
Spe
i�
ation and Veri�
ation ofHardware

VHDL 1Original by Magnus Bj ¨orkComputing S
ien
eChalmers University of Te
hnology

VHDL 1 � p.1/51



The 
ourse

Course team:Mary Sheeran (kursansvarig)Dennis WalterEmil AxelssonGuest le
turers:Jiri Gaisler (Gaisler Resear
h)Emily Shriver (Intel)

VHDL 1 � p.2/51



About the 
ourse

Che
k in often at:http://www.
s.
halmers.se/Cs/Grundutb/Kurser/svh/Two halves: VHDL part and Lava part.Ea
h half in
ludes one lab and one take home exam.Written exam in then endSign up for one lab a

ount ea
h.

You may solve the labs in pairs, but are not allowed to
ooperate between the pairs. No 
ooperation at all on thetake home exams (do them individually).

VHDL 1 � p.3/51



Course Book: Two Options

Peter Ashenden: The Designer's Guide to VHDLApproa
hes VHDL as any programming languageFo
uses on simulation.The VHDL book used in industry (Ashenden is partof the 
ommittee behind the VHDL standard, thisbook is sometimes seen as a more readable versionof the standard.)

Stefan Sjöholm, Lennart Lindh: VHDL för konstruktionApproa
hes VHDL as a tool for 
onstru
tinghardwareFo
uses on synthesisCheaper and more 
on
ise VHDL 1 � p.4/51



Overview of the le
ture

A 15 minutes 
rash 
ourse in hardware designVHDL
Please interrupt me if you have questions

VHDL 1 � p.5/51



Fundamental hardware 
on
epts
VHDL 1 � p.6/51



Gate level

Can be 
ompared to assembler for softwareWe may use:Gates: Not, And, Or, Implies, Multiplexers
And

Memory 
ells: d-�ip�op
0

Initial valueComponents: boxes 
ontaining gate-leveldes
riptions

VHDL 1 � p.7/51



Combinational gate level examples

Half adder Full adder
s

And

Xor

a

coutinc
out

a b

cin c

s

HA

HA
Or

4 bit ripple-
arry adder
2 2

2

3

3

3 4 4

4

a b

s

a b

s

a b

s

1a b1

s1

FAFA FA FA

VHDL 1 � p.8/51



Sequential gate level examples

Os
illator Sequential adder
0

Not

a b

s
reset

FA

0

And

VHDL 1 � p.9/51



Be 
areful with

Feedba
k only through �ip�ops

Not

You may split wires, but never join them:

Not OKOKIn this 
ourse, any wire may only have one driver.
VHDL 1 � p.10/51



Abstra
tion domains (1)

Stru
tural domain:Cir
uit des
ribed as a 
omposition of sub-
ir
uits
2 2

2

3

3

3 4 4

4

a b

s

a b

s

a b

s

1a b1

s1

FAFA FA FA

Behavioral domain:Des
ribes what the 
ir
uit does, not how it does it

s := a + b;

VHDL 1 � p.11/51



Abstra
tion domains (2)

Behavioral is the �desired� domain (why make more
ompli
ated 
ode?)But, behavioral 
odeMay not be synthesizableif 
 /= 
'delayed(T) then . . .x <= y / z;Time-shift and division 
an be simulated, but notsynthesizedMay lead to inef�
ient 
ir
uita := b + 
;d := e - f;Maybe only one adder is needed? VHDL 1 � p.12/51



Abstra
tion domains (3)

Stru
tural de
omposition is usually ne
essary forgetting ef�
ient and synthesizable 
odeNo design is 
ompletely stru
turalComponents! Gates! Transistors! Sili
on
rystals! . . .Sooner or later we rea
h the leaves of stru
t.de
omposition. The stru
tural leaves are alwaysdes
ribed behaviorally.What is a suitable level for the leaves?Common answer: Register Transfer Level (RTL)
VHDL 1 � p.13/51



Register Transfer Level (1)RTL = Gate level, plus:Wires 
arrying more 
omplex data types(bit-ve
tors, integers, arrays of integers, ...)Components operating on those types(adders, multipliers, sorters, ...)Registers and memories (generalization of d-�ip�op,storing any type)Sub
omponents for hierar
hi
al stru
tureFinite state ma
hines (FSMs)These 
omponents are des
ribed behaviorally!An adder does not have to be de
omposed into fulladdersA 
ounter (an FSM) does not have to bede
omposed into a register and an adder VHDL 1 � p.14/51



Register Transfer Level (2)

Corre
t timing behavior internally: it should be possibleto see from the RTL des
ription what happens in ea
h
lo
k 
y
le.Designer 
ontrols overall stru
ture, synthesis tool
ontrols low-level details (RTL synthesis)
VHDL 1 � p.15/51



Behavioral Level (1)

Des
ribes what the 
ir
uit does, not how it does itDoesn't say anything about the stru
ture of the 
ir
uitUses standard programming language 
on
epts su
has algorithms, loops, 
omplex data types andpro
esses.Shows 
orre
t timing behavior externally, but notinternallyImportant aspe
tsMust be easy to understandMust be unambiguousIs used as a runnable spe
i�
ation; behavior is
ompared with RTL implementation during testphase VHDL 1 � p.16/51



Behavioral Level (2)

Used to spe
ify what your 
ir
uit doesCan be dis
ussed with 
ustomer as initial step of designCan also be used to simulate other parts of the 
ir
uitrywhi
h are developed by somebody elseIs probably not synthesizable

VHDL 1 � p.17/51



Fun
tional Level

Even higher level than behavioralOnly des
ribes the fun
tion of the 
ir
uitNot even 
orre
t timing behaviorMay use any programming language 
onstru
ts
VHDL 1 � p.18/51



Abstra
tion Levels (1)

Say we want to des
ribe a pipelined sorter for integers:Fun
tional level: Your favorite sorting algorithmBehavioral level: The same algorithm, with resultdelayed a number of 
lo
k 
y
les to get 
orre
t timingRegister transfer level: A stru
tural des
ription using
omparators, registers, and wires 
arrying integers.Uses the same sorting method as the �nal 
ir
uit(probably not the same as in previous steps).Two versions:All registers at the end of the datapathRegisters distributed in the 
orre
t pla
es.
VHDL 1 � p.19/51



Abstra
tion Levels (2)

Gate level: An in
omprehensible stru
tural des
riptionusing registers, gates and wires 
arrying booleansTransistor level: A stru
tural des
ription using onlytransistors and wires 
arrying different voltages
VHDL 1 � p.20/51



Design pro
ess (simpli�ed)

1. Write a spe
i�
ation2. Write an implementation3. Verify that your implementation meets the spe
i�
ation4. If not, are the errors in the spe
i�
ation or theimplementation?Corre
t the erroneous one.5. Repeat step 3-4 until no more errors are found.
VHDL 1 � p.21/51



Iterative design pro
ess

1. Write a (runnable) spe
i�
ation.2. Do some veri�
ation of the spe
i�
ation, to 
onvin
eyourself that it is 
orre
t.3. Write an implementation on a slightly less abstra
t levelor with more optimizations4. Verify that the new implementation works like aprevious one (perhaps the last implementation, or thespe
i�
ation)5. Repeat step 3-4 until you have an optimized low leveldes
ription of your 
ir
uit.

VHDL 1 � p.22/51



If Spe
. and Implementation Differs?

If your �nal design doesn't behave as the behavioraldes
ription, you have three options:1. Change your �nal design to mat
h the behavioral model2. Change your behavioral model to mat
h the �nal design3. Find out exa
tly how different they are (this isn't as easyas you think). Determine if they are similar enough, andthoroughly do
ument the differen
esFirst option is preferable, sin
e you don't need to update the
ontra
t with your 
ustomer. If you dis
over that the agreedupon behavior was hard to implement, se
ond option isprobably best. Third option is usually harder than se
ond.
VHDL 1 � p.23/51



(Fun
tional) Veri�
ation te
hniques

Testing: write testben
hes, simulate 
ir
uit (ModelSim)Exhaustive testing: Generally not feasibleAutomated testing: Safelogi
 Monitor, FoCs,Qui
kChe
kProperty 
he
king (model 
he
king): Jasper Gold,RuleBase, Solidify, FormalityEquivalen
e 
he
king: eChe
k, 
onformal (if 1-1-mat
hof dffs)Other methods: Symboli
 simulation, Theorem proving,...
Last three known as formal veri�
ation VHDL 1 � p.24/51


	The course
	 About the course 
	Course Book: Two Options
	Overview of the lecture
	Fundamental hardware concepts
	 Gate level 
	 Combinational gate level examples 
	 Sequential gate level examples 
	 Be careful with 
	 Abstraction domains (1)
	 Abstraction domains (2)
	 Abstraction domains (3)
	 Register Transfer Level (1)

	 Register Transfer Level (2)

	 Behavioral Level (1)

	Behavioral Level (2)
	Functional Level
	Abstraction Levels (1)

	Abstraction Levels (2)
	 Design process (simplified)

	 Iterative design process 
	If Spec. and Implementation Differs?
	 (Functional)
Verification techniques 
	 Hardware Description Languages (HDL)


