
SAT-based verification
temporal induction

Mary Sheeran, Chalmers

SAT-based verification now hot

• Used here in Sweden since 1989 mostly in safety
critical applications (railway control program
verification)

• Bounded Model Checking a sensation in 1998
• SAT-based safety property verification in Lava since

1997
• Basic complete temporal induction method

described here invented by Stålmarck during a talk
on inductive proofs of circuits by Koen Claessen

• SAT-based Induction (engine H) and BMC used in
Jasper Gold. Also in IBM SixthSense, at Intel etc.

Bounded Model Checking
(BMC)

• Look for bugs up to a certain length
• Proposed for use with SAT
• Used successfully in large companies, most often

for safety properties (Intel, IBM)
• Can be extended to give proofs and not just bug-

finding in the particular case of safety properties.
(Stålmarck et al discovered this independently of
the BMC people.)

• See also work by McMillan on SAT-based
unbounded model checking

and

and
or

dreq

q0

dack

0

0

Representing circuit behaviour as
formulas

I(q0,dack) = ¬q0 ∧ ¬ dack

T((q0,dack),(q0’,dack’))

= (q0’ <-> dreq) ∧
(dack’ <-> dreq & (q0 ∨ (¬q0 ∧ dack)))

Representing circuit behaviour as
formulas

I(q0,dack) = ¬q0 ∧ ¬ dack

T((q0,dack),(q0’,dack’))

= (q0’ <-> dreq) ∧
(dack’ <-> dreq & (q0 ∨ (¬q0 ∧ dack)))

new state depends also on input

Picturing transition relations

Draw I (s) as

Picturing transition relations

Draw I (s) as

Constraint is only on the state holding elements
not on inputs

Picturing transition relations

Draw I (s) as

Draw T (s,s’) as

Composing transitions into paths

Ti(s0, . . , si)
= T(s0, s1) ∧ T(s1, s2) ∧ ... ∧ T(si-1,si)

Composing transitions into paths

Ti(s0, . . , si)
= T(s0, s1) ∧ T(s1, s2) ∧ ... ∧ T(si-1,si)

i copies

…

Representing the bad states

Similar to use of formula for initial states

B(q0,dack) = ¬q0 ∧ dack

or may be using an observer

Drawing the bad states

B(s)

BMC for simple safety properties

If the corresponding formula is satisfiable, we have a bug
already in the initial state!

BMC for simple safety properties

Satisfiable => bug after one step

BMC for simple safety properties

bug after two steps?

BMC for simple safety properties

bug after three steps?

BMC for simple safety properties

bug after four steps?

BMC for simple safety properties

bug after four steps?

Forumula is I(s0) ∧ Tn(s0, s1, s2, s3, s4) ∧ B(s4)

Call this Base4 and generalise to Basei

Can start with bound n

Choose a bound n
If the formula

I(s0) ∧ Tn(s0, . . , sn) ∧ (B(s0) ∨ B(s1) ∨ . . . ∨ B(sn))

is satisfiable, then there is a bug somewhere in the
first n steps through the transition system

BMC

Above description covers simple safety properties

Original BMC papers cover more complex
properties

Note complete lack of quantifiers! Key point.

Temporal induction

Start thinking along the same lines

If system is bad

• Base0

• Base1

• Base2

and so on

• Finds a shortest countermodel
• Error trace for debugging

But when can we stop?

when

UNSAT ?

I(s0) ∧ Ti(s0, . . , si)

Not quite, but

when there is no such path that is loop-free

Extra formulas for loop-free
”the unique states condition”

Uk(s0, . . , sk) = ∧ (si ≠ sj)
0 ≤ i < j ≤ k

Size??

States are vectors of bits, so

if s=(a,b,c,d) then

s0 ≠ s1 is ¬ (a0 <-> a1) ∨
¬ (b0 <-> b1) ∨
¬ (c0 <-> c1) ∨
¬ (d0 <-> d1)

We can stop if
I(s0) ∧ Ti(s0, . . , si) ∧ Ui(s0, . . , si)

is UNSAT

…

All different

We can stop if
I(s0) ∧ Ti(s0, . . , si) ∧ Ui(s0, . . , si)

is UNSAT

…

All different

No loop-free paths of length i
starting from inital states

Only interested in shortest paths

• Don’t want to go back to an initial state
• Draw non-initial as

…

All different

Symmetrically, we can stop if
Ti(s0, . . , si) ∧ Ui(s0, . . , si) ∧ B(si)

is UNSAT

…

All different

Symmetrically, we can stop if
Ti(s0, . . , si) ∧ Ui(s0, . . , si) ∧ B(si)

is UNSAT

…

All different

No loop-free paths ending
in a bad state

Only interested in shortest paths

…

All different

Draw Good = not Bad (¬B) as

This is a much better choice (may terminate much more quickly)

I(s0) ∧ Tk(s0, . . , sk) ∧ B(sk)

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤ j ≤ k

¬B(sj) ∧ B(sk+1)

I(s0) ∧ Tk(s0, . . , sk) ∧ B(sk)

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤ j ≤ k

¬B(sj) ∧ B(sk+1)

Step2k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
1≤ j ≤ k+1

¬I(sj)I(s0) ∧

I(s0) ∧ Tk(s0, . . , sk) ∧ B(sk)

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤ j ≤ k

¬B(sj) ∧ B(sk+1)

Step2k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
1≤ j ≤ k+1

¬I(sj)I(s0) ∧

Won’t be needed if
there is only one

initial state

Temporal induction (Stålmarck)

i=0
while True do {

if Sat(Basei) return False (and counter example)
if Unsat(Step1i) or Unsat(Step2i) return True
i=i+1

}

Temporal induction
Most presentations consider only the Step1 case but I
like to keep things symmetrical

Much overlap between formulas in different iterations.
Was part of the inspiration behind the development (here at
Chalmers) of the incremental SAT-solver miniSAT (open
source, see minisat.se)
(see paper by Een and Sörensson in the list later)

In reality need to think hard about what formulas to give the
SAT-solver.

Temporal induction

The method is sound and complete (see papers, later slides)
Gives the right answer, Gives proof, not just bug-finding

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property
(though this may make less sense when using an incremental
SAT-solver)

The method can be strengthened further. (Still ongoing research)

Definitely met with scepticism initially

Is it really induction?

(I(s0) ∧ Tk(s0,.., sk) ∧¬ Basek = ¬

To make this easier to see, rewrite

B(sk))

Let P = ¬ B (want to prove that P holds in all reachable states)

Rewrite as

(I(s0) ∧ Tk(s0, . . , sk)) => P(sk)

Is it really induction?

(I(s0) ∧ Tk(s0,.., sk) ∧¬ Basek = ¬

To make this easier to see, rewrite

B(sk))

Let P = ¬ B (want to prove that P holds in all reachable states)

Rewrite as

¬ ((I(s0) ∧ Tk(s0, . . , sk)) -> P(sk))
Now add facts from previous

iterations
×
∧

0 ≤ j ≤ k
P(sj)

Is it really induction?

(I(s0) ∧ Tk(s0,.., sk) ∧¬ Basek = ¬

To make this easier to see, rewrite

B(sk))

Let P = ¬ B (want to prove that P holds in all reachable states)

Rewrite as

(I(s0) ∧ Tk(s0, . . , sk)) => ∧
0 ≤ j ≤ k

P(sj)

Is it really induction?

(I(s0) ∧ Tk(s0, . . , sk)) => ∧
0 ≤ j ≤ k

P(sj)

P holds in cycles 0 to k

¬ Step1k = ¬ (Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤ j ≤ k

P(sj)

∧ ¬ P(sk+1))

=

(Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤ j ≤ k

P(sj)

Working with the strengthend Step1

=> P(sk+1)

∧
0 ≤ j ≤ k

P(sj))(Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

=> P(sk+1)

If P holds in cycles 0 to k
then it also holds in the next cycle

Strengthened induction, depth k
(I(s0) ∧ Tk(s0, .., sk)) => ∧

0 ≤ j ≤ k
P(sj)

(Tk+1(s0, .., sk+1) ∧ Uk+1(s0,.., sk+1) ∧ ∧
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

Strengthened induction, depth k
(I(s0) ∧ Tk(s0, .., sk)) => ∧

0 ≤ j ≤ k
P(sj)

(Tk+1(s0, .., sk+1) ∧ Uk+1(s0,.., sk+1) ∧ ∧
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

NO QUANTIFIERS
Can all be done with a SAT-solver

induction, depth k
(I(s0) ∧ Tk(s0, .., sk)) => ∧

0 ≤ j ≤ k
P(sj)

(Tk+1(s0, .., sk+1) ∧ ∧
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

induction, depth k
(I(s0) ∧ Tk(s0, .., sk)) => ∧

0 ≤ j ≤ k
P(sj)

(Tk+1(s0, .., sk+1) ∧ ∧
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

is SOUND
conclusion is correct

if base and step proven

induction, depth k
(I(s0) ∧ Tk(s0, .., sk)) => ∧

0 ≤ j ≤ k
P(sj)

(Tk+1(s0, .., sk+1) ∧ ∧
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

but NOT COMPLETE

P P ¬P

Some properties are not k-inductive no matter
how big you make k

reachable
unreachable

But there is a path from an initial to a bad state if and only if
there is such a path without repeated states (loop-free, simple)

So Stålmarck’s eureka step was vital and brilliant!

Symbolic Trajectory Evaluation
(STE)

a
b
c

d

[a is v, _ , c is not v, _] [_ , _ , _ , d is true]

consequentantecedent

STE

We already saw Symbolic Simulation.

Don’t just have concrete values (and X) flowing in
the circuit. Have BDDs or formulas flowing

A single run of a symbolic simulator checks an STE
property requiring many concrete simulations

STE is symbolic simulation plus proof that the
consequent holds

Use of BMC and STE in
verifying the Alpha

merge buffer

Fake load queue

Backend tag module

Fake CBOX

Fake store queue

Aim: to automatically find violations of properties like
Same address cannot be in two entries at once
that is, bug finding during development

Reducing the problem

• Initial circuit: 400 inputs, 14 400 latches,
15 pipeline stages

• Reduced model has 10 inputs, 600 latches

Symmetry
reduction

Transactor
writing Simplification

circuit reduced

model

Results

• Real bugs found, from 25 -144 cycles
• SAT-based BMC on 32 bit PC 20 -10k secs.
• Custom SMV on 64 bit Alpha took much longer

(but went to larger sizes)
• STE quick to run, but writing specs takes time and

expertise
• Promising results in real development
NOTE: Done by Per Bjesse, who used to assist on

this course . (paper on links page)

Conclusion
BMC: the work-horse of formal hardware verification

SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the
necessary development of SAT-solvers

Much research now concentrates on raising the level of
abstraction at which formal reasoning is done

Satisfiability Module Theories (SMT) is the hot topic

	SAT-based verification�temporal induction
	SAT-based verification now hot
	Bounded Model Checking (BMC)
	Slide Number 4
	Representing circuit behaviour as formulas
	Representing circuit behaviour as formulas
	Picturing transition relations
	Picturing transition relations
	Picturing transition relations
	Composing transitions into paths
	Composing transitions into paths
	Representing the bad states
	Drawing the bad states
	BMC for simple safety properties
	BMC for simple safety properties
	BMC for simple safety properties
	BMC for simple safety properties
	BMC for simple safety properties
	BMC for simple safety properties
	Can start with bound n
	BMC
	Temporal induction
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	If system is bad
	But when can we stop?
	Not quite, but
	Extra formulas for loop-free�”the unique states condition”
	States are vectors of bits, so
	We can stop if
	We can stop if
	Only interested in shortest paths
	Symmetrically, we can stop if
	Symmetrically, we can stop if
	Only interested in shortest paths
	Define
	Define
	Define
	Temporal induction (Stålmarck)
	Temporal induction
	Temporal induction
	Is it really induction?
	Is it really induction?
	Is it really induction?
	Is it really induction?
	Slide Number 48
	Slide Number 49
	Strengthened induction, depth k
	Strengthened induction, depth k
	induction, depth k
	induction, depth k
	induction, depth k
	Slide Number 55
	Symbolic Trajectory Evaluation�(STE)
	STE
	Use of BMC and STE in verifying the Alpha
	Reducing the problem
	Results
	Conclusion

