SAT-based verification temporal induction

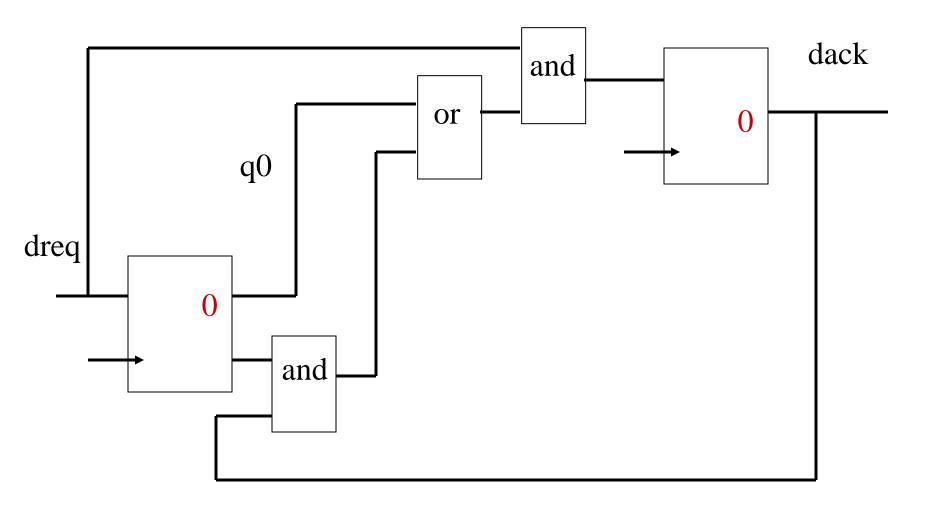
Mary Sheeran, Chalmers

SAT-based verification now hot

- Used here in Sweden since 1989 mostly in safety critical applications (railway control program verification)
- Bounded Model Checking a sensation in 1998
- SAT-based safety property verification in Lava since 1997
- Basic complete temporal induction method described here invented by Stålmarck during a talk on inductive proofs of circuits by Koen Claessen
- SAT-based Induction (engine H) and BMC used in Jasper Gold. Also in IBM SixthSense, at Intel etc.

Bounded Model Checking (BMC)

- Look for bugs up to a certain length
- Proposed for use with SAT
- Used successfully in large companies, most often for safety properties (Intel, IBM)
- Can be extended to give proofs and not just bugfinding in the particular case of safety properties. (Stålmarck et al discovered this independently of the BMC people.)
- See also work by McMillan on SAT-based unbounded model checking



Representing circuit behaviour as formulas

 $I(q0,dack) = \neg q0 \land \neg dack$

T((q0,dack),(q0',dack'))

$$= (q0' <-> dreq) \land (dack' <-> dreq & (q0 \lor (\neg q0 \land dack)))$$

Representing circuit behaviour as formulas

 $I(q0,dack) = \neg q0 \land \neg dack$

T((q0,dack),(q0',dack'))

$$= (q0' <-> dreq) \land (dack' <-> dreq \& (q0 \lor (\neg q0 \land dack)))$$
new state depends also on input

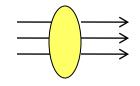
Picturing transition relations

Draw I (s) as



Picturing transition relations

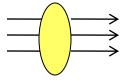
Draw I (s) as



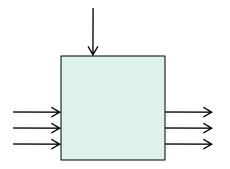
Constraint is only on the state holding elements not on inputs

Picturing transition relations

Draw I (s) as



Draw T (s,s') as



Composing transitions into paths

$$T^{i}(s_{0}, \ldots, s_{i})$$

= T(s_{0}, s_{1}) \land T(s_{1}, s_{2}) \land \ldots \land T(s_{i-1}, s_{i})

Composing transitions into paths

$$T^{i}(s_{0}, s_{i})$$

$$T(s_{0}, s_{1}) \wedge T(s_{1}, s_{2}) \wedge ... \wedge T(s_{i-1}, s_{i})$$



i copies

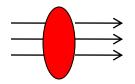
Representing the bad states

Similar to use of formula for initial states

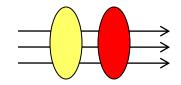
 $B(q0,dack) = \neg q0 \land dack$

or may be using an observer

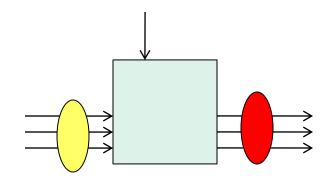
Drawing the bad states



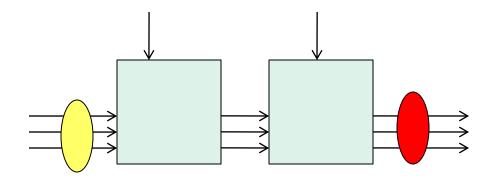
B(s)



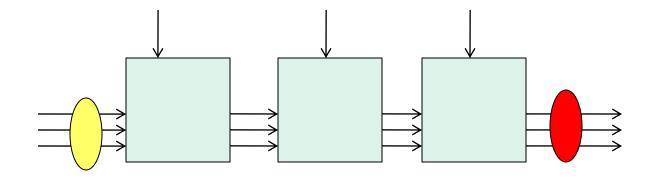
If the corresponding formula is satisfiable, we have a bug already in the initial state!



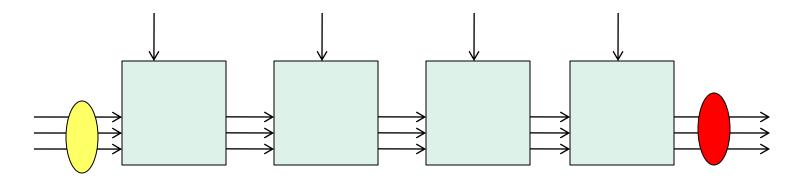
Satisfiable => bug after one step



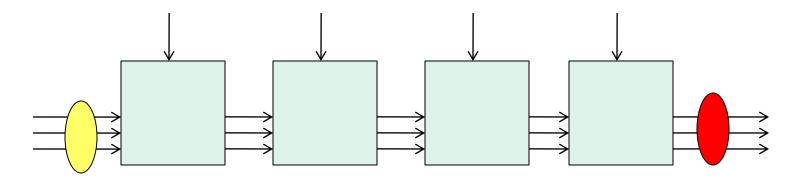
bug after two steps?



bug after three steps?



bug after four steps?



bug after four steps?

Forumula is $I(s_0) \wedge T^n(s_0, s_1, s_2, s_3, s_4) \wedge B(s_4)$

Call this Base₄ and generalise to Base_i

Can start with bound n

Choose a bound n If the formula

$$\mathbf{I}(\mathbf{s}_0) \wedge \mathbf{T}^n(\mathbf{s}_0, \dots, \mathbf{s}_n) \wedge (\mathbf{B}(\mathbf{s}_0) \vee \mathbf{B}(\mathbf{s}_1) \vee \dots \vee \mathbf{B}(\mathbf{s}_n))$$

is satisfiable, then there is a bug somewhere in the first n steps through the transition system

BMC

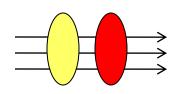
Above description covers simple safety properties

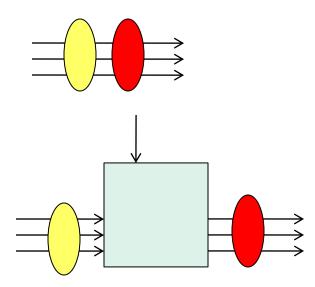
Original BMC papers cover more complex properties

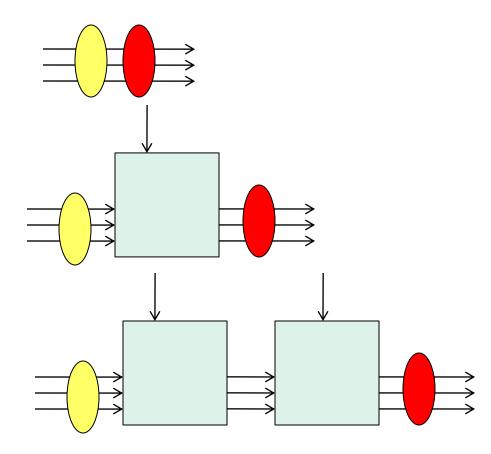
Note complete lack of quantifiers! Key point.

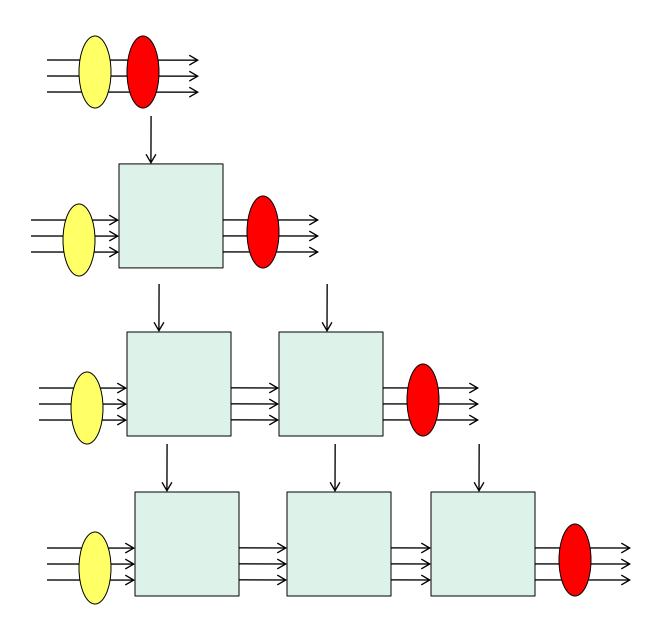
Temporal induction

Start thinking along the same lines









If system is bad

- Base₀
- Base₁
- Base₂

and so on

- Finds a shortest countermodel
- Error trace for debugging

But when can we stop?

when

 $I(s_0) \wedge T^i(s_0, \ldots, s_i)$

UNSAT ?

Not quite, but

when there is no such path that is loop-free

Extra formulas for loop-free "the unique states condition"

$$U^{k}(s_{0}, \ldots, s_{k}) = \bigwedge_{0 \le i < j \le k} (s_{i} \ne s_{j})$$

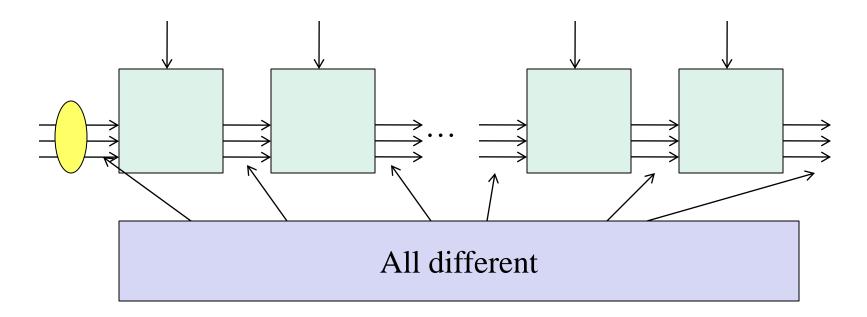
Size??

States are vectors of bits, so

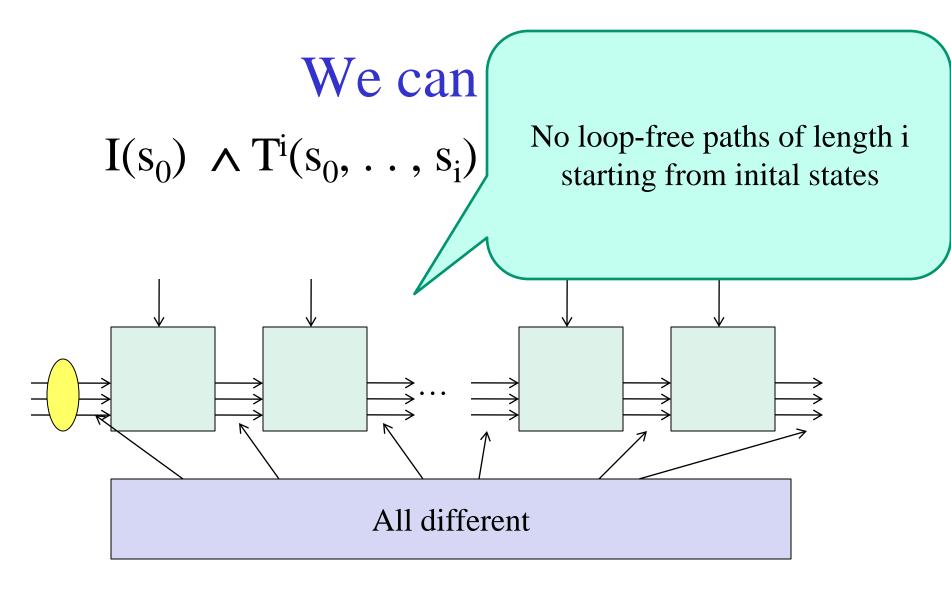
if s=(a,b,c,d) then

$$s_0 \neq s_1$$
 is $\neg (a_0 <-> a_1) \lor$
 $\neg (b_0 <-> b_1) \lor$
 $\neg (c_0 <-> c_1) \lor$
 $\neg (d_0 <-> d_1)$

We can stop if $I(s_0) \wedge T^i(s_0, ..., s_i) \wedge U^i(s_0, ..., s_i)$



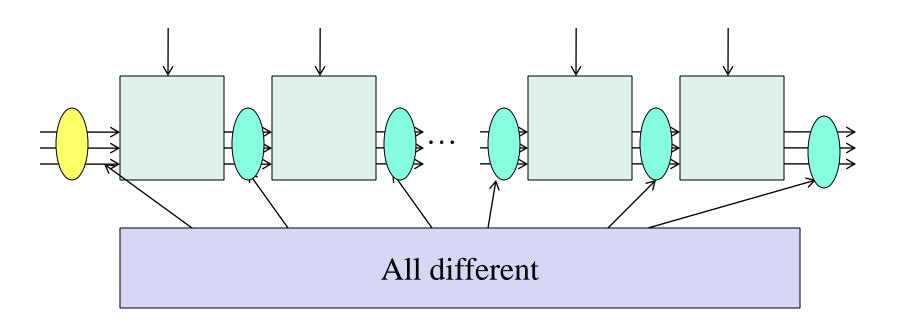
is UNSAT

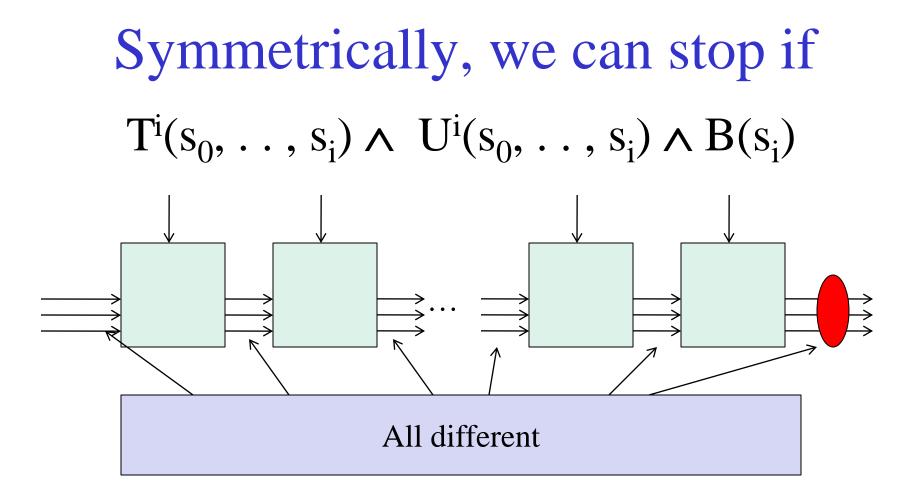


is UNSAT

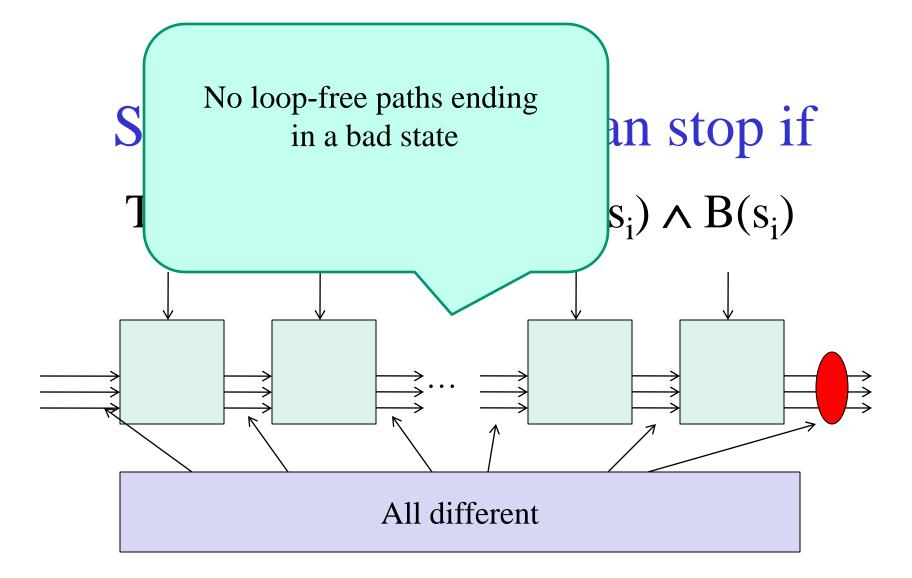
Only interested in shortest paths

- Don't want to go back to an initial state
- Draw non-initial as

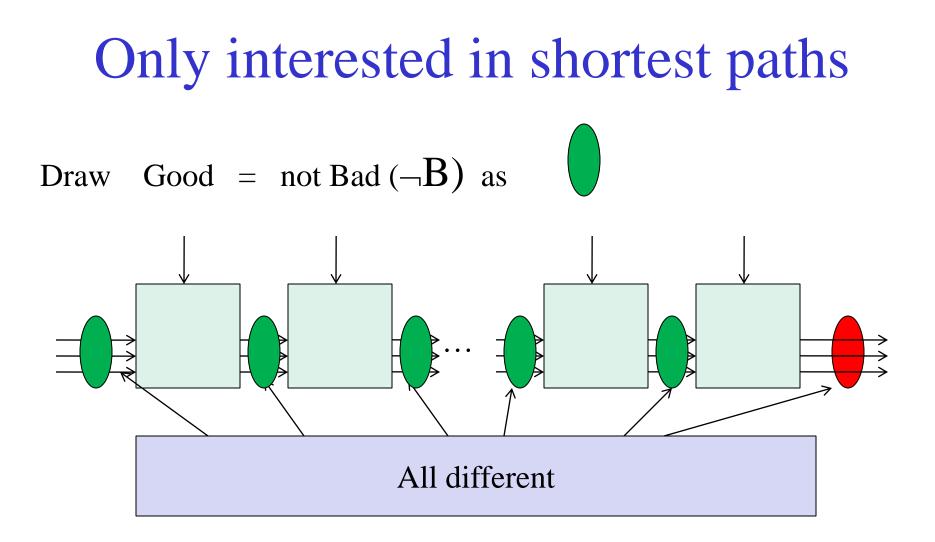




is UNSAT



is UNSAT



This is a much better choice (may terminate much more quickly)

Define

$$Base_k = I(s_0) \wedge T^k(s_0, \ldots, s_k) \wedge B(s_k)$$

$$\begin{aligned} \text{Step1}_{k} &= T^{k+1}(s_{0}, \ldots, s_{k+1}) \land U^{k+1}(s_{0}, \ldots, s_{k+1}) \land \\ & \bigwedge \neg B(s_{j}) \land B(s_{k+1}) \\ & \underset{0 \leq j \leq k}{\wedge} \end{aligned}$$

Define

$$Base_k = I(s_0) \wedge T^k(s_0, \ldots, s_k) \wedge B(s_k)$$

$$\begin{aligned} \text{Step1}_{k} &= T^{k+1}(s_{0}, \ldots, s_{k+1}) \land U^{k+1}(s_{0}, \ldots, s_{k+1}) \land \\ & \bigwedge \neg B(s_{j}) \land B(s_{k+1}) \end{aligned}$$

$$Step2_{k} = T^{k+1}(s_{0}, \ldots, s_{k+1}) \wedge U^{k+1}(s_{0}, \ldots, s_{k+1}) \wedge$$
$$I(s_{0}) \wedge \bigwedge_{1 \leq j \leq k+1} \neg I(s_{j})$$

Define

$$Base_k = I(s_0) \wedge T^k(s_0, \ldots, s_k) \wedge B(s_k)$$

$$\begin{aligned} \text{Step1}_{k} &= T^{k+1}(s_{0}, \dots, s_{k+1}) \wedge U^{k+1}(s_{0}, \dots, s_{k+1}) \wedge \\ & \bigwedge \neg B(s_{j}) \wedge B(s_{k+1}) \\ \text{Step2}_{k} &= T^{k+1}(s_{0}, \dots, s_{k+1}) \wedge U^{k+1} & \text{Won't be needed if there is only one initial state} \\ & I(s_{0}) \wedge \bigwedge \neg I(s_{j}) & \text{Won't be needed if there is only one initial state} \end{aligned}$$

Temporal induction (Stålmarck)

i=0
while True do {
 if Sat(Base_i) return False (and counter example)
 if Unsat(Step1_i) or Unsat(Step2_i) return True
 i=i+1
}

Temporal induction

Most presentations consider only the Step1 case but I like to keep things symmetrical

Much overlap between formulas in different iterations. Was part of the inspiration behind the development (here at Chalmers) of the incremental SAT-solver miniSAT (open source, see minisat.se) (see paper by Een and Sörensson in the list later)

In reality need to think hard about what formulas to give the SAT-solver.

Temporal induction

The method is sound and complete (see papers, later slides) Gives the right answer, Gives proof, not just bug-finding

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property (though this may make less sense when using an incremental SAT-solver)

The method can be strengthened further. (Still ongoing research)

Definitely met with scepticism initially

To make this easier to see, rewrite

$$\neg Base_k = \neg (I(s_0) \land T^k(s_0, ..., s_k) \land B(s_k))$$

Let $P = \neg B$ (want to prove that P holds in all reachable states)

Rewrite as

$$(I(s_0) \land T^k(s_0, ..., s_k)) => P(s_k)$$

To make this easier to see, rewrite

$$\neg Base_k = \neg (I(s_0) \land T^k(s_0, ..., s_k) \land B(s_k))$$

Let $P = \neg B$ (want to prove that P holds in all reachable states)

Rewrite as

Now add facts from previous iterations $\bigwedge P(s_j) \\ 0 \le j \le k$

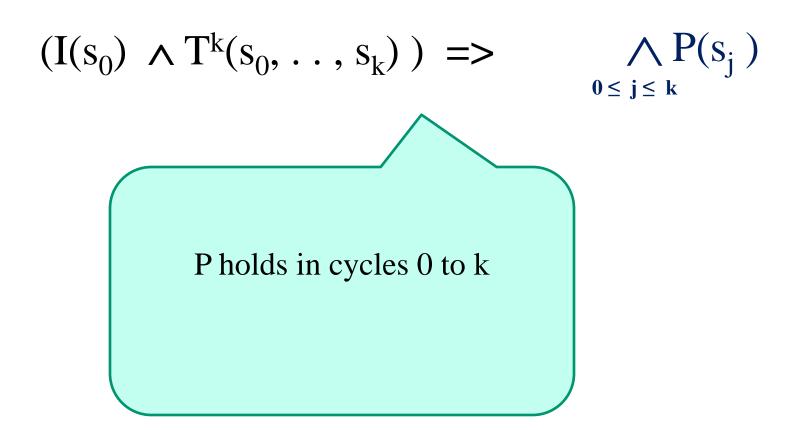
To make this easier to see, rewrite

$$\neg Base_k = \neg (I(s_0) \land T^k(s_0, ..., s_k) \land B(s_k))$$

Let $P = \neg B$ (want to prove that P holds in all reachable states)

Rewrite as

$$(I(s_0) \wedge T^k(s_0, \ldots, s_k)) \implies \bigwedge_{0 \le j \le k} P(s_j)$$



Working with the strengthend Step1

$$\neg \operatorname{Step1}_{k} = \neg (\operatorname{T}^{k+1}(s_{0}, \ldots, s_{k+1}) \land \operatorname{U}^{k+1}(s_{0}, \ldots, s_{k+1}) \land \bigwedge \operatorname{P}(s_{j}) \land \neg \operatorname{P}(s_{k+1}))$$

$$(T^{k+1}(s_0, \ldots, s_{k+1}) \wedge U^{k+1}(s_0, \ldots, s_{k+1}) \wedge \bigwedge_{0 \le j \le k} P(s_j)$$

=> $P(s_{k+1})$

$$(T^{k+1}(s_0, \dots, s_{k+1}) \land U^{k+1}(s_0, \dots, s_{k+1}) \bigwedge_{0 \le j \le k} \Lambda P(s_j))$$

=> $P(s_{k+1})$
If P holds in cycles 0 to k
then it also holds in the next cycle

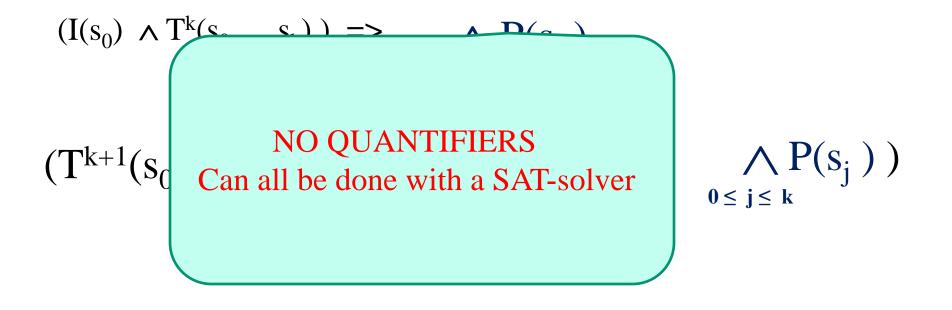
Strengthened induction, depth k

$$(I(s_0) \wedge T^k(s_0, ..., s_k)) = \bigwedge_{0 \le j \le k} P(s_j)$$

$$(T^{k+1}(s_0, ..., s_{k+1}) \land U^{k+1}(s_0, ..., s_{k+1}) \land \bigwedge_{0 \le j \le k} P(s_j))$$

=> $P(s_{k+1})$

Strengthened induction, depth k

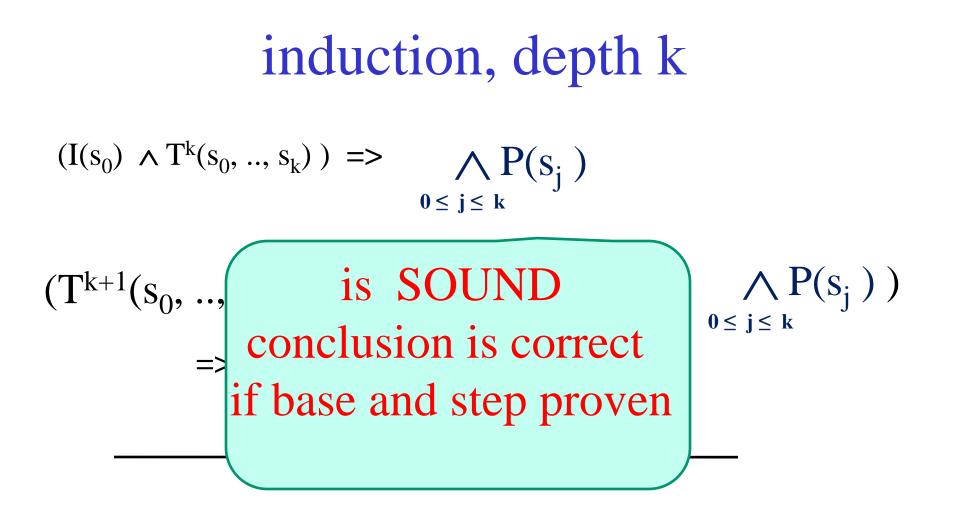


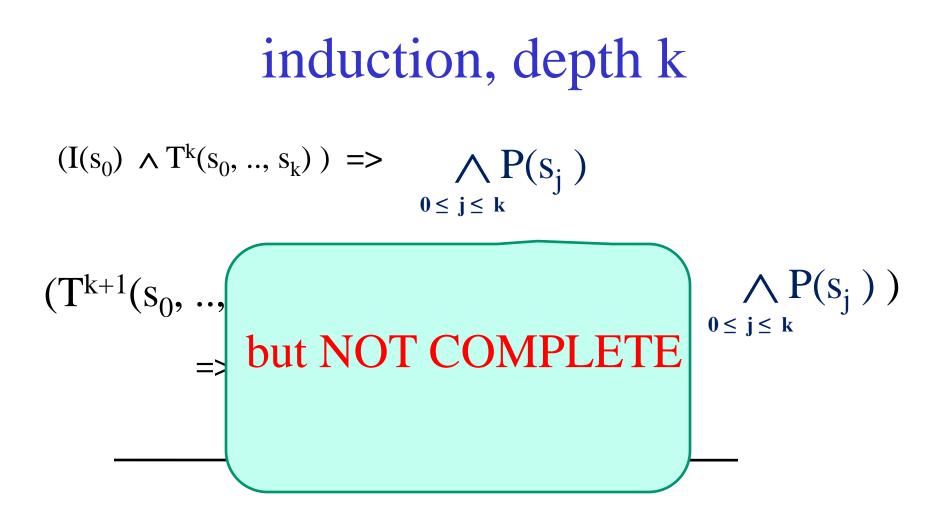
induction, depth k

$$(I(s_0) \wedge T^k(s_0, ..., s_k)) = \sum_{0 \le j \le k} P(s_j)$$

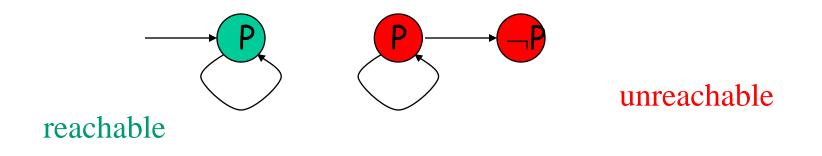
$$(T^{k+1}(s_0, ..., s_{k+1}) \land \qquad \bigwedge P(s_j))$$

$$\Longrightarrow \qquad P(s_{k+1})$$





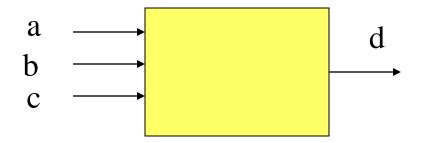
Some properties are not k-inductive no matter how big you make k



But there is a path from an initial to a bad state if and only if there is such a path without repeated states (loop-free, simple)

So Stålmarck's eureka step was vital and brilliant!

Symbolic Trajectory Evaluation (STE)



STE

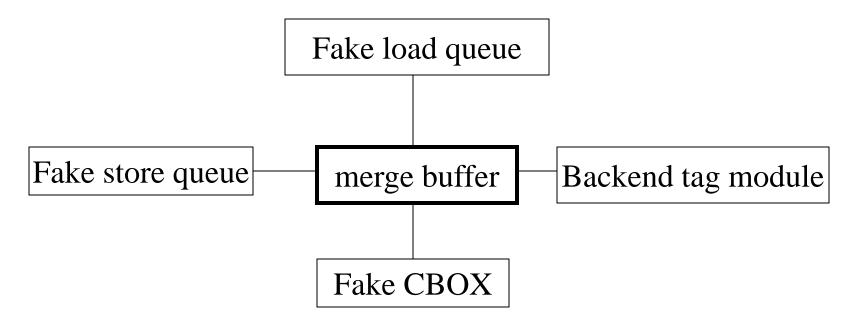
We already saw Symbolic Simulation.

Don't just have concrete values (and X) flowing in the circuit. Have BDDs or formulas flowing

A single run of a symbolic simulator checks an STE property requiring many concrete simulations

STE is symbolic simulation plus proof that the consequent holds

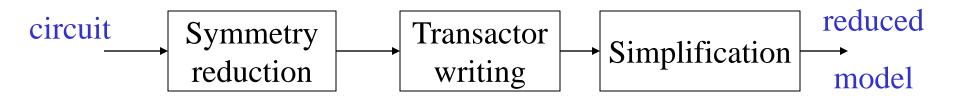
Use of BMC and STE in verifying the Alpha



Aim: to automatically find violations of properties like Same address cannot be in two entries at once that is, bug finding during development

Reducing the problem

 Initial circuit: 400 inputs, 14 400 latches, 15 pipeline stages



• Reduced model has 10 inputs, 600 latches

Results

- Real bugs found, from 25 -144 cycles
- SAT-based BMC on 32 bit PC 20 -10k secs.
- Custom SMV on 64 bit Alpha took much longer (but went to larger sizes)
- STE quick to run, but writing specs takes time and expertise
- Promising results in real development

NOTE: Done by Per Bjesse, who used to assist on this course ^(C). (paper on links page)

Conclusion

BMC: the work-horse of formal hardware verification

SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the necessary development of SAT-solvers

Much research now concentrates on raising the level of abstraction at which formal reasoning is done Satisfiability Module Theories (SMT) is the hot topic