
Industrial Application ofIndustrial Application of
Formal VerificationFormal Verification

Industrial Application ofIndustrial Application of
Formal VerificationFormal Verification

Magnus BjörkMagnus BjörkMagnus Björk
Jasper Design Automation

Magnus Björk
Jasper Design Automation

Copyright Notice and Proprietary InformationCopyright Notice and Proprietary Information

Published: March 23, 2011
Copyright ©2006-2010 Jasper Design Automation, Inc. All rights reserved. This document is owned by Jasper Design

Automation, Inc. and may be used only as authorized in the license agreement controlling such use. No part of these
materials may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without prior written permission of Jasper Design Automation, or as expressly provided by the
license agreement.

These materials are for information and instruction purposes. Jasper Design Automation reserves the right to make
changes in specifications and other information contained in these materials without prior notice, and the reader
should, in all cases, consult Jasper Design Automation to determine whether any changes have been made.

Disclaimer
JASPER DESIGN AUTOMATION, INC. DISCLAIMS AND MAKES NO WARRANTIES, EXPRESS, IMPLIED,

STATUTORY OR OTHERWISE WITH REGARD TO THESE MATERIALS, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.

Published: March 23, 2011
Copyright ©2006-2010 Jasper Design Automation, Inc. All rights reserved. This document is owned by Jasper Design

Automation, Inc. and may be used only as authorized in the license agreement controlling such use. No part of these
materials may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without prior written permission of Jasper Design Automation, or as expressly provided by the
license agreement.

These materials are for information and instruction purposes. Jasper Design Automation reserves the right to make
changes in specifications and other information contained in these materials without prior notice, and the reader
should, in all cases, consult Jasper Design Automation to determine whether any changes have been made.

Disclaimer
JASPER DESIGN AUTOMATION, INC. DISCLAIMS AND MAKES NO WARRANTIES, EXPRESS, IMPLIED,

STATUTORY OR OTHERWISE WITH REGARD TO THESE MATERIALS, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.

- 2 - ©2008 Jasper Design Automation

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.

IN NO EVENT SHALL JASPER DESIGN AUTOMATION, INC. BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT,
SPECIAL, OR, CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THESE MATERIALS OR THE INFORMATION CONTAINED IN
THEM, HOWEVER CAUSED AND WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE) OR
ANY OTHER THEORY OF LIABILITY, EVEN IF JASPER DESIGN AUTOMATION, INC. HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Jasper Design Automation, the Jasper Design Automation logo, JasperGold, Formal Testplanner, Formal Scoreboard,
Proof Accelerators, InFormal, and GamePlan are trademarks of Jasper Design Automation, Inc.

All other trademarks or registered trademarks are the property of their respective owners.

100 View St., Suite 101
Mountain View, CA 94041
Tel: (650) 966-0200
Fax: (650) 625-9840
http://www.jasper-da.com

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.

IN NO EVENT SHALL JASPER DESIGN AUTOMATION, INC. BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT,
SPECIAL, OR, CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THESE MATERIALS OR THE INFORMATION CONTAINED IN
THEM, HOWEVER CAUSED AND WHETHER BASED IN CONTRACT, TORT (INCLUDING NEGLIGENCE) OR
ANY OTHER THEORY OF LIABILITY, EVEN IF JASPER DESIGN AUTOMATION, INC. HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Jasper Design Automation, the Jasper Design Automation logo, JasperGold, Formal Testplanner, Formal Scoreboard,
Proof Accelerators, InFormal, and GamePlan are trademarks of Jasper Design Automation, Inc.

All other trademarks or registered trademarks are the property of their respective owners.

100 View St., Suite 101
Mountain View, CA 94041
Tel: (650) 966-0200
Fax: (650) 625-9840
http://www.jasper-da.com

About MeAbout Me

• M.Sc from Göteborgs Universitet, PhD from Chalmers
• Continued to do research (Chalmers, Oxford, IT

University, SAAB Space/RUAG)
• Now employed by Jasper for a collaboration project

with Chalmers, funded by Vetenskapsrådet

• M.Sc from Göteborgs Universitet, PhD from Chalmers
• Continued to do research (Chalmers, Oxford, IT

University, SAAB Space/RUAG)
• Now employed by Jasper for a collaboration project

with Chalmers, funded by Vetenskapsrådet

- 3 - ©2008 Jasper Design Automation

• Main research interests:
– Formal verification (algorithms and applications)
– Automated theorem proving

• My role at Jasper
– Research and development of new verification methods

• Main research interests:
– Formal verification (algorithms and applications)
– Automated theorem proving

• My role at Jasper
– Research and development of new verification methods

- 4 - ©2008 Jasper Design Automation

INTRODUCTION TO JASPERINTRODUCTION TO JASPER

Jasper Design AutomationJasper Design Automation

• Head office in California
• Other offices

– Sweden (Gothenburg)
– Brazil (Belo Horizonte)
– Israel (Haifa)
–

• Head office in California
• Other offices

– Sweden (Gothenburg)
– Brazil (Belo Horizonte)
– Israel (Haifa)
–

- 5 - ©2008 Jasper Design Automation

– Japan (through distributor)
– Opening: India

• Total number of employees: ~70
– Currently distributed ~50/50 between sales and engineering

• Gothenburg team
– 6 employees (R&D)
– 5 from Chalmers (many historically)

– Japan (through distributor)
– Opening: India

• Total number of employees: ~70
– Currently distributed ~50/50 between sales and engineering

• Gothenburg team
– 6 employees (R&D)
– 5 from Chalmers (many historically)

Jasper’s Top 10 CustomersJasper’s Top 10 Customers

hp

Sony Corporation

- 6 - ©2008 Jasper Design Automation

hp

Jasper ProductsJasper Products

Solution Definition Value

JasperGold ® Advanced formal
property verification

Solves top project
challenges across a
spectrum of SoC
applications

Databases and Accelerates design

- 7 - ©2008 Jasper Design Automation

ActiveDesign ™
Databases and
analysis system for
design and reuse

Accelerates design
development and
leverages designs and IP

JasperCore ™

Formal verification
solution for
intelligent resource
management

Deploys economically-
scalable formal technology
across computers
and teams

JasperGold®JasperGold®

JasperGold ® Verification System
Formal verification of design behavior

for complete correctness, clarity and closure

Visibility
Patented Visualize™: the on-ramp to formal

- 8 - ©2008 Jasper Design Automation

Advanced Proof Power
Fast proofs, high capacity, low memory footprint

Abstractions for greater proof capacity

ProofGrid ™

Distributed, scalable formal technology for accelerating
multiple proofs, tasks, users, applications, computers and

productivity, even across multiple business units

Visualize™ DesignsVisualize™ Designs

• Accelerated RTL
development and debug;
leveraged legacy design
and IP
– Graphical and waveform

views of design
functionality and
dependencies

• Accelerated RTL
development and debug;
leveraged legacy design
and IP
– Graphical and waveform

views of design
functionality and
dependencies

Visualize™

- 9 - ©2008 Jasper Design Automation

dependencies
– Shorter iteration cycles for

exploration, understanding
behaviors and root cause
analysis

• Visualize is in both
ActiveDesign and
JasperGold

dependencies
– Shorter iteration cycles for

exploration, understanding
behaviors and root cause
analysis

• Visualize is in both
ActiveDesign and
JasperGold

QuietTrace™QuietTrace™
ROI: Reduced

designer iterations
and simplified debug
– Find similar

behaviors with fewer
signal trace events

• Smooth selected
traces and signals,

ROI: Reduced
designer iterations
and simplified debug
– Find similar

behaviors with fewer
signal trace events

• Smooth selected
traces and signals,

Normal Trace

- 10 - ©2008 Jasper Design Automation

traces and signals,
on-demand

• Temporal smoothing

• Visualize with
QuietTrace is in both
ActiveDesign and
JasperGold

traces and signals,
on-demand

• Temporal smoothing

• Visualize with
QuietTrace is in both
ActiveDesign and
JasperGold

QuietTrace

Patent pending

JasperCore™JasperCore™

Jasper Core™
Economically-scalable formal verification for easy

deployment of powerful formal technology, across the
spectrum of applications

Advanced Proof Power

- 11 - ©2008 Jasper Design Automation

Advanced Proof Power
Fast proofs, high capacity, low memory footprint

Abstractions for greater proof capacity

Proof Grid ™

Distributed formal technology for accelerating multiple
proofs, tasks, users, applications, computers and
productivity, even across multiple business units

Faster proofs, reduced memory
footprint, higher proof capacity

� High-performance
proof engines, patented tech

� Architecture for lean, fast flows

� Tunneling

Proof Power!

Proof Power and Capacity

- 12 - ©2008 Jasper Design Automation

� Tunneling

� Design traversal algorithms

� Powerful abstractions: Memory,
Multiplier, and Asynchronous
Proof Accelerators
and Scoreboard

Proof power:
in JasperCore and JasperGold

Formal technology
deployment for productivity

� Distributed, economically-
scalable formal technology to
accelerate proofs and facilitate
all applications

� Parallel processing for local

ProofGrid™

Scalable Verification

- 13 - ©2008 Jasper Design Automation

� Parallel processing for local
machines, clusters and farms

� Dynamic scheduling and
engine allocation

� Seamless tracking and reporting

ProofGrid:
in JasperGold and JasperCore

ProofGrid™ProofGrid™

Intelligent resource
management for
multiple:

–Users

–Proofs

Intelligent resource
management for
multiple:

–Users

–Proofs

✖

✔

✔

✔

✖

Engine D

P0

P1

P2

P3

P4

C I G K B

- 14 - ©2008 Jasper Design Automation

–Proofs

–Tasks

–Applications

–Computers

–Groups

–Proofs

–Tasks

–Applications

–Computers

–GroupsProofGrid:

in JasperCore and JasperGold

✖

✖

✔

✔

✔

P4

P5

P7

P8

P9

✖P6

Capacity

T
h

ro
u

g
h

p
u

t

ActivePropActiveProp

• New product

• Reads simulation trace, proposes properties fulfilled
by the trace

• New product

• Reads simulation trace, proposes properties fulfilled
by the trace

- 15 - ©2008 Jasper Design Automation

• Useful for developing properties
– Easier to evaluate by example than writing your own

• Useful for developing constraints
– When verifying how circuit interacts with external circuitry

• Useful for developing properties
– Easier to evaluate by example than writing your own

• Useful for developing constraints
– When verifying how circuit interacts with external circuitry

X-propagationX-propagation

• New feature in 7.2 (partially available in 7.1)

• See if X can propagate from point A to point B

• Useful for

• New feature in 7.2 (partially available in 7.1)

• See if X can propagate from point A to point B

• Useful for

- 16 - ©2008 Jasper Design Automation

• Useful for
– Checking influence

• Does point A influence point B?
• Does the flop A need to have reset value?

– Understanding
• ”Show me a trace where the value of B depends on A”

• Useful for
– Checking influence

• Does point A influence point B?
• Does the flop A need to have reset value?

– Understanding
• ”Show me a trace where the value of B depends on A”

- 17 - ©2008 Jasper Design Automation

FORMAL VERIFICATIONFORMAL VERIFICATION

Formal verification in a nutshellFormal verification in a nutshell

• Prove that a circuit fulfils its specification• Prove that a circuit fulfils its specification

Circuit Propertyproof

- 18 - ©2008 Jasper Design Automation

• Otherwise: produce counter example
– Trace of circuit where property is false

• Otherwise: produce counter example
– Trace of circuit where property is false

Using observersUsing observers

• If property possible to rewrite as a circuit:• If property possible to rewrite as a circuit:

Circuit Observer OK

- 19 - ©2008 Jasper Design Automation

• Reduced problem:
– Prove that OK is always true
– or find assignment where OK is false
– For combinational circuit: easily done by SAT solver

• Reduced problem:
– Prove that OK is always true
– or find assignment where OK is false
– For combinational circuit: easily done by SAT solver

Circuit Observer OK

Handling Sequential CircuitsHandling Sequential Circuits

Circuit Circuit Circuit CircuitInit

Bounded Model Checking (BMC)

- 20 - ©2008 Jasper Design Automation

Circuit

Flops

Circuit Circuit Circuit

Observer

Init

OK

Bounded to unboundedBounded to unbounded

• BMC produces bounded proofs:
– A bounded proof of depth 4 guarantees that no CEX of

length 4 or shorter
–…or finds a CEX.

• Different techniques to produce unbounded proofs:

• BMC produces bounded proofs:
– A bounded proof of depth 4 guarantees that no CEX of

length 4 or shorter
–…or finds a CEX.

• Different techniques to produce unbounded proofs:

- 21 - ©2008 Jasper Design Automation

• Different techniques to produce unbounded proofs:
– Temporal induction
– Using fixpoints

• Different techniques to produce unbounded proofs:
– Temporal induction
– Using fixpoints

Adding proof powerAdding proof power

• Simplifications
– Isolating relevant parts of circuit

• Cone of influence (COI)

– Shrinking relevant parts
• Verify 4 bit bus instead of 64 bis

– Structural simplification

• Simplifications
– Isolating relevant parts of circuit

• Cone of influence (COI)

– Shrinking relevant parts
• Verify 4 bit bus instead of 64 bis

– Structural simplification

- 22 - ©2008 Jasper Design Automation

– Structural simplification

• Abstraction
– Three-valued semantics
– Automated abstraction refinement

• Proof parallelization
• Different logical systems

– SAT (propositional logic), BDD, SMT, FOL

– Structural simplification

• Abstraction
– Three-valued semantics
– Automated abstraction refinement

• Proof parallelization
• Different logical systems

– SAT (propositional logic), BDD, SMT, FOL

Three valued simulationThree valued simulation

• Use ternary logic: {0,1,X}
– X: don’t care

• Introduce X at (some) inputs and
initial flop values

• Large parts of circuit disappears

• Use ternary logic: {0,1,X}
– X: don’t care

• Introduce X at (some) inputs and
initial flop values

• Large parts of circuit disappears

A B A & B

X X X

X 0 0

X 1 X

- 23 - ©2008 Jasper Design Automation

• Results:
– OK=1: Property proven
– OK=0: Counter example found
– OK=X: Too many X

• The challenge is to introduce
enough but not too many X

• Results:
– OK=1: Property proven
– OK=0: Counter example found
– OK=X: Too many X

• The challenge is to introduce
enough but not too many X

0 X 0

0 0 0

0 1 0

1 X X

1 0 0

1 1 1

Abstraction refinementAbstraction refinement

• Start with a heavily abstracted circuit
• While (proof not found)

– Is CEX spurious (false due to X)?
• Then analyze what X may cause this, replace it by fresh

variable
• Else report CEX

• Start with a heavily abstracted circuit
• While (proof not found)

– Is CEX spurious (false due to X)?
• Then analyze what X may cause this, replace it by fresh

variable
• Else report CEX

- 24 - ©2008 Jasper Design Automation

• Else report CEX

• Report valid
• Else report CEX

• Report valid

- 25 - ©2008 Jasper Design Automation

THE VERIFICATION PROBLEMTHE VERIFICATION PROBLEM

Functional Verification is a Huge, Growing ProblemFunctional Verification is a Huge, Growing Problem

• Verification consumes up to 70% of design resources• Verification consumes up to 70% of design resources

S
im

ul
at

io
n

Ti
m

e

- 26 - ©2008 Jasper Design Automation

• The problem is growing exponentially
–More simulation is not the answer

• The problem is growing exponentially
–More simulation is not the answer

Verification Design Design Size

S
im

ul
at

io
n

Ti
m

e

The Stakes Are HighThe Stakes Are High

• “A majority of ASICs/ICs require at least one respin.
71% of respins are due to functional bugs verification
should have caught.”

- Collett International Research, Inc.

• “A majority of ASICs/ICs require at least one respin.
71% of respins are due to functional bugs verification
should have caught.”

- Collett International Research, Inc.

Cost of ASIC/SoC mask set = $250K to $1M+

- 27 - ©2008 Jasper Design Automation

Cost of ASIC/SoC mask set = $250K to $1M+

Total cost of respin to project = ~$10M

Verification MethodologiesVerification Methodologies

• Dominating verification methodologies
– Directed Simulation

• Requires specification of test bench
• Requires manual targeting of corner cases

– Constrained Random Verification
• Requires specification of stimulus constraints

• Dominating verification methodologies
– Directed Simulation

• Requires specification of test bench
• Requires manual targeting of corner cases

– Constrained Random Verification
• Requires specification of stimulus constraints

- 28 - ©2008 Jasper Design Automation

• Requires specification of stimulus constraints

• Verification quality measurements
– Coverage metrics

• Line coverage
• Expression coverage
• Functional coverage

• Requires specification of stimulus constraints

• Verification quality measurements
– Coverage metrics

• Line coverage
• Expression coverage
• Functional coverage

Formal Technology: A Simple ViewFormal Technology: A Simple View

Design ?Can this
scenario happen?

- 29 - ©2008 Jasper Design Automation

YESNO

Guarantee that the scenario
cannot happen for ALL possible

ways design can operate

Formal
Tool

Pros and Cons of FormalPros and Cons of Formal

• Pros
– Enables full proofs
– Eliminates need for enumeration of corner cases
– Focus on what to verify, not how to verify it

• Cons

• Pros
– Enables full proofs
– Eliminates need for enumeration of corner cases
– Focus on what to verify, not how to verify it

• Cons

- 30 - ©2008 Jasper Design Automation

• Cons
– Does not scale as well as simulation
– Illegal behavior often needs to be defined (Constraints)

• Formal has a “sweet spot” where it is very valuable,
but will never replace simulation.

• Cons
– Does not scale as well as simulation
– Illegal behavior often needs to be defined (Constraints)

• Formal has a “sweet spot” where it is very valuable,
but will never replace simulation.

Who Uses Formal?Who Uses Formal?

• Mostly ASIC vendors
– FPGA verification not as critical

• Proliferation
– Still limited

• Mostly ASIC vendors
– FPGA verification not as critical

• Proliferation
– Still limited

- 31 - ©2008 Jasper Design Automation

Still limited
– Mostly dedicated verification people
– Some companies have dedicated formal teams

• Trends over recent years
– Market is clearly growing
– Most people have now heard about formal
– Some companies are looking for wider proliferation

Still limited
– Mostly dedicated verification people
– Some companies have dedicated formal teams

• Trends over recent years
– Market is clearly growing
– Most people have now heard about formal
– Some companies are looking for wider proliferation

- 32 - ©2008 Jasper Design Automation

WHERE TO APPLY FORMALWHERE TO APPLY FORMAL

Where to Apply Formal: Design SizeWhere to Apply Formal: Design Size

• “How large blocks can your tool handle?”
– No good answer to this question!
– Totally function dependant
– Fundamental problem is NP complete

• “How large blocks can your tool handle?”
– No good answer to this question!
– Totally function dependant
– Fundamental problem is NP complete

- 33 - ©2008 Jasper Design Automation

• Rule of thumb, Focus on:
– Designer sized blocks
– Critical functionalities

• “Ensure Correctness Where it Matters Most”

• Rule of thumb, Focus on:
– Designer sized blocks
– Critical functionalities

• “Ensure Correctness Where it Matters Most”

Where to Apply Formal: FunctionalityWhere to Apply Formal: Functionality

• Formal is not good for everything!
• Good candidates:

– Data transportation
– Control logic
– Parallel interactions

• Formal is not good for everything!
• Good candidates:

– Data transportation
– Control logic
– Parallel interactions

- 34 - ©2008 Jasper Design Automation

• Bad candidates:
– Data transformation
– DSP (Digital Signal Processing)
– Mathematics (FPU)
– Data encryption

• Bad candidates:
– Data transformation
– DSP (Digital Signal Processing)
– Mathematics (FPU)
– Data encryption

Good Design Candidates for FormalGood Design Candidates for Formal

• Arbiters
• On-chip bus bridge
• Power management unit
• DMA controller
• Host bus interface unit

• Arbiters
• On-chip bus bridge
• Power management unit
• DMA controller
• Host bus interface unit

• Interrupt controller
• Memory controller
• Token generator
• Cache coherency
• Credit manager block

• Interrupt controller
• Memory controller
• Token generator
• Cache coherency
• Credit manager block

- 35 - ©2008 Jasper Design Automation

• Host bus interface unit
• Scheduler,

implementing multiple
threads

• Virtual channels for QoS

• Host bus interface unit
• Scheduler,

implementing multiple
threads

• Virtual channels for QoS

Common characteristics of these blocks:
Concurrency and multiple data streams, which are difficult to completely
verify using simulation

• Credit manager block
• Standard interface

(USB, PCI Express…)
• Proprietary interfaces
• Clock disable unit

• Credit manager block
• Standard interface

(USB, PCI Express…)
• Proprietary interfaces
• Clock disable unit

Example 1: Network traffic managerExample 1: Network traffic manager

• Bandwidth allocator for network switch
– Customers buys a certain bandwidth access (eg 10 Mb/s

access)
– Switch must ensure that:

• Customer gets at least 10 Mb/s access
• Customer does not get more that 10 Mb/s access

• Bandwidth allocator for network switch
– Customers buys a certain bandwidth access (eg 10 Mb/s

access)
– Switch must ensure that:

• Customer gets at least 10 Mb/s access
• Customer does not get more that 10 Mb/s access

- 36 - ©2008 Jasper Design Automation

• Customer does not get more that 10 Mb/s access

– Each customer can buy different bandwidth sizes
• 256 Kb/s
• 512 kb/s
• ...
• 10 Mb/s
• ...

• Customer does not get more that 10 Mb/s access

– Each customer can buy different bandwidth sizes
• 256 Kb/s
• 512 kb/s
• ...
• 10 Mb/s
• ...

Example 1: Network traffic managerExample 1: Network traffic manager

• Bandwidth allocation controlled by credit manager
– Buying a bandwidth of speed n gives you x credit tokens on

the switch
– The tokens denote access to switch memory
– Packet enters design: 1 token deducted from credit pool
– Packet exits design: 1 token returned to credit pool

• Bandwidth allocation controlled by credit manager
– Buying a bandwidth of speed n gives you x credit tokens on

the switch
– The tokens denote access to switch memory
– Packet enters design: 1 token deducted from credit pool
– Packet exits design: 1 token returned to credit pool

- 37 - ©2008 Jasper Design Automation

– Packet exits design: 1 token returned to credit pool

• Verification problem
– Are token always returned correctly?
– Failing to do so could cause token leakage
– Memory access would be blocked
– Switch would hang

– Packet exits design: 1 token returned to credit pool

• Verification problem
– Are token always returned correctly?
– Failing to do so could cause token leakage
– Memory access would be blocked
– Switch would hang

Example 1: Network traffic managerExample 1: Network traffic manager

• Problem type: Token leakage verification
• Problem characteristics

– Huge number of possible scenarios
– Hundreds of communication channels active at the same

time
– Impossible to verify sufficiently with simulation

• Problem type: Token leakage verification
• Problem characteristics

– Huge number of possible scenarios
– Hundreds of communication channels active at the same

time
– Impossible to verify sufficiently with simulation

- 38 - ©2008 Jasper Design Automation

– Impossible to verify sufficiently with simulation
– Corner case bug could make switch unusable

• 1 token leaked every second would force reboots every day

• Perfect fit for formal
– Impossible to enumerate corner case scenarios
– Full proof important

– Impossible to verify sufficiently with simulation
– Corner case bug could make switch unusable

• 1 token leaked every second would force reboots every day

• Perfect fit for formal
– Impossible to enumerate corner case scenarios
– Full proof important

Example 2: MicrocontrollerExample 2: Microcontroller

• Microcontroller supporting two simultaneous
execution threads

• Verification Problem:
– Does instruction execution behave according to spec?

• Property example:

• Microcontroller supporting two simultaneous
execution threads

• Verification Problem:
– Does instruction execution behave according to spec?

• Property example:

- 39 - ©2008 Jasper Design Automation

– Instructions in memory should be executed sequentially

• Problem characteristics:
– Huge number of possible scenarios

• Combinations of instructions
• Thread context switching
• Interrupt handling

– Instructions in memory should be executed sequentially

• Problem characteristics:
– Huge number of possible scenarios

• Combinations of instructions
• Thread context switching
• Interrupt handling

Example 2: MicrocontrollerExample 2: Microcontroller

• Flow control bug found
• Condition:

– Both threads active
– Thread 1 executes branch
– User interrupt kills thread 1 at the same cycle as branch

instruction executes

• Flow control bug found
• Condition:

– Both threads active
– Thread 1 executes branch
– User interrupt kills thread 1 at the same cycle as branch

instruction executes

- 40 - ©2008 Jasper Design Automation

instruction executes

• Symptom:
– Branch information not cleared
– Causes Thread 2 to branch instead

• Bug characteristics:
– Requires a very specific and cycle accurate scenario to

occur
– Almost impossible to find with simulation

instruction executes

• Symptom:
– Branch information not cleared
– Causes Thread 2 to branch instead

• Bug characteristics:
– Requires a very specific and cycle accurate scenario to

occur
– Almost impossible to find with simulation

- 41 - ©2008 Jasper Design Automation

FORMAL VERIFICATION
CHALLENGES
FORMAL VERIFICATION
CHALLENGES

What Makes a Property Hard to Prove?What Makes a Property Hard to Prove?

• Example:
– A memory has an 8 bit wide data bus and an 8 bit wide

address bus.
– Property: If you write data to an address, then the next time

you read from that address you should get the same value
back as you wrote in unless you have performed another
write in the mean time.

• Example:
– A memory has an 8 bit wide data bus and an 8 bit wide

address bus.
– Property: If you write data to an address, then the next time

you read from that address you should get the same value
back as you wrote in unless you have performed another
write in the mean time.

- 42 - ©2008 Jasper Design Automation

write in the mean time.

• How would this be verified in simulation?

• Why is this problem hard to prove?

write in the mean time.

• How would this be verified in simulation?

• Why is this problem hard to prove?

State Space ComplexityState Space Complexity

• The State Space problem
– Formal verification explores all possible states

• What is the size of the state space of the previous design?
– Word size is 8 bits
– 8 bit wide address means 2^8 words.

• The State Space problem
– Formal verification explores all possible states

• What is the size of the state space of the previous design?
– Word size is 8 bits
– 8 bit wide address means 2^8 words.

- 43 - ©2008 Jasper Design Automation

– 8 bit wide address means 2^8 words.
– Total number of memory bits: 8*2^8 = 2048 bits

• What is the total number of distinct states that the memory
can be in?
– 2^2048 = 3.32 * 10^616
– Estimated number of atoms in the observable universe: 10^80

– 8 bit wide address means 2^8 words.
– Total number of memory bits: 8*2^8 = 2048 bits

• What is the total number of distinct states that the memory
can be in?
– 2^2048 = 3.32 * 10^616
– Estimated number of atoms in the observable universe: 10^80

What Makes a Property Hard to Prove?What Makes a Property Hard to Prove?

• Example:
– Functionality:

• An 8 bit counter, “cnt1”, counts the number of times an input
signal has been high.

• Signal “a” is high when “cnt1” is full.
• An 8 bit counter, “cnt2”, counts the number of times “a” has

gone high.

• Example:
– Functionality:

• An 8 bit counter, “cnt1”, counts the number of times an input
signal has been high.

• Signal “a” is high when “cnt1” is full.
• An 8 bit counter, “cnt2”, counts the number of times “a” has

gone high.

- 44 - ©2008 Jasper Design Automation

gone high.
• Signal “b” is high when “cnt2” is full.

– Property:
• “a” and “b” are never active at the same time.

gone high.
• Signal “b” is high when “cnt2” is full.

– Property:
• “a” and “b” are never active at the same time.

cnt1
8 bit counter

cnt2
8 bit counter

i a b

What Makes a Property Hard to Prove?What Makes a Property Hard to Prove?

• Why is it hard to find a counter example for this
problem?
– Number of memory bits are just 2*8
– State space is not a big problem

• Why is it hard to find a counter example for this
problem?
– Number of memory bits are just 2*8
– State space is not a big problem

- 45 - ©2008 Jasper Design Automation

Sequential Depth ComplexitySequential Depth Complexity

• How many reachable states are there at any given
distance from reset?
– 1 cycle: cnt2 = 0 and cnt1 = 0 or 1 - #states: 2
– 2 cycles: cnt2 = 0 and cnt1 = 0,1 or 2 - #states: 3
– 3 cycles: cnt2 = 0 and cnt1 = 0,1,2 or 3 - #states: 4
– ...

• How many reachable states are there at any given
distance from reset?
– 1 cycle: cnt2 = 0 and cnt1 = 0 or 1 - #states: 2
– 2 cycles: cnt2 = 0 and cnt1 = 0,1 or 2 - #states: 3
– 3 cycles: cnt2 = 0 and cnt1 = 0,1,2 or 3 - #states: 4
– ...

- 46 - ©2008 Jasper Design Automation

– ...
– 256 cycles: cnt1 = 0 to 256 and cnt2 = 0 or

cnt1 = 0 and cnt2 = 1 - #states: 257
– ...
– 65535 cycles: cnt1 = 0 to 256, cnt2 = 0 to 256 -

#states: 65536

• JasperGold has to verify all of the 65535 steps before
finding a CEX!

– ...
– 256 cycles: cnt1 = 0 to 256 and cnt2 = 0 or

cnt1 = 0 and cnt2 = 1 - #states: 257
– ...
– 65535 cycles: cnt1 = 0 to 256, cnt2 = 0 to 256 -

#states: 65536

• JasperGold has to verify all of the 65535 steps before
finding a CEX!

Engines and Design ComplexityEngines and Design Complexity

• Main reasons for performance problems:
– State Space Size
– Sequential Depth

• Proof engines do not use brute force to verify all
combinations

• Main reasons for performance problems:
– State Space Size
– Sequential Depth

• Proof engines do not use brute force to verify all
combinations

- 47 - ©2008 Jasper Design Automation

combinations
– Doing so would cause most problems to blow up
– The different engines use different algorithms to handle

verification problems efficiently

• Different engines have different strengths and
weaknesses
– Formal Expert contains information about engine selection.

combinations
– Doing so would cause most problems to blow up
– The different engines use different algorithms to handle

verification problems efficiently

• Different engines have different strengths and
weaknesses
– Formal Expert contains information about engine selection.

Recognizing a Hard-to-Prove ProblemRecognizing a Hard-to-Prove Problem

• Worst case scenario reasoning
– What is the longest possible trace I would get if there is a

bug in my design?

• Example:
– Property: Data integrity across a bus bridge

• Worst case scenario reasoning
– What is the longest possible trace I would get if there is a

bug in my design?

• Example:
– Property: Data integrity across a bus bridge

- 48 - ©2008 Jasper Design Automation

– Property: Data integrity across a bus bridge
– What if: Data is corrupted when my FIFO underflows?

• Underflow can happen at cycle 2, bug can be detected around
cycle 2.

– What if: Data is corrupted when my FIFO overflows?
• Overflow can not happen until at least after FIFO length

number of operations. Bug can only be detected after that.
Investigate how large the FIFO is!

– Property: Data integrity across a bus bridge
– What if: Data is corrupted when my FIFO underflows?

• Underflow can happen at cycle 2, bug can be detected around
cycle 2.

– What if: Data is corrupted when my FIFO overflows?
• Overflow can not happen until at least after FIFO length

number of operations. Bug can only be detected after that.
Investigate how large the FIFO is!

Formal Predictor Improves Verification PredictabilityFormal Predictor Improves Verification Predictability

• Identifies complex logic before
formal analysis

• Provides a detailed report on the
design’s complexity

• Enables user to decide where to

• Identifies complex logic before
formal analysis

• Provides a detailed report on the
design’s complexity

• Enables user to decide where to

- 49 - ©2008 Jasper Design Automation

• Enables user to decide where to
safely apply abstractions to
improve verification performance

• Multiple views
– Analysis Region
– Cone of Influence
– Full Design

• Enables user to decide where to
safely apply abstractions to
improve verification performance

• Multiple views
– Analysis Region
– Cone of Influence
– Full Design

Coping with Formal ComplexityCoping with Formal Complexity

• Methodology
– Appropriate size design blocks to apply formal analysis on
– Formal friendly modeling of properties and constraints
– Leverage symmetries in the design
– Assume/guarantee reasoning

• Methodology
– Appropriate size design blocks to apply formal analysis on
– Formal friendly modeling of properties and constraints
– Leverage symmetries in the design
– Assume/guarantee reasoning

- 50 - ©2008 Jasper Design Automation

• Technology
– Safe abstraction techniques
– High performance engines

• Technology
– Safe abstraction techniques
– High performance engines

Formal TestplanFormal Testplan

• Hierarchical definition of design functionality
• Identify functional areas:

– What functionality is the design supposed to deliver?

• Example: PCI network card
– Interface protocol compliance

• Hierarchical definition of design functionality
• Identify functional areas:

– What functionality is the design supposed to deliver?

• Example: PCI network card
– Interface protocol compliance

- 51 - ©2008 Jasper Design Automation

Interface protocol compliance
• Standard protocol rules must be respected

– End to end data integrity
• Packets must never be dropped, duplicated, corrupted or

reordered

– Error correction

• Gradually refine functionalities until function can be
captured by a property.
– Example: Address must remain stable during request

Interface protocol compliance
• Standard protocol rules must be respected

– End to end data integrity
• Packets must never be dropped, duplicated, corrupted or

reordered

– Error correction

• Gradually refine functionalities until function can be
captured by a property.
– Example: Address must remain stable during request

