
  

Algorithms TIN092

Yet another exercise session



  

From lectures:
“...Break up a problem into a series of overlapping sub-problems, and 
build up solutions to larger and larger sub-problems.”

What is a Dynamic Programming?

Shorter: 
Recurrences, recurrences and yet another time recurrences.

Q: Recurrence for what?
A: Optimization problem assumes there is a function that has to be 
minimized/maximized, recurrence is written for this function values on 
different subproblems.

Q: I don't know how to solve a recurrence! What should I do???
A: That's what you need algorithms for, crybaby

Q: Why “Dynamic Programming”, then?
A: Historical issue. Never mind.



  

1. Write a recurrence for optimal value function.

2. Write an algorithm to calculate the optimal value of a function

2.1 Top-down  (memoization)
2.2 Bottom-up (iterative) 

3. Recover solution if needed

(Optimal value ≠ Solution that reaches optimal value)
    
   

How do I apply Dynamic Programming?



  

Find an independent set (IS) of maximum weight on a path 
Path = Graph G(V,E) (undirected) s.t. 
V=[1:n], E={(i,j)|i-j=1}={(1,2),(2,3),(3,4),...,(n,n-1)}

Independent Set = subset V' of V, s.t. no two vertices of V' are 
connected 

Weight: a function w, that assigns each node v, some numeric 
value v(e)

   
   

Example 1: KT6.1

3.53.5 2 2

(Solution 
is {1,3}) 

(8 ISs. Can 
you find all 
of them?)



  

1. OPT(n) = (OPT(n-2)+w(v
n
), OPT(n-1)), 

    OPT(0) = 1, OPT(1) = w(v
1
) 

    OPT(n) – max weight independent set for subpath on [1:n-1] 
vertices

2.1 As usual: M[n] for storage

M[1]=w(v[1]);M[0]=0;
OPT(x) {

if (M[x] is empty) then
  M[x]=max(OPT(x-2)+w(V[x]),OPT(x-1));
fi
return M[x];

}
return OPT(n);
    
   

How do I apply Dynamic Programming?



  

2.2. Iterative:

M[1]=w(v[1]);M[0]=0;
For i=2:n do 
  M[i]=max(M[i-2]+w(v[i]),M[i-1]);
od
return M[n]

3. We need to output the vertices of our choice in top-bottom approach:

  

   

How do I apply Dynamic Programming? 

...   
M[x]=max(OPT(x-2)+w(V[x]),OPT(x-1));
if (OPT(x-2)+w(V[x])>=OPT(x-1)) 

output w(V[x])
fi
...

1 vertex might be 
lost. Which one?
How to deal with 
it?



  

Correctness argument:
Inductive, 
Claim: recurrence is giving the correct value of optimal value function. 
Proof: Base: correct for n=0,1 (obvious), 

    Step:  correct fo n<k, n=k?
Split ISs into two classes, 

one with vertex v[n] (I), 
another one without v[n] (J).

Any IS from I can be represented as union of an IS for 
problem of size k-2 (subpath v[1],...,v[k-2]]) and v[k] and vice versa, 
thus best and reachable solution for this class is OPT(k-2)+w(v

k
).

Any IS from J can be represented as an IS for problem 
of size k-1 (subpath v[1],...,v[k-1]) and vice versa, thus best and 
reachable solution for this class is OPT(k-1).

Conclusion: best and reachable solution for union of I and J 
is given by max(OPT(k-1),OPT(k-2)+w(v

k
)).

That concludes the proof.

How do I apply Dynamic Programming? 



  

Complexity:

Iterative: obvious (simple loop)

Recursive: 
Arithmetical operations are assumed to take O(1) time (small numbers).
Calls take O(1). Let us put assign all arithmetical operations to 
corresponding calls (still constant running time).

Number of recursive calls is no more than 2n (each time 2 recursive 
calls are made, one value in M array is filled). 

Then, running time is no more than C (worst time of arithmetic 
operation+time for recursive call, 0(1)) * 2n, and 2nC belongs to O(2n) 
= O(n) class (in fact, theta).

How do I apply Dynamic Programming? 



  

Robots waves, r[n],
EMP charges, f[n].

Choose series of shooting days, d[n], s.t. 
Sum[i=1:n](min(r[i],f[i-j])*d[i] is maximized (where j<i is the last shooting 
day before i) 

Hint: solve with DP :-D

Hint: still several options to choose, but not with “the last vertex”, 
indeed, one should shoot on the last day.

Hint: last shooting day is definitely a parameter of recurrence. It suffices 
to have only it as a parameter.

Hint: nothing changes in between two shooting days, except EMP 
charge (no robots are killed).

Hint: complexity is “worse” than it was before. It is dependent on 
number of recursive calls after all. Try to do iterative version first – it will 
give an obvious bound.

Example 2: KT 6.8


