.

How do I apply Dynamic Programming?

Complexity:

Iterative: obvious (simple loop)

Recursive:
Arithmetical operations are assumed to take O(1) time (small numbers).
Calls take O(1). Let us put assign all arithmetical operations to
corresponding calls (still constant running time).

Number of recursive calls is no more than 2n (each time 2 recursive
calls are made, one value in M array is filled).

Then, running time is no more than C (worst time of arithmetic
operation+time for recursive call, 0(1)) * 2n, and 2nC belongs to O(2n)
= O(n) class (in fact, theta).

How do I apply Dynamic Programming?

Robots waves, r[n],
EMP charges, f[n].

Choose series of shooting days, d[n], s.t.
Sum[i=1:n](min(r[i],f[i-j])*d[i] is maximized (where j<i is the last shooting
day before i)

Hint: solve with DP :-D

Hint: still several options to choose, but not with “the last vertex”,
indeed, one should shoot on the last day.

Hint: last shooting day is definitely a parameter of recurrence. It suffices
to have only it as a parameter.

Hint: nothing changes in between two shooting days, except EMP
charge (no robots are killed).

Hint: complexity is “worse” than it was before. It is dependent on
number of recursive calls after all. Try to do iterative version first – it will
give an obvious bound.

Example 2: KT 6.8

