Specification and Verification of
Hardware

VHDL 1

Original by Magnus Bjork

Computing Science

Chalmers University of Technology

The course

o Course team:
s Mary Sheeran (kursansvarig)
s Dennis Walter
s Emil Axelsson

o QGuest lecturers:
s Jiri Gaisler (Gaisler Research)
s Emily Shriver (Intel)

VHDL 1 —p.2/51

About the course

Check in often at:
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/svh/

°

Two halves: VHDL part and Lava part.
Each half includes one lab and one take home exam.
Written exam in then end

© o o o

Sign up for one lab account each.

You may solve the labs in pairs, but are not allowed to
cooperate between the pairs. No cooperation at all on the
take home exams (do them individually).

VHDL 1 —p.3/51

Course Book: Two Options

Peter Ashenden: The Designer’s Guide to VHDL
s Approaches VHDL as any programming language

o Focuses on simulation.

s The VHDL book used in industry (Ashenden is part
of the committee behind the VHDL standard, this
book Is sometimes seen as a more readable version

of the standard.)

o Stefan Sjoholm, Lennart Lindh: VHDL for konstruktion

s Approaches VHDL as a tool for constructing
hardware

s Focuses on synthesis
» Cheaper and more concise

VHDL 1 —p.4/51

Overview of the lecture

A 15 minutes crash course in hardware design
o VHDL

Please interrupt me if you have questions

VHDL 1 - p.5/51

Fundamental hardware concepts

Gate level

Can be compared to assembler for software

We may use:
s Gates: Not, And, Or, Implies, Multiplexers

%

And -

%

s Memory cells: d-flipflop
l

V

0
™ Initial value

s Components: boxes containing gate-level
descriptions

VHDL 1 —p.7/51

Combinational gate level examples

Half adder

a

And

Cin

Xor

Cout

Cin

Full adder

a

Or

Cout

4 bit ripple-carry adder
i i Ui D

 ——

FA

FA

FA

FA

E—

Sequential gate level examples

Oscillator Sequential adder
a b
FA
V
[0 And
| S NI \/ .
NOt reset S

Be careful with

Feedback only through flipflops

r Not

:

You may split wires, but never join them:

A Y

Not OK

In this course, any wire may only have one driver.

VHDL 1 — p.10/51

Abstraction domains (1)

Structural domain:
Circuit described as a composition of sub-circuits

ali ibl azi ibz asl lbs a4i lb4

~—~FA—FA—FA —FA —
RN

® Behavioral domain:
Describes what the circuit does, not how it does it

S:=a+b;

VHDL 1 —p.11/51

Abstraction domains (2)

Behavioral is the “desired” domain (why make more
complicated code?)

o But, behavioral code
» May not be synthesizable

If c /= c'delayed(T) then ...
X<=Y/Z

Time-shift and division can be simulated, but not
synthesized

s May lead to inefficient circuit

a.=b+c;
d:=e-f;

Maybe only one adder is needed?

VHDL 1 —p.12/51

°

Abstraction domains (3)

Structural decomposition is usually necessary for
getting efficient and synthesizable code

No design is completely structural

s Components — Gates — Transistors — Silicon
crystals — ...

Sooner or later we reach the leaves of struct.
decomposition. The structural leaves are always
described behaviorally.

What is a suitable level for the leaves?
Common answer: Register Transfer Level (RTL)

VHDL 1 — p.13/51

Register Transfer Level (1)

RTL = Gate level, plus:

»

>

»

Wires carrying more complex data types
(bit-vectors, integers, arrays of integers, ...)

Components operating on those types
(adders, multipliers, sorters, ...)

Registers and memories (generalization of d-flipflop,
storing any type)

Subcomponents for hierarchical structure

Finite state machines (FSMs)

These components are described behaviorally!

»

»

An adder does not have to be decomposed into full
adders

A counter (an FSM) does not have to be
decomposed into a register and an adder

VHDL 1 —p.14/51

Register Transfer Level (2)

Correct timing behavior internally: it should be possible
to see from the RTL description what happens in each
clock cycle.

Designer controls overall structure, synthesis tool
controls low-level details (RTL synthesis)

VHDL 1 — p.15/51

o o

Behavioral Level (1)

Describes what the circuit does, not how it does it
Doesn’t say anything about the structure of the circuit

Uses standard programming language concepts such
as algorithms, loops, complex data types and
processes.

Shows correct timing behavior externally, but not
internally

Important aspects

» Must be easy to understand

» Must be unambiguous

» |s used as a runnable specification; behavior is
compared with RTL implementation during test
phase

VHDL 1 — p.16/51

e

Behavioral Level (2)

Used to specify what your circuit does
Can be discussed with customer as initial step of design

Can also be used to simulate other parts of the circuitry
which are developed by somebody else

Is probably not synthesizable

VHDL 1 —p.17/51

© o o o

Functional Level

Even higher level than behavioral

Only describes the function of the circuit

Not even correct timing behavior

May use any programming language constructs

VHDL 1 — p.18/51

Abstraction Levels (1)

Say we want to describe a pipelined sorter for integers:
Functional level: Your favorite sorting algorithm

Behavioral level: The same algorithm, with result
delayed a number of clock cycles to get correct timing

Register transfer level: A structural description using
comparators, registers, and wires carrying integers.
Uses the same sorting method as the final circuit
(probably not the same as in previous steps).

Two versions:
s All reqisters at the end of the datapath

» Regqisters distributed in the correct places.

VHDL 1 — p.19/51

Abstraction Levels (2)

Gate level: An incomprehensible structural description
using registers, gates and wires carrying booleans

Transistor level: A structural description using only
transistors and wires carrying different voltages

VHDL 1 — p.20/51

AW N =

Design process (simplified)

. Write a specification
. Write an implementation
. Verify that your implementation meets the specification

If not, are the errors in the specification or the
implementation?
Correct the erroneous one.

. Repeat step 3-4 until no more errors are found.

VHDL 1 —p.21/51

Iterative design process

. Write a (runnable) specification.

. Do some verification of the specification, to convince
yourself that it is correct.

. Write an implementation on a slightly less abstract level
or with more optimizations

. Verify that the new implementation works like a
previous one (perhaps the last implementation, or the
specification)

. Repeat step 3-4 until you have an optimized low level
description of your circuit.

VHDL 1 —p.22/51

If Spec. and Implementation Differs?

If your final design doesn’t behave as the behavioral
description, you have three options:

1. Change your final design to match the behavioral model
2. Change your behavioral model to match the final design

3. Find out exactly how different they are (this isn’'t as easy
as you think). Determine if they are similar enough, and
thoroughly document the differences

First option is preferable, since you don’t need to update the
contract with your customer. If you discover that the agreed
upon behavior was hard to implement, second option is
probably best. Third option is usually harder than second.

VHDL 1 — p.23/51

(Functional) Verification techniques

Testing: write testbenches, simulate circuit (ModelSim)
Exhaustive testing: Generally not feasible

°

Automated testing: Safelogic Monitor, FoCs,
QuickCheck

o Property checking (model checking): Jasper Gold,
RuleBase, Solidify, Formality

Equivalence checking: eCheck, conformal (if 1-1-match
of dffs)

o Other methods: Symbolic simulation, Theorem proving,

Last three known as formal verification

VHDL 1 — p.24/51

	The course
	 About the course
	Course Book: Two Options
	Overview of the lecture
	Fundamental hardware concepts
	 Gate level
	 Combinational gate level examples
	 Sequential gate level examples
	 Be careful with
	 Abstraction domains (1)
	 Abstraction domains (2)
	 Abstraction domains (3)
	 Register Transfer Level (1)

	 Register Transfer Level (2)

	 Behavioral Level (1)

	Behavioral Level (2)
	Functional Level
	Abstraction Levels (1)

	Abstraction Levels (2)
	 Design process (simplified)

	 Iterative design process
	If Spec. and Implementation Differs?
	 (Functional)
Verification techniques
	 Hardware Description Languages (HDL)

