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SAT-based verification now hot

• Used here in Sweden since 1989 mostly in safety
critical applications (railway control program 
verification)

• Bounded Model Checking a sensation in 1998
• SAT-based safety property verification in Lava since

1997
• Basic complete temporal induction method

described here invented by Stålmarck during a talk 
on inductive proofs of circuits by Koen Claessen

• SAT-based Induction (engine H) and BMC used in 
Jasper Gold. Also in IBM SixthSense, at Intel etc.



Bounded Model Checking 
(BMC)

• Look for bugs up to a certain length
• Proposed for use with SAT
• Used successfully in large companies, most often

for safety properties (Intel, IBM)
• Can be extended to give proofs and not just bug-

finding in the particular case of safety properties. 
(Stålmarck et al discovered this independently of 
the BMC people.)

• See also work by McMillan on SAT-based
unbounded model checking
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Representing circuit behaviour as 
formulas

I(q0,dack)  =  ¬q0 ∧ ¬ dack

T((q0,dack),(q0’,dack’))   

=               (q0’     <-> dreq )          ∧
(dack’  <-> dreq & (q0 ∨ (¬q0 ∧ dack)))



Representing circuit behaviour as 
formulas

I(q0,dack)  =  ¬q0 ∧ ¬ dack

T((q0,dack),(q0’,dack’))   

=               (q0’     <-> dreq )          ∧
(dack’  <-> dreq & (q0 ∨ (¬q0 ∧ dack)))

new state depends also on input



Picturing transition relations

Draw I (s)    as



Picturing transition relations

Draw     I (s)    as

Constraint is only on the state holding elements
not on inputs



Picturing transition relations

Draw I (s)    as

Draw T (s,s’) as



Composing transitions into paths

Ti(s0, . . , si)   
=  T(s0, s1) ∧ T(s1, s2) ∧ ... ∧ T(si-1,si)



Composing transitions into paths

Ti(s0, . . , si)   
=  T(s0, s1) ∧ T(s1, s2) ∧ ... ∧ T(si-1,si)

i   copies

…



Representing the bad states

Similar to use of formula for initial states

B(q0,dack)  =  ¬q0 ∧ dack

or may be using an observer



Drawing the bad states

B(s)



BMC for simple safety properties

If the corresponding formula is satisfiable, we have a bug
already in the initial state!



BMC for simple safety properties

Satisfiable => bug after one step



BMC for simple safety properties

bug after two steps?



BMC for simple safety properties

bug after three steps?



BMC for simple safety properties

bug after four steps?



BMC for simple safety properties

bug after four steps?

Forumula is   I(s0) ∧ Tn(s0, s1, s2, s3, s4) ∧ B(s4)

Call this Base4 and generalise to Basei



Can start with bound n

Choose a bound n
If the formula

I(s0 ) ∧ Tn(s0, . . , sn) ∧ (B(s0) ∨ B(s1) ∨ . . . ∨ B(sn))

is satisfiable, then there is a bug somewhere in the 
first n steps through the transition system



BMC

Above description covers simple safety properties

Original BMC papers cover more complex
properties

Note complete lack of quantifiers!  Key point.



Temporal induction

Start thinking along the same lines











If system is bad

• Base0

• Base1

• Base2

and so on

• Finds a shortest countermodel
• Error trace for debugging



But when can we stop?

when

UNSAT ?

I(s0) ∧ Ti(s0, . . , si)



Not quite, but

when there is no such path that is loop-free



Extra formulas for loop-free
”the unique states condition”

Uk(s0, . . , sk)    = ∧ (si ≠ sj)
0 ≤ i < j ≤  k

Size??



States are vectors of bits, so

if s=(a,b,c,d)   then

s0 ≠ s1 is    ¬ (a0 <-> a1) ∨
¬ (b0 <-> b1) ∨
¬ (c0 <-> c1) ∨
¬ (d0 <-> d1)



We can stop if
I(s0) ∧ Ti(s0, . . , si) ∧ Ui(s0, . . , si) 

is UNSAT

…

All different



We can stop if
I(s0) ∧ Ti(s0, . . , si) ∧ Ui(s0, . . , si) 

is UNSAT

…

All different

No loop-free paths of length i
starting from inital states



Only interested in shortest paths

• Don’t want to go back to an initial state
• Draw  non-initial as  

…

All different



Symmetrically, we can stop if
Ti(s0, . . , si) ∧ Ui(s0, . . , si) ∧ B(si) 

is UNSAT

…

All different



Symmetrically, we can stop if
Ti(s0, . . , si) ∧ Ui(s0, . . , si) ∧ B(si) 

is UNSAT

…

All different

No loop-free paths ending
in a bad state



Only interested in shortest paths

…

All different

Draw    Good   =   not Bad (¬B) as

This is a much better choice (may terminate much more quickly)



I(s0) ∧ Tk(s0, . . , sk) ∧ B(sk )

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤  j ≤  k

¬B(sj ) ∧ B(sk+1) 



I(s0) ∧ Tk(s0, . . , sk) ∧ B(sk )

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤  j ≤  k

¬B(sj ) ∧ B(sk+1) 

Step2k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
1≤  j ≤  k+1

¬I(sj )I(s0) ∧



I(s0) ∧ Tk(s0, . . , sk) ∧ B(sk )

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤  j ≤  k

¬B(sj ) ∧ B(sk+1) 

Step2k = Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
1≤  j ≤  k+1

¬I(sj )I(s0) ∧

Won’t be needed if
there is only one

initial state



Temporal induction (Stålmarck)

i=0
while True do {

if Sat(Basei) return False (and counter example)
if Unsat(Step1i)  or Unsat(Step2i) return True
i=i+1

}



Temporal induction
Most presentations consider only the Step1 case but I
like to keep things symmetrical

Much overlap between formulas in different iterations.
Was part of the inspiration behind the development (here at 
Chalmers) of the incremental SAT-solver miniSAT (open
source, see minisat.se)
(see paper by Een and Sörensson in the list later)

In reality need to think hard about what formulas to give the 
SAT-solver.



Temporal induction

The method is sound and complete (see papers, later slides)
Gives the right answer,    Gives proof, not just bug-finding

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property
(though this may make less sense when using an incremental
SAT-solver)

The method can be strengthened further. (Still ongoing research)

Definitely met with scepticism initially



Is it really induction?

(I(s0) ∧ Tk(s0,.., sk) ∧¬ Basek = ¬

To make this easier to see,    rewrite

B(sk ))

Let P  = ¬ B       (want to prove that P holds in all reachable states)

Rewrite as

(I(s0) ∧ Tk(s0, . . , sk) )  => P(sk )



Is it really induction?

(I(s0) ∧ Tk(s0,.., sk) ∧¬ Basek = ¬

To make this easier to see,    rewrite

B(sk ))

Let P  = ¬ B       (want to prove that P holds in all reachable states)

Rewrite as

¬ ((I(s0) ∧ Tk(s0, . . , sk) )  ->    P(sk ))
Now add facts from previous

iterations
×
∧

0 ≤  j ≤  k
P(sj )



Is it really induction?

(I(s0) ∧ Tk(s0,.., sk) ∧¬ Basek = ¬

To make this easier to see,    rewrite

B(sk ))

Let P  = ¬ B       (want to prove that P holds in all reachable states)

Rewrite as

(I(s0) ∧ Tk(s0, . . , sk) )  => ∧
0 ≤  j ≤  k

P(sj )



Is it really induction?

(I(s0) ∧ Tk(s0, . . , sk) )  => ∧
0 ≤  j ≤  k

P(sj )

P holds in cycles 0 to k



¬ Step1k = ¬ (Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤  j ≤  k

P(sj )

∧ ¬ P(sk+1) ) 

=

(Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

∧
0 ≤  j ≤  k

P(sj )

Working with the strengthend Step1 

=>    P(sk+1) 



∧
0 ≤  j ≤  k

P(sj ) )(Tk+1(s0, . . , sk+1) ∧ Uk+1(s0, . . , sk+1) ∧

=>    P(sk+1)  

If P holds in cycles 0 to k
then it also holds in the next cycle



Strengthened induction, depth k
(I(s0) ∧ Tk(s0, .., sk) )  => ∧

0 ≤  j ≤  k
P(sj )

(Tk+1(s0, .., sk+1) ∧ Uk+1(s0,.., sk+1) ∧ ∧
0 ≤  j ≤  k

P(sj ) )

=> P(sk+1) 

P  holds in all reachable states



Strengthened induction, depth k
(I(s0) ∧ Tk(s0, .., sk) )  => ∧

0 ≤  j ≤  k
P(sj )

(Tk+1(s0, .., sk+1) ∧ Uk+1(s0,.., sk+1) ∧ ∧
0 ≤  j ≤  k

P(sj ) )

=> P(sk+1) 

P  holds in all reachable states

NO QUANTIFIERS   
Can all be done with a SAT-solver



induction, depth k
(I(s0) ∧ Tk(s0, .., sk) )  => ∧

0 ≤  j ≤  k
P(sj )

(Tk+1(s0, .., sk+1)   ∧ ∧
0 ≤  j ≤  k

P(sj ) )

=> P(sk+1) 

P  holds in all reachable states



induction, depth k
(I(s0) ∧ Tk(s0, .., sk) )  => ∧

0 ≤  j ≤  k
P(sj )

(Tk+1(s0, .., sk+1)   ∧ ∧
0 ≤  j ≤  k

P(sj ) )

=> P(sk+1) 

P  holds in all reachable states

is  SOUND
conclusion is correct

if base and step proven



induction, depth k
(I(s0) ∧ Tk(s0, .., sk) )  => ∧

0 ≤  j ≤  k
P(sj )

(Tk+1(s0, .., sk+1)   ∧ ∧
0 ≤  j ≤  k

P(sj ) )

=> P(sk+1) 

P  holds in all reachable states

but NOT COMPLETE



P P ¬P

Some properties are not k-inductive no matter
how big you make k

reachable
unreachable

But there is a path from an initial to a bad state if and only if
there is such a path without repeated states (loop-free, simple)

So Stålmarck’s eureka step was vital and brilliant!



Symbolic Trajectory Evaluation
(STE)

a
b
c

d

[a is v, _ , c is not v,  _]    [_ , _ , _ , d is true ]

consequentantecedent



STE

We already saw Symbolic Simulation.

Don’t just have concrete values (and X) flowing in 
the circuit. Have BDDs or formulas flowing

A single run of a symbolic simulator checks an STE 
property requiring many concrete simulations

STE is symbolic simulation plus proof that the 
consequent holds



Use of BMC and STE in 
verifying the Alpha

merge buffer

Fake load queue

Backend tag module

Fake CBOX

Fake store queue

Aim: to automatically find violations of properties like
Same address cannot be in two entries at once
that is, bug finding during development



Reducing the problem

• Initial circuit: 400 inputs, 14 400 latches,  
15 pipeline stages

• Reduced model has 10 inputs, 600 latches

Symmetry
reduction

Transactor
writing Simplification

circuit reduced

model



Results

• Real bugs found,  from 25 -144 cycles
• SAT-based BMC on 32 bit PC 20 -10k secs.
• Custom SMV on 64 bit Alpha took much longer

(but went to larger sizes)
• STE quick to run, but writing specs takes time and 

expertise
• Promising results in real development
NOTE: Done by Per Bjesse, who used to assist on 

this course . (paper on links page)



Conclusion
BMC: the work-horse of formal hardware verification

SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the 
necessary development of SAT-solvers

Much research now concentrates on raising the level of 
abstraction at which formal reasoning is done

Satisfiability Module Theories (SMT) is the hot topic
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